• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "투영"에 대한 통합 검색 내용이 131개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[포커스] 디지털 제조 컨퍼런스, 제조산업 혁신 전략과 디지털 트윈의 활용 방안 소개
캐드앤그래픽스는 SIMTOS 2024 행사 기간 중 4월 4일과 5일에 ‘디지털 제조 & 뿌리산업 컨퍼런스’를 진행했다. AI 제조 혁신과 디지털 트윈을 다룬 ‘디지털 제조 컨퍼런스(4월 4일)’와 스마트 공장 및 뿌리산업의 디지털 전환을 주제로 한 ‘뿌리산업 컨퍼런스(4월 5일)’을 통해 제조 분야 디지털 전환의 흐름을 짚고, 미래 혁신 전략과 사례를 살펴보는 자리가 마련됐다. ■ 정수진 편집장     한국공작기계산업협회의 김경동 선임본부장은 개회사에서 “최근 AI 기반 자율 제조와 디지털 전환의 가속화 등 트렌드가 제조산업의 변화와 혁신을 요구하고 있다. 이러한 변화와 혁신에 대응하기 위해서는 더욱 스마트하고 효율적인 생산 방식을 채택하여 산업 경쟁력을 강화하고, 지속 가능한 발전을 이룰 수 있도록 해야 한다”고 짚었다. 그리고 “이번 행사를 통해 변화에 대응하기 위한 해결책으로서 반도체, 자동차, 조선 등 수요산업과 절삭, 가공 산업의 AI 자율 제조 구현을 살펴보는 동시에, 제조업의 당면 과제 해결을 위한 다양한 솔루션과 방향성을 찾는 기회가 마련되길 바란다”고 전했다. 4월 4일 ‘디지털 제조 컨퍼런스’에서는 ‘AI 제조 혁신과 디지털 트윈’을 테마로 5편의 발표가 진행됐다. DN솔루션즈의 이병곤 부사장은 ‘절삭 가공 산업의 AI 기반 자율 제조’에 대해 소개하면서, 절삭 가공 등 공작기계 산업의 자율 제조 시스템 구축을 위한 모티베이션으로 반도체 산업과 자동차 산업의 사례를 들었다. 반도체 산업의 경우 지난 수십 년간의 노력을 통해 높은 수준의 무인 자동화를 이뤘으며, 2030년까지 공장 장비의 유지보수까지 무인화하는 자율제조 체계 구축을 추진하고 있다. 반면 공작기계 산업에서는 자동화의 진행이 상대적으로 느린 상황이다. 이병곤 부사장은 “자율주행자동차의 발전 단계외 비슷한 아키텍처를 공작기계 산업의 자율 제조에도 적용할 수 있을 것”이라고 짚었다. 이병곤 부사장은 다수 장비의 자율 운영을 위한 표준화 및 공장 전체의 엔지니어링 데이터와 운영 시스템을 통해 공장의 자율제조 구현이 가능할 것으로 보았다. 그리고 “DN솔루션즈는 데이터 플랫폼, 제조 실행 플랫폼, 의사결정 플랫폼 등 세 가지 플랫폼을 중심으로 공장의 디지털 트윈 및 표준 제어 솔루션 등 전체 아키텍처를 구성하고, 상향식(bottom-up)으로 필요한 기능을 갖추면서 AI 기반의 자율제조 비전을 실현해 나가고자 한다”고 전했다.   ▲ DN솔루션즈 이병곤 부사장   네이버 클라우드의 하정우 센터장은 ‘챗GPT 1년, 초거대 AI가 불러온 변화와 우리의 전략’을 주제로 발표를 진행했다. 발표에서는 올해 생성형 AI(generative AI)의 주요한 트렌드로 ▲글/그림/영상/오디오 등 다양한 AI 서비스의 본격화 ▲스마트폰이나 로봇 등에 탑재되는 온디바이스(on-device) AI ▲AI의 안전성과 책임을 강화하기 위한 노력 ▲실제 산업과 일상생활에서 의미 있는 성과 창출 ▲사람의 편향성이 투영된 합성 데이터의 문제 해결 등을 꼽았다. 하정우 센터장은 “제조산업은 생성형 AI의 도입이 상대적으로 늦을 것이라는 시각도 있지만, 결국 모든 산업이 생성형 AI의 영향을 받을 것”이라면서, “현장 전문가의 지식과 노하우를 AI가 학습함으로써 지속가능한 기술 공유 및 기업 능력 강화가 가능하며, 제조산업에 특화된 데이터를 활용해서 생성형 AI를 만들고 이를 로봇과 연계해 생산성을 높일 수 있다. 이처럼 아날로그 시대에 정의된 프로세스를 디지털화하는 것에 그치지 않고, 새로운 기술을 고려해 프로세스 자체를 새롭게 정의해야 디지털 전환의 효과를 크게 만들 수 있을 것”이라고 전했다.   ▲ 네이버 클라우드 하정우 센터장   HD현대미포의 김희원 상무는 ‘조선산업의 설계-생산이 일관화된 디지털 생산 플랫폼 구축 전략과 현황’에 대해 소개했다. 글로벌 환경규제, 경쟁국가와의 격차 감소, 고숙련 인력의 부족 등은 조선산업이 해결해야 할 과제로 꼽힌다. 이에 따라 HD현대미포는 조선해양 산업의 미래 비전 수립하고 해양 모빌리티, 해양 디지털 솔루션, 해양 에너지 밸류체인의 구축 등을 추진하고 있다. 김희원 상무는 지능형 미래 조선소를 구현하기 위한 HD현대미포의 노력을 소개했다. HD현대미포는 네이버와 함께 대규모 AI 도입을 진행하는 한편, 지멘스와 협력해 4세대 조선 CAD 개발을 진행 중이다. 특히 디지털 조선소를 구현하기 위해 설계와 생산이 일관화된 디지털 제조 환경을 마련하는 데에 주력하고 있는데, 가상 공간에서 설계와 생산 검증을 진행하고 자동화 운영까지 단일 환경 기반으로 구현하는 것이 핵심이다. 또한, 김희원 상무는 BOM 자동 구축, 생산 공장의 시뮬레이션 기반 최적화, 시뮬레이션-생산 설비 연결, 생산 자동화 장비 개발 등 선박 블록 생산을 위한 디지털 매뉴팩처링 체계 구축 사례도 소개했다.   ▲ HD현대미포 김희원 상무   KAIST의 장영재 교수는 ‘AI 자율제조의 미래와 유연 공작셀 소개’를 주제로 한 발표에서 로봇이 자재를 갖고 필요한 공정으로 움직여 작업을 하는 셀(cell) 기반의 자동화 시스템이 전통적인 컨베이어 벨트 생산 시스템을 대체하고 있다고 전했다. 셀의 개념은 1980년대에 등장했지만 최근 기술의 발전에 힘입어 본격화되고 있다는 것이다. 장영재 교수는 “최근에는 자동화를 넘어서 자율화, 무인화로 패러다임이 바뀌고 있다”면서, “컨베이어 벨트를 대신하는 로봇, 인식과 판단을 위한 인공지능, 디지털 트윈 기반의 가상 검증, 소프트웨어의 원격 구축 및 업그레이드를 돕는 클라우드 등의 기술을 통해 변화하는 환경을 기계가 스스로 인식하고 자율적으로 판단, 행동하는 자율제조가 공장에 적용되고 있다”고 짚었다. 또한, 장영재 교수는 이런 자율제조 유연셀을 구현하기 위한 기술 개발 사례도 소개했다. 여기에는 ▲디지털 트윈을 통한 로봇의 가상 검증 및 로봇 동선 자동 설계 ▲외국인 작업자가 생산 스케줄을 수립/운영할 수 있는 LLM(대규모 언어 모델) 기반 스케줄링 자율화 ▲이기종 로봇의 연결 및 단일 소프트웨어 기반 제어 등이 있다.   ▲ KAIST 장영재 교수   포스코DX의 김미영 상무는 ‘제조 혁신의 미래, 디지털 트윈 추진 사례’를 주제로, 제조산업의 생존과 경쟁력 강화를 위한 디지털화 전략을 제시했다. 김미영 상무가 꼽은 제조 디지털 전환 접근법은 ▲스마트한 현장의 센싱 ▲스마트한 현장 관찰 ▲스마트한 분석과 판단 ▲스마트한 시뮬레이션 ▲스마트한 제어 등 다섯 가지이다. “제조산업의 당면 과제 해결과 생존을 위해서는 기존 산업의 도메인 지식에 IT 기술을 접목해 디지털 전환을 추구해야 한다”고 짚은 김미영 상무는 “포스코는 세계 시장에서 경쟁력 있는 철강기업으로 자리매김하고자 지난 2015년부터 스마트화를 추진해 왔으며, 가상 환경에서 전체 가치사슬을 모니터링 및 시뮬레이션하고 실시간 원격 제어가 가능한 디지털 트윈 공장을 구축하고 있다”고 소개했다. 지능화 공장을 통해 제조 현장의 폭넓은 문제 해결 및 최적의 의사결정이 가능할 것으로 전망한 김미영 상무는 전체 공장에 걸쳐 연결과 협업을 중심으로 하는 ‘초연결 메타 팩토리’로 나아간다는 포스코의 비전을 소개했다.   ▲ 포스코DX 김미영 상무   같이 보기 : [포커스] 뿌리산업 컨퍼런스, 제조산업의 디지털 전환을 위한 노력 짚다     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-05-02
캐디안 2024의 구성선 및 자유선 기능
새로워진 캐디안 2024 살펴보기 (4)   이번 호에서는 오토캐드와 양방향으로 호환되는 국산 CAD인 캐디안(CADian) 2024 버전에서 이용 가능한 몇가지 부가 기능들에 대해서 알아보겠다. 특히 캐디안 2022 버전부터 지원되던 구성선(cline)과 기본 기능 중 하나인 자유선(freehand) 기능을 알아보고, 그 활용 방법에 대해서 살펴보도록 하겠다.    ■ 최영석 캐디안 기술지원팀 부장으로 기술지원 업무 및 캐드 강의를 담당하고 있다. 이메일 | cad@cadian.com 홈페이지 | www.cadian.com 카페 | https://cafe.naver.com/ilovecadian   구성선(Cline) 구성선은 전면이나 측면도의 투영을 만들기 위해 빠른 제도 기술이 필요할 때 일반적으로 사용되는 특수한 유형의 무한선이다. 무한선과 유사하게 구성선은 주어진 점을 통과하는 선으로 3차원 공간에서 지정된 각도로 향하고 양방향으로 무한대로 확장된다. 구성선은 무한대로 확장되기 때문에 도면 범위의 일부로 계산되지 않는다. 구성선은 기본적으로 CLINE이라는 자체 레이어에 자동으로 그려진다. 이렇게 하면 구성선의 모양을 쉽게 변경할 수 있다. 색상, 투명도 등과 같은 레이어의 속성을 변경하기만 하면 된다. 또한 CLINELAYER 시스템 변수를 사용하여 구성선을 찾기 위해 다른 레이어를 지정할 수 있다.   1. 리본 메뉴에서 2D 그리기 → 구성선을 클릭하거나 또는 메뉴에서 그리기 → 구성선을 클릭한 뒤 세부항목 중에서 원하는 그리기 항목을 선택하거나, 명령창에 ‘cline’을 입력하여 구성선 그리기를 실행한다.      2. 구성선 그리기의 세부항목은 그림과 같이 준비되어 있다. 원하는 기능을 클릭하여 선택하거나 ‘cline’을 입력한 경우, 세부항목의 단축키(예 : 수평 구성선은 H)를 입력한다.     3. 수평, 수직, 수평 및 수직 구성성의 경우, 구성선의 위치를 마우스로 클릭하거나 키보드로 좌표를 입력하면 해당 위치에 하늘색의 구성선이 즉시 작도된다.     4. 각도 구성선의 경우, 명령창에 ‘각도 입력:’ 메시지가 표시될 때 각도를 입력(예 : 45)한 뒤 위치를 마우스로 클릭하거나 키보드로 좌표를 입력하면 해당 위치에 하늘색의 각도 구성선이 즉시 작도된다.        ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-04-01
[벤치마크] 콘텐츠 제작 및 엔지니어링 퍼포먼스를 높이는 AMD의 워크스테이션 CPU 제품군
K-콘텐츠가 전 세계에서 높은 인기를 얻으면서 더 빠르고 높은 성능을 가진 시스템이 필요하게 되었다. 특히, 최신 콘텐츠는 직접 현장에서 촬영하는 것보다 생성한 배경을 투영하고 그 배경 앞에서 배우가 연기를 펼치거나, 없는 장면을 사실에 가깝게 그래픽으로 생성해내야 하는 경우가 많아지고 있다. 그리고 이를 뒷받침하기 위해 이전보다 훨씬 높은 사양의 시스템이 요구되고 있다. 여기에 시뮬레이션이나 제품 또는 건설/인테리어 등을 위한 CAD는 이전보다 훨씬 큰 규모의 작업물로 인해 작업 효율을 보다 높이기 위해서는 고사양의 시스템을 갖추는 것이 추천된다.  ■ 자료 제공 : AMD 코리아   얼마 전 SWSX 행사에서 연사로 초청받은 AMD의 리사 수(Lisa Su) CEO는 웨타 FX(Weta FX)의 데이비드 콘리(David Conley) 수석 VFX 프로듀서를 초청했다. 여기서 콘리 프로듀서는 “VFX 스튜디오가 실시간 처리 및  실시간 렌더링을 할 때 AMD같은 회사가 만든 제품의 도움 없이는 콘텐츠 제작이 불가능하다”고 이야기했다. 그 만큼 고성능을 갖춘 하드웨어는 이미 영화 시장에 큰 영향을 주고 있다고 볼 수 있다. 또한, 영상 제작 등에 이미 AI를 활용하는 사례가 늘어나고 있다는 점도 발표를 통해 확인할 수 있다.   ▲ SXSW의 Dr. Lisa Su Fireside Chat에서 ‘RYZEN AI’ 예시 데모   이 밖에도 오픈AI(OpenAI)가 발표한 ‘소라(Sora)’의 경우 사실에 가까운 동영상을 AI가 그려줄 수 있다는 것을 보여줌으로써, 이제 AI를 영상 분야에 확실히 접목시키는 시대가 도래하고 있음을 알렸다고 볼 수 있다. 이렇게 빠르게 변화하는 시장에 대응하기 위해 AMD에서는 워크스테이션 사용자를 위한 CPU 라인업으로 스레드리퍼(Threadripper) 및 스레드리퍼 프로(Threadripper PRO) 제품군을 수년에 걸쳐 출시해왔다.   ▲ AMD 스레드리퍼 프로 프로세서   현재 가장 최신 제품은 7000 스레드리퍼 시리즈와 7000WX 스레드리퍼 프로 시리즈라고 볼 수 있다. 이들 제품은 각각 4채널/8채널의 높은 메모리 채널 수를 제공하고, 각각 최대 1TB/2TB의 고용량 메모리를 지원한다. 해당 제품군 중 가장 높은 성능을 갖춘 라이젠 스레드리퍼 프로 7995WX(Ryzen Threadripper PRO 7995WX) 제품의 최대 코어 수는 96코어이며, 스레드는 192개에 이른다. 최대 클럭은 5.1Ghz로 멀티코어 이상으로 단일 코어 성능도 높다. 여기에 넉넉한 486MB의 캐시 메모리를 탑재했다. 이 프로세서를 원활하게 사용하려면 라이젠 스레드리퍼 7000 시리즈는 TRX50 메인보드를 사용해야 하며, 라이젠 스레드리퍼 프로 7000 시리즈의 경우 TRX 50 또는 WRX90 칩셋 기반의 메인보드 사용이 요구된다. 이전 세대 제품인 라이젠 스레드리퍼 프로 5000 시리즈는 WRX80 칩셋 기반의 메인보드를 사용해야 한다.   ▲ 스레드리퍼 프로세서 호환 메인보드와 라이젠 스레드리퍼 프로세서   그래픽카드의 경우 전문가용 제품인 라데온 프로 W7000(Radeon PRO W7000) 시리즈가 현재 가장 최신 제품군으로, 칩렛 방식을 적용해 보다 효율성을 높였다. 이 중 가장 높은 성능을 가진 제품은 라데온 프로 W7900 제품이다.   ▲ AMD 라데온 프로 W7900 그래픽카드   최근 전문가용 소프트웨어 및 AI를 통한 콘텐츠를 생성할 때, 큰 규모의 프로젝트 또는 고용량/고해상도 이미지 및 동영상 생성을 위해 고용량 메모리가 탑재된 그래픽카드를 요구하는 경우가 있다. 라데온 프로 W7900 제품의 경우 48GB GDDR6 ECC 고용량 메모리를 탑재했으며 이를 통해 전문가들이 필요로 하는 충분한 사양을 지원한다. 또한, 최신 디스플레이 규격인 DP 2.1 버전을 지원해, 8K 해상도 디스플레이에서도 충분한 대역폭을 통해 높은 주사율까지 지원할 수 있다. 또한, CAD 도면을 볼 때 화면 전환 시 해상도를 조절해 더 빠르고 부드러운 화면 전환을 도와주는 AMD 라데온 프로 뷰포트 부스트(AMD Radeon PRO Viewport Boost) 기능을 제공한다. 화면 전환 시 해상도를 낮춰 하드웨어가 원활하게 시점을 전환할 수 있도록 해 주며, 시점 전환이 멈추면 해상도를 원래 해상도로 자동 복원시킴으로써, 전환 시의 끊김을 최소화하고 더욱 부드러운 시점 전환이 가능하도록 돕는 기능이다. 그렇다면 실제로 워크스테이션급 제품을 사용해 시스템을 구성하고, 주요 벤치마크 프로그램을 사용했을 때 어느 정도의 성능을 발휘할 수 있는지 직접 테스트를 통해 확인해 보았다. 테스트에는 다음과 같은 사양의 시스템이 사용되었다. CPU : AMD RYZEN Threadripper PRO 7995WX, 7965WX, 5995WX, 5965WX 쿨러 : Thermaltake TOUGHLIQUID 360 ARGB TRX40 메인보드 : ASRock WRX90 WS, ASUS Pro WS WRX80E-SAGE SE WIFI RAM : Micron DDR5-4800 RDIMM 64GB x 8ea, Micron DDR4-3200 8GB x 8ea VGA : AMD RADEON PRO W7900 파워 서플라이 유닛(PSU) : Micronics Performance II HV 1000W + SuperFlower SF-750F14MT LEADEX SILVER SSD : Micron Crucial T500 M.2 NVMe 2TB 테스트를 위해 사용된 소프트웨어는 총 6종으로, 다음과 같다. SPECVIEWPERF 2020 v3.1 CINEBENCH R24.1.0 V-RAY 6.0 BLENDER BENCHMARK 4.0.0 KEYSHOT VIEWER BENCHMARK 11.3.2 DAVINCI RESOLVE 18.6.2     각종 CAD 관련 프로그램을 테스트해 주는 SPECviewperf 2020의 최신 버전인 v3.1을 기준으로, CPU로 인한 성능 편차는 거의 느끼기 힘든 수준이라고 볼 수 있다. 대부분의 프로그램이 CPU의 성능이 일정 수준 이상인 경우 그래픽카드 성능이 전체 성능에 더 높은 영향을 미치는데, 사용된 그래픽카드는 라데온 프로 W7900으로 동일했기 때문에 오차범위 수준의 결과를 보인 것으로 판단된다.     CPU 성능을 렌더링하는 성능을 측정하는데 많이 활용되는 시네벤치(Cinebench)의 최신 버전인 R24를 사용한 벤치마크에서, 싱글 코어 기준으로 이전 세대 제품인 스레드리퍼 프로 5000 시리즈 제품보다 스레드리퍼 프로 7000 시리즈 제품이 전체적으로 높은 성능을 보였다. 특히 96코어를 갖춘 7995WX의 경우 멀티코어 성능에서 6400점 이상의 높은 점수를 기록했으며, 싱글코어 점수에서 이전 세대 대비 20% 정도 더 높은 성능을 보였다.     3D 그래픽 제작 및 렌더링을 지원하는 무료 툴인 블렌더(Blender)를 활용해 시스템 성능을 측정할 수 있는 블렌더 벤치마크 4.0.0(Blender Benchmark 4.0.0)으로 시스템 성능을 테스트했을 때, 동일한 코어를 갖추고 있더라도 이전 세대 대비 스레드리퍼 프로 7000 시리즈 제품들이 전체적으로 다소 높은 성능을 보였다. 특히 스레드리퍼 프로 5995WX 대비 스레드리퍼 프로 7995WX의 코어 수는 1.5배 늘어났지만, 실제 성능은 2배에 약간 못 미치는 수준의 성능 차이를 확인할 수 있었다.     렌더링 소프트웨어 중 하나인 브이레이(V-Ray)를 기반으로 하는 V-Ray 벤치마크 기준으로 스레드리퍼 프로 5995WX보다 스레드리퍼 7995WX의 성능이 2배 가까이 높은 것으로 측정되었다. 동일한 코어 수를 가진 스레드리퍼 프로 5965WX와 7965WX간의 성능 차이도 30% 이상으로, 상당히 높은 성능 차이를 보이는 것을 확인할 수 있다.      광선 추적 렌더링이 가능한 키샷(Keyshot)을 기반으로 뷰어를 통해 벤치마크 기능을 제공하는 Keyshot Viewer 11.3.2에서 벤치마크를 구동했을 때, 가장 높은 코어 수를 갖춘 스레드리퍼 프로 7995WX는 18.12의 점수를 기록했다. 앞서 테스트했던 브이레이 및 블렌더 테스트만큼의 차이를 보이지는 않았으나, 여전히 이전 세대 대비 최신 스레드리퍼 프로 7000 시리즈의 작업 효율이 높다는 것이 벤치마크를 통해 증명되었다고 볼 수 있다.      동영상 편집에서 최근 각광을 받고 있는 다빈치 리졸브(Davinci Resolve)를 활용해 PugetSystems에서 제공하는 벤치마크를 활용하여 테스트를 진행했을 때, 코어 수에 따른 유의미한 성능 차이는 발견할 수 없었으나 세대별 성능 차이는 약 15% 정도 있는 것으로 파악되었다. 이 소프트웨어도 테스트 시 그래픽카드 의존도가 높기 때문에 동일한 라데온 프로 W7900 그래픽카드를 사용한 환경임을 감안했을 때 성능 차이가 크지 않았으나, 일부 테스트 항목에서 CPU의 싱글코어 성능 차이에 따른 성능 차이가 있었던 것으로 판단된다.     라이젠 스레드리퍼 프로 제품군은 단일 CPU에 최대 96코어 192스레드를 지원하고 5GHz의 이상의 높은 클럭으로 동작하므로, 가장 높은 성능의 워크스테이션을 구축하는 경우 다른 대안이 마땅치 않다. 여기에 라데온 프로 W7000 시리즈 그래픽카드를 추가한다면 AMD에서 제공하는 대부분의 기능을 활용할 수 있어 더욱 높은 작업 효율을 기대할 수 있을 것으로 보인다.
작성일 : 2024-03-29
아이언캐드 2024, 기계 설계의 생산성 높이는 신기능 및 개선 사항 소개
MCAD 소프트웨어 솔루션인 아이언캐드(IronCAD)가 2024 버전을 출시했다. 최신 버전은 주요 기능의 향상과 함께 설계 프로세스를 간소화하며 향상된 사용자 경험을 제공하는 새로운 기능과 개선 사항을 담았다. 아이언캐드는 “더 빠르고 스마트한 설계를 위해 강력한 기능을 제공하는 개선을 통해, 기계 및 제조 설계 애플리케이션을 위한 MCAD 설계 분야의 리더십을 강화할 것”으로 기대하고 있다.  아이언캐드 2024는 기계 및 제조 산업의 생산성 향상을 위해 기본 설계 기능을 강화하는 데에 중점을 두었다. 도면 생성 프로세스의 자동화 기능을 개선하여 사용자의 업무 효율을 높였고, 혁신적이고 구조화된 설계를 포함한 3D 설계 환경을 제공하며, 3D 및 2D 환경에서 대규모 어셈블리 설계를 위한 성능을 높였다. 2D 기구 설계에서 상세 설계 환경이 개선돼 생산 수준 도면 제작의 효율이 향상되었고, 가져오기/내보내기 기능이 확장되어 MCAD 및 BIM 애플리케이션과의 호환성이 확대됐다.     3D 디자인에서 추가 및 강화된 기능으로는 ▲파트 도구 링크 ▲동일한 신에서 다른 구성을 사용하는 외부 링크 지원 ▲링크된 보디로 복사 지원 ▲카탈로그에서 부품/어셈블리/스케치 바꾸기 기능 확장 ▲구조 부품 본체 속성 액세스 ▲연관 모서리/면 참조가 있는 어셈블리 패턴 도구 등이 있다. 판금 모델링과 관련해서는 ▲파트 펼치기 제조 시 추가 재고의 고려 가능 ▲절단 스케치 및 가장자리 찢기 기능이 있는 솔리드-판금 서포트 마이터(miter) ▲신속 판금 견적 도구 등의 개선이 이뤄졌다. 드로잉 기능에서는 ▲어셈블리, 부품, 피처를 특정 레이어 및 선 유형으로 자동 설정하는 제어 기능 ▲도면 보기에서 선택한 부품을 개별적으로 음영 처리하는 기능 ▲투영 뷰 표준 뷰 유형 ▲끊어진 뷰의 끊어진 선 끝에 대한 정렬 옵션 ▲DWG/DXF 내보내기 설정 개선 등을 통해 설계의 정밀도와 창의성을 높일 수 있도록 지원한다. 디자인 공유를 통한 공동 작업의 개선도 이뤄졌는데 ▲아이언캐드 기본 번역기에서 최신 MCAD 파일 형식 버전을 지원하고 ▲새로운 BIM용 아이언캐드 기본 번역기가 2024년 1분기 출시 예정이다.  아이언캐드의 캐리 오코너(Cary O'Connor) 마케팅 부사장은 “아이언캐드 2024는 기계 CAD 설계의 생산성, 유연성 및 다양성 측면에서 큰 진전을 이루었다. 특히 기계 제조 및 설계, 금속 제조 설계, 어셈블리 레이아웃/설계, 모듈식 설계, 포장 설계, 가구 설계 시장 사용자의 사용 편의성과 생산성을 향상시키기 위한 새로운 기능이 추가되었다”면서, “아이언캐드의 고유한 설계 프로세스는 시장에서 폭넓게 사용될 수 있으며, 사용자에게 혁신과 파라메트릭 설계를 위한 강력한 도구를 제공하여 맞춤형 설계 제작의 경쟁력을 높일 수 있다”고 전했다.
작성일 : 2023-12-28
복합소재 드레이핑 해석, Laminate tools, PlyMatch 
복합소재 드레이핑 해석, Laminate tools, PlyMatch  주요 CAE 소프트웨어 소개    ■ 개발 : Anaglyph, www.anaglyph.co.uk ■ 자료 제공 : 씨투이에스코리아, 02-2063-0113, www.c2eskorea.com Laminate Tools(라미네이트 툴즈)는 복합소재 구조의 설계, 분석, 제조를 통합하는 혁신적인 소프트웨어 제품이다. 플라이(ply) 정의를 위한 높은 수준의 드레이핑(Draping) 시뮬레이션 기능을 기반으로 FE 분석 및 제조 데이터 생산을 위한 전/후처리기(Pre & Post Processor)이다. 영국의 Anaglyph(애너글리프)는 Laminate Tools 외에도 PlyMatch, LAP, CoDA 등의 장비 및 프로그램을 개발하고 있다. 1991년 이래로 전 세계 수백 명의 복합소재 전문가가 입증한 핵심 기술을 포함하고 있다. 초기 복합재료 소재의 초기 형상에서부터 제조 시 결함이 예측되는 부분(주름, 찢어짐)을 미리 확인함으로써 빠른 제품 설계 시간의 단축 및 시행착오를 절감할 수 있다. 항공, 모터 스포츠, 해양 및 복합재 수리 관련 분야에서 유용하게 사용되고 있다. 1. 제품의 주요 특징 Laminate Tools는 솔리드웍스, 나스트란, 앤시스, MSC 파트란, 피맵, 아바쿠스, 하이퍼웍스, 파이버심(FiberSIM) 등 업계 표준 인터페이스와 호환이 가능하다. 플라이 기반의 물리적 특성을 반영하는 라미네이트의 신속하고 정확한 특성 파악이 가능하다. 정확한 매뉴팩처링 데이터를 생성한다.(플라이 플랫 패턴) 강력한 복합 소재 시각화 기능을 제공하며 단순히 설계를 검토하고 복합재 속성을 검토해야 하는 번거로운 부분을 쉽고 정확하게 해결할 수 있다. 2. 주요 기능 선택한 유한요소해석(FEA) 전처리기 응용 프로그램을 사용하여 FE 메시를 만든 다음, Laminate Tools를 사용하여 복합 직물로 메시를 드레이핑하고 전체 구조에 대한 레이업을 작성할 수 있다. 또는 임의의 CAD 시스템을 사용하여 서피스와 커브를 정의한 다음 Laminate Tools를 사용하여 재료 드레이핑 시뮬레이션을 수행할 수 있다. 특히 솔리드웍스, 라이노, 피맵(Femap) 또는 하이퍼메시와 제공되는 임베디드 인터페이스를 사용하여 플라이를 정의한 다음 단일 작업으로 Laminate Tools로 전송할 수 있다. Laminate Tools로 레이업(Layup)을 작성한 후 이를 사용하여 플라이 정보를 FE 분석에 적합한 계층화된 재료 특성으로 변환하고, 선택한 FEA 응용 프로그램에서 정보를 사용할 수 있다. FE 분석의 결과를 복합 재료에 특유의 방식으로 후처리한다. 예를 들어, 전체 글로벌 플라이를 개별적으로 조사할 수 있다. 제조 시 플라이 정보를 사용할 수 있다. 플라이 매치 또는 레이저 장비를 사용하여 중첩 및 절단을 위한 플랫 플라이 패턴을 내보내거나, 제조 중에 금형 표면의 플라이 아웃 라인을 투영한다. 설계 중에 구조적 특성을 보고 검토하고 승인하고 부서 또는 파트너/업체 간에 정보를 디지털 방식으로 전달할 수 있다. 구조에서 최대한 벗어나 오류를 최소화하고 구성 요소 성능에 대한 확신을 극대화한다. 3. 도입 효과 Laminate Tools는 복합재 설계 전문가를 대상으로 하는 강력한 프로그램이다. 설계-해석-체크-생산으로 이어지는 구조 설계의 전반적인 프로세스를 다루지만 특히 복합 재료 기능에 중점을 두고 있다. 사용자는 거의 모든 CAD 시스템에서 표면 모델을 가져와서 복합재료, 플라이 및 레이업을 정의할 수 있다. 입증된 드레이핑 시뮬레이션 알고리즘을 사용하여 잠재적인 제조상의 어려움을 확인함으로써 플라이 생산성을 즉시 평가할 수 있다. 4. 주요 고객 사이트 한국탄소산업진흥원 등     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기   
작성일 : 2023-10-28
아레스 캐드 2024에서 강화된 평면 스냅샷 기능
데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2024 (6)   DWG 호환 CAD인 그래버트(Graebert)의 아레스 캐드(ARES CAD)는 PC 기반의 아레스 커맨더(ARES Commander), 모바일 기반의 아레스 터치(ARES Touch), 클라우드 기반의 아레스 쿠도(ARES Kudo) 모듈로 구성되어 있다. 이 모듈은 상호 간에 동기화되므로 이를 삼위일체형(Trinity) CAD라고 부른다.  이번 호에서는 오토캐드와 호환되는 데스크톱 PC 기반의 아레스 커맨더 2024 버전에서 플랫샷(Flatshot)의 3D 솔리드 개체의 플랫 표시를 작성하는 기능에 대해 간단하게 알아보도록 하겠다.    ■ 천벼리 인텔리코리아 3D 솔루션 사업본부 대리로 기술영업 업무를 담당하고 있다.   이메일 | ares@cadian.com 홈페이지 | www.arescad.kr 블로그 | https://blog.naver.com/graebert  유튜브 | www.youtube.com/GraebertTV   플랫샷 기능   그림 1. 플랫샷 기능   활성 CSS(사용자 정의 좌표계)의 도면 X-Y 평면에 투영된 3D 솔리드 개체 및 영역의 플랫 표시가 작성된다. 2D 플랫 표시는 활성 CSS의 XY 평면에 블록으로 삽입될 수 있다. 플랫 표시에 은선과 접모서리를 표시하거나 숨길 수 있다. 또한 전경 및 은선의 색상과 스타일은 변경할 수 있다. 참고 : 접모서리는 커브 곡면 또는 커브 곡면과 평평한 곡면 사이에 보이는 전환 모서리이다.   그림 2. BIM 객체에서 정보를 추출하는 라벨 자동 삽입   아레스 커맨더에서 MAKEFLATSNAPSHOT 명령어는 이전 버전에도 존재했으나, 이제는 숨겨진 선들을 더 잘 표현할 수 있도록 몇 가지 향상된 옵션이 추가되었다.   3D 솔리드 개체의 플랫 표시 작성하기 1. 그래픽 영역에서 Views 명령을 이용하여 플랫 스냅샷을 만들 뷰를 설정한 후 플랫샷 명령을 입력한다.    그림 3. 플랫샷 명령 실행   2. 대화상자에서 플랫 스냅샷에 대한 옵션을 지정한다.   그림 4. Flatten 대화상자   Target(대상) Insert as block(블록으로 삽입) : 그래픽 영역에서 플랫 표시가 블록으로 삽입된다. Replace existing block(기존 블록 바꾸기) : 도면에 있는 기존 블록을 사용자가 작성한 블록으로 바꾼다. Export to file(파일로 내보내기) : 플랫 표시를 외부 도면 파일에 저장한다. Shot tangent edges(접선 표시) : 평면 표현에서 접모서리를 표시할 수 있다. Foreground lines(전경선) LineColor(선 색상) : 전경선의 색상을 지정한다. LineStyle(선 스타일) : 전경선의 선 스타일을 지정한다. Hidden lines(은선) Show(보이기) : 은선을 표시할 수 있다. LineColor(선 색상) : 은선의 색상을 지정한다. LineStyle(선 스타일) : 은선의 선 스타일을 지정한다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-10-05
언리얼 엔진 5.3 : 렌더링부터 버추얼 프로덕션까지 크리에이터 위한 기능 향상
개발 및 공급 : 에픽게임즈 주요 특징 : 핵심 렌더링 기능 향상, 콘텐츠 포맷 변환 시 추가 CPU/메모리 리소스 활용, 카메라 이동 워크플로 구현하는 시네 캠 리그 레일, VCam 촬영 및 리뷰 기능 향상, 다양한 실험 단계 기능 추가 등   ▲ 이미지 출처 : 언리얼 엔진 5.3 기능 하이라이트 영상 캡처(   언리얼 엔진 5.3(Unreal Engine 5.3)은 게임 개발자와 다양한 산업 분야의 크리에이터를 위한 전반적 기능 향상 및 흥미로운 신규 실험 기능을 선보인 언리얼 엔진의 최신 업데이트 버전이다. 언리얼 엔진 5.3은 핵심 렌더링, 반복 작업 및 버추얼 프로덕션 툴세트의 향상뿐만 아니라 실험 단계의 새로운 렌더링, 애니메이션, 시뮬레이션 기능을 도입하여, 외부 애플리케이션을 번갈아 사용할 필요 없이 언리얼 엔진 5 내에서 확장된 창의적인 워크플로를 제공한다.    언리얼 엔진 5.3의 새로운 기능 언리얼 엔진 5 핵심 렌더링 기능 향상 에픽게임즈는 개발자들이 차세대 콘솔에서 60fps로 실행되는 게임에서 렌더링을 더 높은 퀄리티로, 더 쉽게 활용할 수 있도록 한다는 지속적인 목표를 달성하기 위해 이번 버전에서 모든 핵심 언리얼 엔진 5 렌더링 기능을 개선했다. 이는 게임 개발자뿐만 아니라 다양한 산업의 크리에이터에게도 더 높은 품질의 결과물과 향상된 성능을 제공한다. 특히 나나이트(Nanite)의 경우 폴리지와 같은 마스크드 머티리얼의 성능이 더욱 빨라지고, 새로운 명시적 탄젠트 옵션으로 더 넓은 범위의 표면을 표현할 수 있게 됐다. 또한, 루멘(Lumen)의 하드웨어 레이 트레이싱을 사용하는 경우, 루멘은 이제 여러 개의 리플렉션 바운스를 지원하는 등 그 기능이 더욱 확장되어 콘솔에서 더 빠른 성능을 제공한다. 이 외에도 이제 정식 버전이 된 버추얼 섀도 맵(Virtual Shadow Maps : VSM), 템포럴 슈퍼 해상도(Temporal Super Resolution : TSR), 헤어 그룸, 패스 트레이싱, 서브스트레이트 등이 크게 향상됐다.   멀티 프로세스 쿡 또 다른 유용한 향상된 기능으로는, 개발자가 콘텐츠를 내부 언리얼 엔진 포맷에서 플랫폼별 포맷으로 변환할 때 추가 CPU 및 메모리 리소스를 활용할 수 있게 되어, 빌드 팜 서버 또는 로컬 워크스테이션에서 쿠킹된 결과물을 얻는 데 걸리는 시간을 줄일 수 있다. 멀티 프로세스 쿡을 활성화하면 메인 프로세스와 함께 쿠킹 작업의 일부를 수행하는 서브프로세스가 실행되며, 개발자는 단일 머신에서 실행할 서브프로세스의 개수를 선택할 수 있다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지(관련 영상)   시네 캠 리그 레일 이제 영화 제작자는 새로운 기능인 시네 캠 리그 레일 액터를 이용해 트랙이나 돌리를 따라 전통적인 카메라 이동의 워크플로와 결과물을 구현할 수 있다.  시네 캠 리그 레일은 경로의 여러 컨트롤 포인트에서 카메라 회전, 초점 길이, 초점 거리 등의 설정을 구성하는 기능을 포함해 기존 리그 레일보다 정교한 컨트롤을 제공하며, 에디터에서의 워크플로와 VCam 워크플로를 모두 지원한다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   VCam 향상 VCam 시스템의 여러 기능도 향상됐다. 더 빠른 반복 작업을 위해 아이패드에서 촬영 장면을 바로 리뷰하는 기능과 함께, 여러 팀원이 서로 다른 VCam 출력을 동시에 스트리밍할 수 있어 VCam 촬영을 용이하게 하는 기능(예를 들어, 감독 없이 카메라 감독이 카메라를 제어하는 환경), 빠르게 움직이는 액션을 더 쉽게 캡처할 수 있도록 느린 프레임 속도로 녹화하고 일반 속도로 재생하는 기능 등이 제공된다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   실험 단계 기능 언리얼 엔진 5.3에는 앞에서 살펴본 핵심 툴세트 업데이트와 더불어 향후 버전에서 더욱 발전할 것으로 기대되는 여러 흥미로운 신규 실험 단계 기능이 추가됐다.    시네마틱 퀄리티의 볼류메트릭 렌더링 두 가지의 새로운 기능인 스파스 볼륨 텍스처(Sparse Volume Texture : SVT)와 불균질 볼륨의 패스 트레이싱을 통해 연기와 불과 같은 볼류메트릭 이펙트를 위한 다양한 신규 기능이 추가됐다. 스파스 볼륨 텍스처는 볼류메트릭 미디어를 표현하는 구워진 시뮬레이션 데이터를 저장하며, 나이아가라에서 시뮬레이션하거나 다른 3D 애플리케이션에서 생성한 OpenVDB(*.vdb) 파일에서 임포트할 수 있다. 그리고 이제 패스 트레이서에서 볼륨 렌더링에 대한 보다 완벽한 지원이 실험 단계로 제공된다. 이를 통해 시네마틱, 영화, 에피소드 TV 쇼 및 다양한 종류의 단방향 콘텐츠 제작을 위한 글로벌 일루미네이션, 섀도, 스캐터링 등의 고퀄리티 볼류메트릭 렌더링을 언리얼 엔진 5에서 직접 구현할 수 있다, 게임 및 버추얼 프로덕션 등 리얼타임 사용 사례에서도 볼류메트릭 요소의 재생을 위해 SVT를 실험해 볼 수 있다.    ▲ 이미지 출처 : 언리얼 엔진 홈페이지, OpenVDB 에셋 JangaFX 제공(관련 영상)   직교 렌더링 언리얼 엔진 5.3부터 도입된 직교 렌더링은 건축 및 제조 프로젝트의 시각화에 유용할 뿐만 아니라, 게임에서 직교 투영을 스타일리시한 카메라 옵션으로 제공할 수 있다. 에픽게임즈는 원근 투영과 직교 투영 간 동일한 기능을 제공하기 위해 엔진의 여러 영역에도 신경을 썼다. 이제 루멘, 나나이트, 섀도 등 언리얼 엔진 5의 최신 기능 대부분이 작동할 것으로 예상된다. 또한, 언리얼 에디터에서 직교 렌더링을 사용할 수 있어 사용자는 라이브 세팅에서 업데이트할 수 있다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   스켈레탈 에디터 새로운 스켈레탈 에디터는 애니메이터에게 스킨 웨이트를 페인팅하는 기능을 비롯해 스켈레탈 메시와 함께 사용할 수 있는 다양한 툴을 제공한다.  빠른 프로토타입이든 최종 리깅이든 DCC 애플리케이션을 오갈 필요 없이 다양한 캐릭터 워크플로를 언리얼 에디터에서 수행할 수 있어, 상황에 맞게 작업하고 더 빠르게 반복 작업할 수 있다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   ML 시뮬레이션을 사용한 패널 기반 카오스 클로스 더 많은 크리에이티브 워크플로를 언리얼 엔진으로 바로 가져올 수 있도록 언리얼 엔진 5.3의 카오스 클로스에도 몇 가지 업데이트가 이루어졌다.  새로운 패널 클로스 에디터와 새로운 스킨 웨이트 전송 알고리즘을 도입됐으며, 향후 엔진에서 클로스 생성을 위한 기반으로 XPBD(Extended Position-Based Dynamics) 컨스트레인트가 추가됐다. 이를 통해 속도와 정밀도를 절충할 수 있는 끊김 없는 클로스 시뮬레이션 워크플로를 제공한다. 또한, 패널 기반 클로스를 사용하면 더 나은 시뮬레이션을 구현할 수 있다.  또한, 이제 새로운 패널 클로스 에디터와 ML 디포머 에디터를 함께 사용하여 엔진에서 클로스를 시뮬레이션하고 캐시할 수도 있다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지(관련 영상)   ▲ 이미지 출처 : 언리얼 엔진 홈페이지(관련 영상)   SMPTE ST 2110용 nDisplay 지원 차세대 LED 프로덕션을 위해 엔비디아 하드웨어와 Rivermax SDK를 활용하여 SMPTE ST 2110용 nDisplay에 실험적인 지원을 추가했다. 이를 통해 LED 스테이지의 새로운 가능성을 열어주는 다양한 하드웨어 구성의 토대가 마련됐다. 가장 흥미로운 구성은 각 카메라 프러스텀에 전용 머신을 사용하여 잠재적인 렌더링 해상도를 극대화하는 한편, 프레임 속도를 높이고 이전보다 더욱 복잡한 신 지오메트리와 라이팅을 구현할 수 있게 됐다.  이 솔루션은 더 높은 해상도가 필요한 광각 렌즈와 현재 시스템에 부담을 주는 멀티 카메라 촬영과 같은 문제를 해결할 수 있는 기능을 제공하고, 신호 체인의 간소화로 시스템 내 지연 시간도 낮출 수 있다.   ▲ 이미지 출처 : 언리얼 엔진 홈페이지   앞에서 살펴 본 신규 기능 및 향상된 기능은 언리얼 엔진 5.3 업데이트 내용의 일부분으로, 전체 내용은 출시 노트에서 살펴볼 수 있다. 최신 언리얼 엔진 5.3 버전에 대한 자세한 내용은 언리얼 엔진 공식 홈페이지에서 확인할 수 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-10-05
[칼럼] 가상화와 소프트웨어 정의가 모든 것을 변화시키다
디지털 지식전문가 조형식의 지식마당   2014년 가트너에서 발표한 10대 전략 기술 트렌드 중 하나인 SDx(Software Defined Anything/Everything)는 클라우드 컴퓨팅 및 데이터센터 시장에서 소프트웨어 기반의 표준 확립을 위한 시장의 모멘텀이 점차 강력해지면서 화두가 된 용어다. 끊임 없이 진화하는 디지털 시대에 새로운 가능성이 시작되고 있다. 메타버스와 디지털 트윈, 사이버-물리 시스템의 화려한 세계에서 벗어나, 이제는 가상화 및 SDx와 관련된 모든 것의 시대가 시작된다. 지금의 챗GPT(ChatGPT) 열풍이 오기 전에는 메타버스가 가장 주목을 받았다. 메타버스 역시 현실 세계의 가상화이다. 메타버스란 3D 몰입형 가상 공유 공간이다. 메타버스의 긍극적인 목적은 감각의 가상 세계인 인터넷의 진화된 감각 인터넷을 구축하는 것이다. 게임 분야나 예능 분야는 매력적이지만, 물리적 세계에 살고 있는 사람들이 오랫동안 가상의 세계인 메타버스에 머무르게 하는 것이 핵심이다. 현재 대략적인 분야는 메타(Meta)가 주장하는 사람들과의 연결 분야이고, 애플이 꿈꾸는 개인의 가상 세계 경험이다. 어떤 미래 전문가들은 웹 3.0(Web 3.0)의 세계를 메타버스에 투영하고 있다.  현재 우리가 영유하는 인터넷은 1960년대 미국의 국방성이 핵 전쟁을 대비해서 만든 네트워크 인프라이다. 메타버스/웹 3.0의 인프라 비용을 누가 댈 것인가에 대한 의문이 새롭게 생긴다. 확실한 것은 개인이나 특정 기업이 막대한 메타버스 인프라에 투자하지는 않을 것이고, 기술적으로도 아직 문제가 많다는 점이다. 네트워크의 속도라든가 컴퓨터의 성능과 그래픽 처리장치(GPU) 가격과 VR/AR 해드셋의 성능과 디스플레이 등이 메타버스의 기대감을 충족시키지 못하고 있다. 결론적으로 메타버스의 가상 세계가 현실 세계를 완전히 대체할 수 없다.  디지털 트윈의 문제점은 우리의 현실 세계의 물리적 트윈(physical twin)을 잘 쓰기 위해서 디지털 트윈 (digital twin)을 만들어서 시뮬레이션이나 최적화와 예측을 하려고 하는 것이다. 그러나 디지털 트원을 만드는 비용은 현재에 물리적 제품을 개발하는 비용을 증가시킬 것이다. 또한 두 트윈 간의 실시간 연동 등 보이지 않는 비용이 많다. 또한 디지털 트윈 모델을 얼마나 정교하게 만들 것인가 역시 상당한 비용과 리스크가 있다.  컴퓨터 지원 해석 시스템(CAE System)이나 시뮬레이션 분야에 새로운 활력을 불어넣을 것 같지만, 생각보다 쉽지 않다. 우선 해석이나 시뮬레이션에서 모델링(modeling)에 대한 일반인의 기대감이 높다. 마치 모델이 물리적 실체를 대체할 정도로 정교하다고 생각하는 경향이 있다. 그것은 모델링이라는 개념을 잘못 이해하고 있는 것이다. 모델링의 목적은 실제의 현상을 예측하거나 최적화하거나 문제를 해결하기 위해서 단순화하는 작업이다. 개발과 해석을 하는 사람이 가장 힘들어하는 부분이 모델에 대한 일반 관리자의 기대치가 높다는 것이다. 항공/방위산업이나 의료 분야 등 특정 분야에서는 디지털 트윈의 비용을 감수하겠지만, 모두 분야에 디지털 트윈을 도입하기 위해서는 여러 장애물이 있다.   그림 1. 가상화   지금은 메타버스의 인기가 급속도로 사라지고 그 대안으로 디지털 트윈에 대해 관심이 커지고 있는 상태이지만, 메타버스처럼 모든 분야에 적용할 수 있는 것은 아니다. 주로 제품 개발, 제품 생산과 유지보수 등에 관심이 집중되고 있다. 그러나 대부분의 사람은 메타버스처럼 새로운 개념이 나오면 환상을 가지고 있다. 디지털 트원 역시 메타버스처럼 기술이 완성된 것이 아니다.  사이버-물리 시스템(CPS : Cyber-Physical System)은 메타버스와 디지털 트윈의 인기가 오기 전에 유행했다. 초기 4차 산업혁명의 최종 목표는 사이버-물리 시스템의 스마트 공장이었다. 그러나 현실은 추상적인 개념처럼 구현하기 쉽지 않다. 또한 물리적인 부분과 디지털적인 부분을 동시에 한 공간에 존재하게 한다고 하는 것은 디지털 트윈보다 더 복잡한 기술이 필요하다. 하이브리드 자동차처럼 더 복잡한 문제를 만들 수도 있다.  이런 것을 종합해 볼 때 디지털 트윈, 메타버스, 사이버-물리 시스템을 넘어 모든 것을 가상화(virtualization)하는 것이 가장 상품성이 있다. 오컴의 면도날(Ockham’s Razor) 원칙처럼, 기능이 같다면 가장 간단한 것이 진리에 가깝다는 것이다. 이제 디지털 시대를 넘어서 가상화 시대가 될 것으로 생각된다. 가상화는 현실 세계에서도 소프트웨어로 제어되는 것을 의미한다. 가상화는 현실과 디지털 세계를 융합하는 힘을 갖춘 혁신이다. 물리적 제약을 뛰어넘어 우리의 상상력을 현실로 만들어내며, 더욱 효율적이고 유연한 비즈니스 모델을 구축하는데 도움이 된다. 기업과 개인은 가상 공간에서 새로운 창의적인 서비스와 경험을 제공하며, 세상을 원하는 대로 조작하고 혁신할 수 있다.  가상화는 그 동안 꾸준히 진행되어 왔다. 인터넷의 발전과 클라우드 컴퓨팅, 스마트폰의 보급은 가상화를 주도해 왔다. <그림 2>는 우리가 물리적으로 사용했던 실체(entity)가 소프트웨어 정의 x(Software Defined x)를 사용해서 개인 컴퓨터와 스마트폰 그리고 스마트 워치까지 가상화되었다는 점을 보여준다.    그림 2. 우리 삶에 있어서의 가상화   소프트웨어로 정의된 모든 것은 기존의 제한된 하드웨어에 종속되지 않고, 소프트웨어로 모든 기술을 획기적으로 변화시킨다. 가상화와 소프트웨어 정의의 시작은 네트워크였지만, 이제는 자동차와 이 세상의 모든 하드웨어를 가상화하려고 한다. 현재 가장 큰 관심사 중 하나는 자동차의 가상화이다. 또한 정보통신기술(ICT) 가운데 클라우드 컴퓨팅(cloud computing) 환경은 IT 환경의 가상화를 주도하고 있다. 현재의 가상 머신(virtual machine), 가상 저장 공간(virtual storage), 가상 메모리(virtual memory) 등이라고 할 수 있다. 이런 것은 SDN 컨트롤러(SDN controller), 소프트웨어 정의 네트위킹(SDN), 소프트웨어 정의 데이터센터(SDDC), 소프트웨어 정의 라디오(SDR)으로 발전었으며, 현재 각광을 받고 있는 소프트웨어 정의 자동차(Software Defined Vehicle) 그리고 국방에서는 소프웨어 정의 음파탐지기(Software Defined Sonar), 소프트웨어 정의 레이다(Software Defined Radar), 소프트웨어 정의 무기(Software Defined Weapon)으로 진화 중이다.    그림 3. FM 라디오의 가상화   그러면 가상화(virtualization)와 소프트웨어 정의(software defined)의 차이점이 궁금해진다. 가상화와 소프트웨어 정의는 두 가지의 다른 컴퓨팅 개념이며, 각각 다른 측면에서 컴퓨팅 환경을 변화시키는 기술이다. 가상화는 기계나 장비를 가상적으로 모델링하고 실행하는 기술이며, 소프트웨어 정의는 기계나 장비의 제어와 관리를 소프트웨어로 추상화하여 효율적으로 운영하고 제어하는 방식이다. 이러한 개념은 자동화와 효율성을 향상시키는 데에 도움이 된다. 비즈니스 가상화에서 가장 성공한 기업은 애플이다. 삼성은 핸드폰에 하드웨어 모듈을 조합하는 것으로 승부했지만, 애플은 가상화로 승부하였다. 서비스 가상화의 대표적인 사례는 영화관이 넷플릭스가 된 것이다. 디지털 전환으로는 충분하지 않다. 디지털 전환의 게임 체인저는 가상화이다. 가상화에서 현재 가장 각광을 받고 있는 것이 소프트웨어 정의 x이며, 그 중에서 가장 관심이 집중되고 있는 것이 소프트웨어 정의 자동차이다. 자동차에서 추상화하려면 기존의 모든 기능을 소프트웨어 관점에서 정의해야 한다.   그림 4. 자동차의 기능 정의   각 기능을 소프트웨어로 정의하고 코딩을 해야 하며, 소프트웨어 정의 환경에서 검증하고 인증해야 한다. 그리고 필요한 센서 기술도 확보해야 한다. 소프트웨어 정의 부분은 디지털 트윈과 연결도 할 수 있다.  뷰카(VUCA)는 지금처럼 변동적이고 복잡하며 불확실하고 모호한 사회 환경을 말한다. 변동성(volatility), 불확실성(uncertainty), 복잡성(complexity), 모호성(ambiguity)이 복합된 환경에서 점진적인 개선이나 최적화보다는 혁신적인 생각을 해야 한다. 미래의 대한민국 산업은 항상 안주하지 않고 안 가 본 길을 가야 한다. 강한 자보다는 새로운 환경의 게임 체인저가 돼야 한다. 기존의 브랜드보다는 새로운 카테고리를 만들어야 한다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’,  ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-10-04
에픽게임즈, 언리얼 엔진 5.3 출시
에픽게임즈 코리아는 게임 개발자와 다양한 산업 분야의 크리에이터를 위한 전반적 기능 향상 및 흥미로운 신규 실험 기능을 선보인 언리얼 엔진의 최신 업데이트 버전인 '언리얼 엔진 5.3'을 출시했다고 발표했다.   이번 언리얼 엔진 5.3 업데이트에서는 크게 ▲렌더링 ▲애니메이션 및 시뮬레이션 ▲버추얼 프로덕션 부분에서 향상된 기능과 실험단계의 새로운 렌더링, 애니메이션, 시뮬레이션 기능들이 도입됐다. 이를 통해 외부 애플리케이션을 번갈아 사용할 필요 없이 언리얼 엔진에서 더욱 확장된 창의적인 워크플로를 경험할 수 있다.   ▲렌더링 부분에서는 게임 개발자뿐만 아니라 다양한 산업의 크리에이터들이 더 높은 품질의 결과물과 향상된 성능을 이용할 수 있도록 ‘나나이트’와 ‘루멘’ 등 언리얼 엔진 5의 핵심 렌더링 기능이 향상됐다. 언리얼 엔진 5의 발표와 함께 선보였던 기능 중 하나인 나나이트는 폴리지와 같은 마스크드 머티리얼의 성능이 더욱 빨라지는 한편, 새로운 명시적 탄젠트 옵션으로 더 넓은 범위의 표면을 표현할 수 있게 됐다. 또한, 루멘의 하드웨어 레이 트레이싱을 사용하는 경우, 이제 여러 개의 리플렉션 바운스를 지원하는 등 그 기능이 더욱 확장되어 콘솔에서 더 빠른 성능을 제공한다.   이 외에도 5.3 업데이트에서 정식 버전이 된 '버추얼 섀도 맵(VSM)’, ‘템포럴 슈퍼 해상도(TSR)’, ‘헤어 그룸’, ‘패스 트레이싱’, ‘서브스트레이트’ 등의 기능도 크게 향상됐다. ‘멀티 프로세스 쿡’ 기능 역시 이제 개발자가 콘텐츠를 내부 언리얼 엔진 포맷에서 플랫폼별 포맷으로 변환할 때 추가 CPU 및 메모리 리소스를 활용할 수 있어 빌드 팜 서버 또는 로컬 워크스테이션에서 쿠킹된 결과물을 얻는 데 걸리는 시간을 대폭 줄일 수 있도록 향상됐다.   ‘시네마틱 퀄리티의 볼류메트릭 렌더링’과 ‘직교 렌더링’ 등 렌더링 관련 신규 실험단계 기능들도 추가됐다. 시네마틱 퀄리티의 볼류메트릭 렌더링 부분에서는 두 가지의 새로운 실험단계 기능인 ‘스파스 볼륨 텍스처(SVT)’와 ‘불균질 볼륨의 패스 트레이싱’을 통해 연기와 불과 같은 볼류메트릭 이펙트를 위한 다양한 신규 기능이 추가됐으며, 5.3 버전부터 도입된 직교 렌더링은 건축 및 제조 프로젝트의 시각화에 유용할 뿐만 아니라, 게임에서 직교 투영을 스타일리시한 카메라 옵션으로 제공할 수 있다.   ▲애니메이션 및 시뮬레이션 부분에서는 ‘스켈레탈 에디터’와 ‘ML 시뮬레이션을 사용한 패널 기반 카오스 클로스’에 새로운 실험단계 기능이 추가됐다. 스켈레탈 에디터는 애니메이터에게 스킨 웨이트를 페인팅하는 기능을 포함하여 스켈레탈 메시와 함께 사용할 수 있는 다양한 툴을 제공한다. 또한, 프로토타입이든 최종 리깅이든 DCC 애플리케이션을 오갈 필요 없이 다양한 캐릭터 워크플로를 언리얼 에디터에서 수행할 수 있어 상황에 맞게 작업하고 더 빠르게 반복 작업할 수 있다.   ML 시뮬레이션을 사용한 패널 기반 카오스 클로스는 더 많은 크리에이티브 워크플로를 언리얼 엔진으로 바로 가져올 수 있도록 업데이트됐다. 새로운 패널 클로스 에디터와 새로운 스킨 웨이트 전송 알고리즘을 도입했으며, 향후 엔진에서 클로스 생성을 위한 기반으로 XPBD(eXtended Position-Based Dynamics) 컨스트레인트를 추가했다. 이를 통해 속도와 정밀도를 절충할 수 있는 끊김 없는 클로스 시뮬레이션 워크플로를 제공하며, 패널 기반 클로스를 사용하면 더 나은 시뮬레이션을 구현할 수 있다. 또한, 이제 새로운 패널 클로스 에디터와 ML 디포머 에디터를 함께 사용하여 엔진에서 클로스를 시뮬레이션하고 캐시할 수도 있다.   ▲ 버추얼 프로덕션 부분에서는 차세대 LED 프로덕션을 위해 NVIDIA 하드웨어와 Rivermax SDK를 활용하여 ‘SMPTE ST 2110용 nDisplay’에 실험적인 지원이 추가돼 LED 스테이지의 새로운 가능성을 열어주는 다양한 하드웨어를 구성할 수 있게 됐다. 이를 통해 각 카메라 프러스텀에 전용 머신을 사용하여 잠재적인 렌더링 해상도를 극대화하는 것은 물론, 프레임 속도를 높이고, 이전보다 더욱 복잡한 씬의 지오메트리와 라이팅을 구현할 수 있게 됐다.   새로운 ‘시네 캠 릭 레일’ 기능도 추가됐다. 이제 영화 제작자는 시네 캠 릭 레일 액터 덕분에 트랙이나 돌리를 따라 전통적인 카메라 이동의 워크플로와 결과물을 구현할 수 있게 됐다. 시네 캠 릭 레일은 경로의 여러 컨트롤 포인트에서 카메라 회전, 초점 길이, 초점 거리 등의 설정을 구성하는 기능을 포함해 기존 릭 레일보다 정교한 컨트롤을 제공한다.   또한, ‘VCam’ 시스템의 여러 기능도 향상됐다. 여기에는 더 빠른 반복 작업을 위해 iPad에서 촬영 장면을 바로 리뷰하는 기능, 여러 팀원이 서로 다른 VCam 출력을 동시에 스트리밍할 수 있어 VCam 촬영을 용이하게 하는 기능, 빠르게 움직이는 액션을 더 쉽게 캡처할 수 있도록 느린 프레임 속도로 녹화하고 일반 속도로 재생하는 기능 등이 포함됐다.  
작성일 : 2023-09-07
아레스 캐드 2024의 평탄화 기능
데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2024 (5)   DWG 호환 캐드인 독일 그래버트(Graebert)의 아레스 캐드(ARES CAD)는 PC 기반의 아레스 커맨더(ARES Commander), 모바일 기반의 아레스 터치(ARES Touch), 클라우드 기반의 아레스 쿠도(ARES Kudo) 모듈로 구성되어 있다. 이 모듈은 상호 간에 동기화되므로 이를 삼위일체형(Trinity) 캐드라고 부른다. 이번 호에서는 오토캐드와 호환되는 데스크톱 PC 기반의 아레스 커맨더 2024 버전에서 Flatten(평탄화) 도면 자동 전개 기능에 대해 간단하게 알아보도록 하겠다.   ■ 천벼리 인텔리코리아 3D 솔루션 사업본부 대리로 기술영업 업무를 담당하고 있다.   이메일 | ares@cadian.com 홈페이지 | www.arescad.kr 블로그 | https://blog.naver.com/graebert 유튜브 | www.youtube.com/GraebertTV   때때로 사용자들은 Trim(자르기), Fillet(모서리 둥글게 하기), Join(합치기)과 같은 명령어나 스냅, 측정, 치수 도구와 같은 명령어에서 문제를 겪을 수 있다. 이것은 도구의 오작동으로 인한 것이 아니라, 해당 개체의 고도 또는 Z값이 0(제로)으로 설정되지 않았기 때문이다. 새로운 Flatten 명령을 사용하면 영향을 받는 개체의 고도를 줄이고, 도면을 자동으로 전개(평탄화)할 수 있다. 도면의 모든 요소를 전개하거나 지정된 하위 세트만 전개할 수 있다.   참고 : 전개 후 결과 2D 도면 요소에는 기존에 설정된 도면층, 선 스타일, 색상이 유지된다.   그림 1. Flatten 기능   3D 모델에서 2D 표현 작성 : 3D 모델의 2D 뷰 또는 3D 뷰를 전개할 때 이 명령은 지정된 3D 도면 요소를 현재 뷰 평면에 투영한다. 모델 뷰는 2D 도면 요소를 사용하여 작성된다. 알 수 없는 Z좌표를 가진 도면 수정 : 도면에서 작업하는 동안 두께, 고도, 기타 2D 도면 요소의 대표 속성이 아닌 속성이 있을 수 있다.   3D 모델에서 2D 뷰 전개하기   1. 그래픽 영역에서 Views 명령을 사용하여 3D 뷰를 설정한다.   그림 2. 외견상 2D 도면의 윗면도   그림 3. 3D 뷰에는 Z좌표계가 있는 도면 요소가 표시됨   2. 리본 메뉴에서 홈 → 도구 → 전개를 클릭하거나, 명령어 ‘Flatten’을 입력한다.   그림 4. Flatten 명령 실행   ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-08-31