• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "컴포넌트"에 대한 통합 검색 내용이 386개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
유니티의 최신 기능 및 개발 팁 소개하는 ‘먼슬리 테크 톡’ 개최
유니티 코리아가 유니티의 최신 기능 소개 및 개발 팁을 공유하는 정기 세미나인 ‘유니티 먼슬리 테크 톡(Unity Monthly Tech Talk)’을 3월부터 진행한다고 밝혔다. 유니티 먼슬리 테크 톡은 매월 유니티 코리아 기술 전문가들에 의해 선정된 주제를 토대로 세미나를 진행할 예정이다. 유니티는 많은 개발자가 궁금해하는 전 분야의 공통 관심사부터 엔터테인먼트와 인더스트리 등 특정 분야 중심의 세션까지 다양한 콘텐츠를 상세 가이드와 함께 선보일 계획이다.     3월 7일에 진행되는 첫 번째 세미나에서는 유니티 클라우드(Unity Cloud)와 ‘Unity 2022 LTS’를 소개하는 세션이 진행된다. 먼저 유니티의 박종태 시니어 소프트웨어 디벨롭먼트 컨설턴트가 ‘지금 당장 써볼 수 있는 유니티의 혜택! 유니티 에셋 매니저, 유니티 버전 컨트롤 소개’를 주제로 세션을 진행한다. 이 세션에서는 유니티 에셋 매니저(Unity Asset Manager)와 유니티 데브옵스(Unity DevOps)를 소개하고, 이를 활용해 제작 파이프라인을 어떻게 개선할 수 있는지에 대해 설명할 예정이다. 유니티의 오지현, 김재익 시니어 애드보킷은 ‘2022 LTS URP 샘플 씬과 에디터 신규 기능 소개’를 주제로 세션을 진행한다. 세션은 2022 LTS 버전 에디터에서 사용 가능한 신규 URP 샘플 신(Sample Scene)과 에디터의 환경 및 컴포넌트 신규, 변경점을 중심으로 진행될 예정이다. 유니티 먼슬리 테크 톡은 오프라인 세미나와 온라인 웨비나 2가지 방식으로 진행된다. 오프라인 세미나는 유니티 프로(Unity Pro) 등 유료 서비스를 사용하고 있는 사용자와 현업 개발자를 대상으로 진행하며, 온라인 웨비나는 추후 유니티 스퀘어를 통해 신청한 이들에게 전체 공개될 예정이다. 유니티 코리아의 송민석 대표이사는 “유니티 코리아는 올해도 개발자 커뮤니티와 적극적인 커뮤니케이션을 통해 다양한 업계의 창작자들이 유니티 툴을 편리하게 활용할 수 있도록 지원할 것”이라며, “먼슬리 테크 톡 외에도 다채로운 개발자 지원을 이어갈 예정이니 많은 관심 부탁드린다”고 말했다.
작성일 : 2024-02-29
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(sphere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
현대자동차, 개방형 자동화 확산 위해 유니버셜 오토메이션 협회 가입
슈나이더 일렉트릭은 현대자동차가 비영리 독립 산업 자동화를 위해 ‘유니버셜 오토메이션 협회(UAO)’에 가입했다고 밝혔다. 개방형 산업 자동화는 기본 하드웨어 인프라와 상관없이 독립적으로 소프트웨어 애플리케이션을 모델링하고 배포해 소프트웨어 중심의 자동화 애플리케이션을 구축하는 자동화 솔루션이다. 관련 업계는 유니버셜 오토메이션 협회는 개방형 자동화 확산을 위해 비영리 독립 산업 자동화 단체로, 2021년 8개의 회원사들이 모여 설립됐다. 유니버셜 오토메이션 협회는 IEC61499 표준을 기반으로 공급 업체의 브랜드와 관계 없이 자동화 기술 전반에 걸쳐 자동화 소프트웨어 컴포넌트(Runtime Engine)를 공유하는 것을 목적으로 한다. 회원사로는 슈나이더 일렉트릭, 요꼬가와, 피닉스컨택트, 인텔과 같은 산업 전문 기업 외에도 셸, 엑슨모빌, 카길과 같은 최종 고객, 한국산업기술협회(KTL), 중국 화중 대학, 호주 에디스 코완 대학 등이 참여하고 있다. 개방형 자동화의 확산을 위해 현재까지 약 70개의 회원사가 참여하고 있으며, 슈나이더 일렉트릭을 포함한 10개의 제조사가 이미 UAO 런타임 엔진이 내장된 제품을 출시하였다. 현대자동차는 자동차 업계 최초로 유니버셜 오토메이션 협회에 가입하여 슈나이더 일렉트릭과 개방형 자동화 확산을 위한 협력을 강화한다. 특히 현대자동차는 IEC 61499 표준에 기반한 런타임 엔진 개발 로드맵의 추가 기능에 대한 인사이트를 공유할 예정이며, UAO에 소속된 많은 벤더사의 제품 및 솔루션은 현대자동차에게 더 많은 선택지를 제공한다. 현대자동차는 2023년10월 진행된 ‘이포레스트 테크 데이(E-Forest Tech Day)’에서 슈나이더 일렉트릭의 UAO 인증 오퍼 제품 중 하나인 ‘소프트 dPAC(Distributed Programable Automation Controller)’을 전시했다. 소프트 dPAC은 UAO 런타임 엔진이 내장된 슈나이더 일렉트릭의 개방형 자동화 솔루션인 에코스트럭처 오토메이션 엑스퍼트(EAE)의 PC 기반 소프트 컨트롤러로, 이를 이용하면 하나의 하드웨어로 제어할 수 있는 것은 물론 HMI/SCADA, SQL DB, 게이트웨이용으로도 사용할 수 있다. 필요 시에는 AI나 머신러닝과 같은 추가적인 서드파티 소프트웨어나 애플리케이션 설치를 통해 쉽게 연결하고 통합할 수 있다. 한편 유니버셜 오토메이션 협회는 회원사를 대상으로 한 UAO 세미나를 아시아 최초로 한국에서 개최할 예정이다. 오는 5월 현대자동차 울산 공장에서 진행되는 이 세미나에서는 IEC 61499 표준에 대한 인사이트 공유는 물론, 개방형 산업 자동화 기술에 대한 논의가 이어질 전망이다.
작성일 : 2024-01-31
SAP, 기업의 클라우드 퍼스트 비즈니스 전략을 위한 지원 프로그램 발표
SAP는 고객이 클라우드로 이동하고 클라우드가 제공하는 혁신 속도와 수준을 유지할 수 있는 포괄적인 자원, 서비스 및 재정적 인센티브를 발표했다. 새롭게 선보이는 ‘라이즈 위드 SAP 마이그레이션 및 현대화(RISE with SAP Migration and Modernization)’는 기업이 클라우드로 이전할 때 겪는 필요 범위와 비용 등 두 가지 문제점에 대한 해결책을 제공한다. 더불어, 커스텀 코드, 데이터 사일로, 프로세스 복잡성 등을 제거해 복잡한 ERP 시스템도 클라우드로 이동할 수 있도록 지원한다. 라이즈 위드 SAP 마이그레이션 및 현대화 프로그램은 고객이 지속적인 업데이트와 새로운 혁신의 혜택을 누릴 수 있도록 지원한다. SAP는 고객이 클라우드 상에서 운영을 시작함에 따라 신뢰성 구축, 보안 및 규정 준수 강화, 비즈니스 데이터의 잠재력 개방 등에 대한 관리 부담을 덜어준다. 기업이 SAP ERP 센트럴 컴포넌트(SAP ECC) 또는 SAP S/4HANA 등을 사용하든 상관없이 해당 프로그램이 제공하는 자체 디지털 경험과 지원 서비스를 통해 준비 단계부터 실제 가동까지 수행할 수 있다. 더불어, 라이즈 위드 SAP 솔루션을 도입하는데 도움이 되는 새로운 서비스와 인센티브도 제공한다. SAP는 고객이 투자한 가치를 인정하고 클라우드 도입에 소요되는 비용을 지원하기 위해 제한된 기간 동안 클라우드 이전 비용을 최대 50% 절감하고 더욱 빠르게 가치를 창출할 수 있도록 지원하는 이벤트를 진행할 예정이다. SAP S/4HANA 및 SAP ECC 고객은 2024년 말까지 라이즈 위드 SAP 또는 ‘그로우 위드 SAP(GROW with SAP)’ 솔루션으로 전환 시, 유지보수, 클라우드 서비스 또는 클라우드 구독 비용을 상쇄하는 데 사용할 수 있는 크레딧을 받게 된다. 이 인센티브에는 공급망, 인적 자원, 지출 관리, CRM, 비즈니스 전환 도구, 확장성을 위한 비즈니스 기술 플랫폼 등 SAP S/4HANA 클라우드와 비즈니스 라인 솔루션이 포함된다. SAP와 파트너 생태계를 통한 모든 구현은 라이즈 위드 SAP 방법론을 바탕으로 진행되며 이를 통해 프로젝트의 일정을 관리한다. 주요 마일스톤 점검을 통해 프로젝트 진행 상황을 투명하게 제공한다. 또한 SAP 서비스 및 전문가 지원을 제공해 고객이 혁신을 달성하도록 준비하기 위해 전 과정에서 방법론이 적용되는지 확인한다. SAP는 라이즈 위드 SAP 방법론을 사용하도록 파트너를 교육 및 검증하고 있으며, 일관성과 품질을 제공하기 위해 파트너와 긴밀히 협력할 예정이다. 또한, SAP는 클라우드로의 이전을 완료하는 데 시간이 더 필요한 고객을 위해 SAP S/4HANA 클라우드 세이프키퍼(SAP S/4HANA Cloud Safekeeper) 서비스를 도입한다. 이는 이전 버전의 SAP S/4HANA에 대한 고객별 유지보수를 사용하는 라이즈 위드 SAP 사용 고객을 위해 설계됐다. 고객은 SAP S/4HANA 클라우드 세이프키퍼를 통해 시스템을 최신 버전의 SAP S/4HANA로 업그레이드할 수 있다. 업그레이드 서비스 및 인프라 최적화가 포함되어 있으며, 2년 동안 업데이트 및 패치를 통해 고객의 현재 시스템에 대한 비즈니스 연속성을 제공한다. SAP의 에릭 반 로섬(Eric van Rossum) 클라우드 ERP 부문 최고마케팅책임자는 “모든 기업은 클라우드 퍼스트 비즈니스 전략이 필요하다”면서, “고객들이 최신 클라우드로 달성할 수 있는 AI와 지속가능성 솔루션 등 혁신의 잠재력을 활용할 수 있도록 클라우드로의 이전 및 현대화 여정을 시작하는 것이 매우 중요한 시기”라고 말했다.
작성일 : 2024-01-31
1D CFD 해석 소프트웨어, Simcenter Flomaster
1D CFD 해석 소프트웨어, Simcenter Flomaster   주요 CAE 소프트웨어 소개     ■ 개발 : 지멘스 디지털 인더스트리 소프트웨어, www.siemens.com ■ 자료 제공 : 델타이에스, 070-8255-6001, www.deltaes.co.kr Simcenter Flomaster는 엔지니어가 유동 흐름을 가상 시뮬레이션하고 최적화해 기체, 액체, 2상 시스템의 효율적 성능을 보장할 수 있도록 지원한다. 개발 주기 초반에 실행되는 이 작업으로 가장 효과적인 시점에 변경을 실시해 문제를 해결함으로써 출시 시간을 단축하고 비용을 절감할 수 있다. Simcenter Flomaster는 내부에 갖춰진 경험적 데이터와 대규모 컴포넌트 라이브러리, 샘플 시스템을 제공해 엔지니어링 생산성을 향상시킨다. 정상 상태 및 천이 솔버로 신속한 컴포넌트 크기 결정, 압력, 온도, 시스템 전체 유동 연구를 실시하고 압력 서지와 같이 실제 운영 여건 중 발생하는 시스템 성능 문제를 모니터링할 수 있다. 대규모 엔지니어링 프로세스의 일환인 Simcenter Flomaster는 특정 컴포넌트에 대한 세부사항이 필요한 경우 Simcenter FLOEFD와, 전체 시스템의 시스템 분석이 필요한 경우 FMI(Functional Mock-up Interface)를 통해 타 시스템 수준 도구와 긴밀히 연동된다.   1. 디지털화의 선두주자 디지털화는 크고 복잡한 배관 시스템과 협력하는 산업을 위한 기술 및 비즈니스 프로세스를 개선할 수 있는 중요한 기회를 제공한다. 새로운 기술이 빠른 속도로 도입되고 있지만, 기존의 안전 및 규정 준수 요구 사항은 크게 변하지 않는다. 새로운 기술에 의해 구동되는 혁신은 발전, 환경, 화공 등 다양한 각종 플랜트 및 공정 설비에서 이러한 비협상 요구 사항에 의해 제한된다. Simcenter Flomaster 소프트웨어는 디지털화의 다음 단계를 구현하는데 앞장서고 있다. 초기 엔지니어링 단계에서 모델링 및 시뮬레이션의 사용이 증가하고 있으며, 일반적으로 3D 플랜트 레이아웃, 공정 흐름 다이어그램 및 공정 및 계측 다이어그램(P&I)을 포함하는 플랜트 설계 CAD 환경 내에서 열유체 분석을 통한 시스템 시뮬레이션 솔루션이다.   2. 설계 및 분석 통합  설계 단계에서 분석의 통합은 CAE 모델 생성에 소요되는 귀중한 엔지니어링 시간을 줄인다. 플랜트 설계 환경에서 배관 시스템을 만들기 위해 많은 시간과 비용이 투자되었지만, 기존의 설계/분석 워크플로는 시뮬레이션을 위한 CAE 모델을 만드는데, 리소스의 부적절한 활용을 지적한다. 이는 워크플로를 간소화하고 발전 및 각종 플랜트 및 공정 산업의 혁신의 토대를 형성하는 지속적으로 연결되는 디지털 스레드에 대한 업계 전반의 필요성을 강조한다.  Simcenter Flomaster 소프트웨어를 사용하면 발전 및 각종 플랜트 설비의 여러 공정 시스템을 설계하고 분석한다. 설계 워크플로는 적절한 장비를 선택하고 안전성과 효율성을 위해 설계를 최적화하기 위해 여러 파이프 및 장비 배열을 분석하는 것이 포함된다. 기존의 모델링 접근 방식은 네트워크 회로도를 만들기 위해 시스템 순서도 및 파이프라인 등다양한 메트릭의 입력이 필요하다. 시스템 순서도 및 배관 아이소메트릭은 원하는 순서로 다양한 구성 요소를 조립하고 관련 기하학적 및 성능 데이터를 각각 추가하여 생성된다. 이 방법은 CAD 시스템과 독립적으로 작동하도록 설계된 CAE 툴의 전형적인 프로세스이다. 설계자는 기하학적 드로잉 또는 라우팅 레이아웃 모델링 외에도 성능 및 안전에 대한 선택 사항의 의미를 이해해야 한다. CAE의 목적은 성능과 기능에 따라 설계를 최적화하고 개선하는 것이다. 업계는 기존의 워크플로를 넘어 디지털 데이터와 모델을 활용하는 보다 통합된 접근 방식으로 이동하고 있다. 설계 프로세스에 대한 분석의 원활한 통합은 CAE의 잠재력을 최대한 실현하는데 핵심적인 것이다. Simcenter Flomaster는 엔지니어가 설계 환경 내에서 원활한 단일 인터페이스에 CAE를 통합하는데 사용한 애플리케이션 프로그래밍 인터페이스(API)를 통해 전체 제품 라인 개발을 지원한다. 3. 3D 시스템 모델링 플랜트 설계 및 공정설계 기술자들은 각자 자사 전용 P&ID 시스템 설계 소프트웨어 및 3D 플랜트 공장 모델링 소프트웨어로 만든 P&ID 및 3D 배관 모델을 포함하는 회사의 공정 시스템 모델을 제작한다. 설계 환경에서 동일한 Simcenter Flomaster 모델 및 메타데이터(예 : 파이프 클래스)에 대한 매핑 개체에 대한 정보가 있는 모델 리포지토리가 만들어 인터페이스 도구를 개발하는데 필요한 모든 빌딩 블록을 제공한다. 4. 분석 모델의 자동 생성 고객사 시뮬레이션 데이터는 중앙에서 관리되며 클라이언트는 중앙 서버에 연결하고, 관련 시뮬레이션 데이터는 동일한 리포지토리에 저장된다. 중앙 데이터 서버는 시뮬레이션에 필요한 구조화된 쿼리 언어(SQL) 데이터베이스를 호스팅하는 방법뿐만 아니라 관련 데이터의 일반 리포지토리와의 인터페이스의 역할을 상세히 제공할 수 있다. P&ID에서 파생된 매핑 스키마 및 구성 요소 연결 시퀀스는 Simcenter Flomaster 명령줄 인터페이스에서 요구하는 플로마스터 동적 네트워크 어셈블리(FMDNA) 파일을 만드는데 사용된다. 커넥터 태그를 사용하면 사용자는 여러 페이지의 프로세스 흐름을 수집하고 적절한 프로세스 스트림을 식별할 수 있다. 그런 다음 사용자 지정 API 플러그인은 CAD 환경 내에서 호출되고 여러 프로세스 스트림 및 시스템 경계를 자동으로 선택한다. 단순화된 드롭다운을 통해 사용자는 경계를 압력 또는 흐름으로 지정하고 적절한 값을 설정할 수 있다. 유체 시스템 모델의 생성은 파이프 길이 및 직경과 같은 구성 요소별 데이터에 대한 자리 표시자와 T-접합 각도 및 노즐 치수를 포함한 기하학적 정보의 직접 전송으로 완전히 자동화된다. 이렇게 하면 수동 개입이 최소화되고 엄격한 허용 오차 설정으로 검증된 모든 데이터를 사용하여 자동화된 설정이 준비되어 시스템의 성능 특성에 대한 귀중한 정보를 제공한다. 그런 다음 양방향으로 데이터를 교환하여 Simcenter Flomaster와 플랜트 설계 CAD 도구를 연결하는 강력한 디지털 스레드를 만들 수 있다. 5. 통합 설계의 이점 CAD-Simcenter Flomaster 인터페이스를 구현하면 모든 구성 요소와 차원이 3D 모델과 동기화된다. 인터페이스는 학제 간 시스템 모델링 및 프로세스 및 파이프라인 모델링과 같은 다차원 모델링을 지원한다. 사용자는 연결, 구성 요소 감지 및 모델 검증을 위한 허용 오차 검사를 통해 중단점을 처리하는 방법을 사용하여 완벽한 모델 매핑 데이터베이스를 개발할 수 있다. 펌프 및 밸브와 같은 공정 장비에 대한 데이터베이스도 개발된 기능의 일부로 통합될 수 있다. 이를 통해 사용자는 설계 인터페이스 내에서 Simcenter Flomaster를 직접 호출할 수 있다. 개념 설계 단계에서는 프로세스 변경으로 인해 디자인 모델 변경이 자주 발생한다. 사용자 개발 API 도구는 시뮬레이션 모델을 신속하게 생성하고, Simcenter Flomaster 계산 결과를 기반으로 설계에 대한 참조를 제공하고, 솔루션을 보다 정확하게 평가할 수 있도록 한다. 통합 CAD 및 CAE 접근 방식을 통해 사용자들은 엔지니어링 비용을 약 50% 절감할 수 있다. 상세 설계 단계에서 사용자는 Simcenter Flomaster를 사용하여 배관 시스템의 저항을 확인하고 파이프라인, 티, 팔꿈치 및 기타 파이프 피팅의 압력 변화를 계산할 수 있다. P&I와 3D 모델을 결합하여 유체 네트워크 모델을 자동으로 생성하면 모델링 효율성이 향상된다. 이를 통해 자동화된 모델링은 며칠 또는 몇 달 간의 지루한 엔지니어링 노력과 비교하여 몇 시간 및 몇 분 만에 훨씬 짧은 시간 주기로 완료할 수 있다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-01
오라클, ‘에이펙스 23.2’로 로코드 앱 개발의 안전성과 확장성 강화
오라클이 로코드 개발 플랫폼인 ‘오라클 에이펙스 23.2(Oracle APEX 23.2)’를 출시하고 전 세계 오라클 클라우드 인프라스트럭처(OCI) 리전에 적용한다고 밝혔다. 이를 통해 개발자는 로코드로 안전하고 확장성 높은 엔터프라이즈 클라우드, 모바일 및 서비스형 소프트웨어(SaaS) 애플리케이션을 손쉽게 구축할 수 있게 된다. 또한, 앱 개발자는 종단간 프로세스 자동화, 협업 기반 개발 및 새로운 유저 인터페이스(UI) 컴포넌트 등 다양한 네이티브 엔터프라이즈 기능에 액세스할 수 있다. 오라클 에이펙스 23.2는 엔터프라이즈급 애플리케이션 개발을 위해 네이티브 워크플로 기반 종단간 프로세스 자동화를 지원한다. 통합된 워크플로 솔루션을 통해 개발자는 플랫폼에 기본적으로 내장된 직관적인 비주얼 워크플로 디자이너를 활용함으로써 시스템 간, 시스템과 사람 간 비즈니스 프로세스 및 워크플로를 자동화할 수 있다.   ▲ 이미지 출처 : Oracle APEX 유튜브 캡처   에이펙스 23.2의 네이티브 팀 개발 기능은 개발자들이 버그 수정 또는 기능 추가 등을 위해 애플리케이션 작업용 복사본(application working copies)을 생성하고, 변경 사항을 메인 애플리케이션에 다시 선택적으로 통합할 수 있도록 지원한다. 이를 통해 개발자는 동일한 애플리케이션의 서로 다른 측면에 대한 작업을 동시에 수행할 수 있다. 에이펙스 23.2의 새로운 페이지 아이템은 QR 코드 생성기(QR code generator), 이미지 업로드 및 콤보 상자(combobox)를 포함하며, 코딩 없이 엔터프라이즈 애플리케이션에 새로운 기능을 제공한다. 또한, 이번 릴리스는 에이펙스 애플리케이션의 품질 및 안정성을 높이는 추가 기능 및 버그 개선사항을 포함한다.  오라클 에이펙스는 앱 빌더가 REST API를 통해 OCI AI 서비스 제품군과 쉽게 통합하여 차세대 AI 기반 앱을 구축할 수 있도록 지원한다. 이러한 AI 서비스에는 오라클 생성형 AI(Oracle Generative AI), AI 음성 인식(AI Speech), AI 이미지 인식(AI Vision), 오라클 문서 이해(Oracle Document Understanding), 오라클 디지털 어시스턴트(Oracle Digital Assistant) 및 오라클 데이터 사이언스(Oracle Data Science)를 포함한다. 오라클 에이펙스와 OCI AI 서비스 간 결합을 기반으로 개발자는 개인화된 경험 및 추천을 제공하고, 자연어 프롬프트를 처리하며, 이미지 및 오브젝트 탐지를 자동화하고, 이메일 및 마케팅 카피와 같은 텍스트를 생성하는 등의 AI 기능을 통합할 수 있다. 한편, 오라클 에이펙스는 조직이 당면한 도전과제를 해결하기 위해 애플리케이션을 개발 중인 70만 명 이상의 개발자로 구성된 커뮤니티의 지원을 받는다. 오라클은 에이펙스 23.2에 개발자들의 직접적인 요청사항과 관련된 20여 가지의 아이디어를 구현했다. 개발자는 에이펙스를 통해 전사적 자원 관리(ERP), 콘텐츠 관리, 고객관계관리(CRM), 화물 운송 관리, 결제 처리, 사기 탐지 및 간단한 스프레드시트 대체에 이르는 다양한 애플리케이션을 구축할 수 있다. 또한, 더 적은 코드로 더 빠르게 엔터프라이즈 앱을 구축하면서 애플리케이션 개발 노력을 절감할 수 있다. 오라클은 2023년 11월 기준으로 전 세계 고객이 에이펙스로 1900만여 개의 애플리케이션을 개발했다고 소개했다.
작성일 : 2023-11-27
AWS 클라우드가 제공하는 디지털 트윈 솔루션, IoT 트윈메이커 Ⅱ
산업 현장에서 활용할 수 있는 AWS IoT 서비스 (7)   지난 호에서는 AWS IoT 트윈메이커(AWS IoT TwinMaker)의 기본적인 개념 및 네 가지의 주요 기능 중 다양한 데이터 소스를 디지털 트윈에 연동하기 위해 핵심적인 기능을 제공하는 데이터 커넥터 기능에 대해 소개했다. 이번 호는 연재의 마지막 회로, AWS IoT 트윈메이커의 나머지 세 가지 핵심 기능에 대해 소개하도록 한다.   ■ 연재순서 제1회 AWS IoT를 활용한 스마트 공장의 구현 제2회 AWS IoT의 핵심 서비스, IoT 코어 제3회 AWS의 에지 컴퓨팅 서비스, IoT   그린그래스 Ⅰ 제4회 AWS의 에지 컴퓨팅 서비스, IoT   그린그래스 Ⅱ 제5회 산업용 데이터를 쉽게 수집하고 분석하게 해주는 AWS IoT 사이트와이즈 제6회 AWS 클라우드가 제공하는 디지털 트윈 솔루션, IoT 트윈메이커 Ⅰ 제7회 AWS 클라우드가 제공하는 디지털 트윈 솔루션, IoT 트윈메이커 Ⅱ   ■ 조상만 AWS코리아에서 AWS 클라우드를 통해 제조 대기업의 디지털 트랜스포메이션을 기술적으로 돕는 역할을 담당하고 있다. 이메일 | smcho@amazon.com 홈페이지 | https://aws.amazon.com/ko   물리적 자산의 가상 표현을 가능하게 하는 ‘모델 빌더’ 지난 호에서 외부 소스 데이터를 AWS IoT 트윈메이커에 연결하는 방법에 대해 알아보았다. 이러한 데이터는 보통 현실 세계의 설비와 같은 물리적 자산에서 발생하게 된다. 예를 들어, 유체의 흐름으로부터 에너지를 추출하는 터빈(turbine)에서는 온도, RPM, 파워와 관련된 데이터가 센서를 통해 수집된다. 따라서 디지털 가상 공간에서 터빈과 같은 자산을 동적으로 업데이트하기 위해 이러한 데이터는 엔터티(entity)에 연결되어야 한다. 이를 통해 가상 공간 안에서 터빈의 특징이 표현된다. 엔터티는 가상 공간 내의 실제 물리적 자산, 자산들의 집합, 또는 프로세스 등을 의미하며, 바로 이러한 개별 엔터티들이 지난 10월호에 소개한 개념인 컴포넌트를 통해 데이터와 연결돼야 한다. 물리적 자산을 디지털 공간 안에 가상으로 표현하는 것은 AWS IoT 트윈메이커에서 제공하는 모델 빌더(Model Builder) 기능을 통해 제공된다. 예를 들어, 공장-라인-설비-센서 등과 같이 계층적 구조를 가지는 일반적인 공장 환경을 모델 빌더 기능을 통해 가상 공간 안에 구성할 수 있는데, 이러한 자산 구조는 일종의 그래프 모델을 통해 표현된다. 가상 공간에서 물리적 자원에 대한 모델링의 개념에 대해서는 이미 지난 9월호에서 소개한 바 있다. <그림 1>은 과자를 만드는 쿠키 공장을 디지털 공간에 구현한 일종의 자산 그래프다. <그림 1>의 상단에는 ‘쿠키 팩토리(cookie factory)’라는 최상위 레벨의 엔터티가 존재하며, 이 최상위 엔터티 밑에는 과자의 원료를 섞는데 사용되는 ‘믹서1(mixer1)’과 ‘믹서2(mixer2)’라는 2개의 하위 레벨의 엔터티가 존재한다. 이러한 개별 믹서는 컴포넌트를 통해 AWS IoT 사이트와이즈(AWS IoT SiteWise)나 아마존 S3(Amazon S3) 등 3개의 데이터 소스에 연결된 것을 확인할 수 있다. 즉, 믹서를 동적으로 가상 공간에서 표현하기 위해 3개의 데이터 소스를 활용한다고 볼 수 있겠다. 이때, 데이터 소스의 종류에 따라 빌트인 또는 커스텀 컴포넌트 커넥터가 요구된다. 다시 한번 강조하지만, 이러한 컴포넌트들을 통해 수집되는 데이터를 데이터 소스의 위치에 구애받지 않고 손쉽게 AWS IoT 트윈메이커 내의 가상의 디지털 자산인 엔터티에 연결할 수 있다.   그림 1. 쿠키 팩토리의 자산 구조화   3D 장면의 구현, ‘신 컴포저’ 디지털 트윈 하면 가장 먼저 떠오르는 것이 물리적 자산을 디지털 공간에 표현하는 3D 이미지일 것이다. 디지털 트윈에 관심이 있는 독자라면 다양한 벤더에서 제공하는 디지털 트윈 솔루션을 통해 이러한 3D 이미지를 본 적이 있을 것이다. 실제 물리적 자산의 모습과 매우 흡사한 가상의 모델을 3D 형태로 시각화하고 배치함으로써 사용자가 가상 환경에 몰입할 수 있도록 하는 매우 중요한 기술이다. 최근에는 이러한 3D 환경에 증강현실 및 가상현실을 추가함으로써 사용자 경험을 극대화하는 추세이다. AWS IoT 트윈메이커는 신 컴포저(Scene Composer)라고 불리는, 콘솔(console) 기반의 3D 장면(scene) 구성 도구를 제공한다. 이 신 컴포저 기능을 통해 AWS IoT 트윈메이커 내에서 3D 장면을 구성하고 배열도 가능하다. 만약 독자 여러분이 공장과 같은 물리적 자산에 대한 CAD, BIM 등과 같은 3D 파일을 확보하고 있다면, AWS IoT 트윈메이커의 신 컴포저로 이러한 파일들을 임포트(import)해서 유연하게 배치할 수 있다. 그러나 이러한 3D 파일을 확장자와 관계없이 있는 그대로 AWS IoT 트윈메이커에 임포트할 수는 없으며, 라이선스 제약이 없는 GLTF 또는 GLB 포맷으로 변환이 필요하다는 점에 유의해야 한다. 일반적으로 AWS IoT 트윈메이커에서 파일을 변환할 때는 이미지의 경량화를 위해 JSON 기반의 GLTF보다는 주로 GLTF의 바이너리 버전인 GLB 포맷으로 변환한다. 예를 들어, STEP 형태의 3D 이미지 포맷을 가지고 AWS IoT 트윈메이커를 통해 디지털 트윈을 구현하고자 한다면, 이러한 이미지 포맷을 GLTF 또는 GLB 형태로 변환해야 한다. GLTF/GLB 확장자 포맷의 장점은 다음과 같다. 우선 오픈 소스이기 때문에 사용에 대한 라이선스가 불필요하다. 또한 배우기 쉽고 웹에 최적화되어 있기 때문에 웹을 통한 디지털 트윈 배포에 용이하다.   그림 2. GLTF 방식의 3D 이미지(https://xeogl.org/docs/classes/GLTFModel.html)   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-11-02
[무료다운로드] 크레오 파라메트릭 10.0에서 향상된 인체 공학 설계
제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (3)   이번 호에서는 크레오 파라메트릭 10.0(Creo Parametric 10.0)에서 추가된 인체 공학 설계에 대해 알아보자. 지난 5월호에서 크레오 파라메트릭 9.0의 기본적인 마네킹 기능에 대해 알아보았다면, 이번 호에서는 크레오 10.0에서 개선된 기능 위주로 알아보자.   ■ 김주현 | 디지테크 기술지원팀의 차장으로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 이메일 | sskim@digiteki.com 홈페이지 | www.digiteki.com   연결된 두 세그먼트 사이의 간편한 각도 측정 크레오 10.0 마네킹에서는 연결된 두 세그먼트 사이의 각도를 측정할 수 있다. 인체모형 → 각도 측정을 클릭한다.     Ctrl 키를 누르고 원하는 두 세그먼트를 선택하면 그림과 같이 각도가 표시된다.     다른 값을 연속적으로 원하는 경우, 지우개를 클릭한 후 다시 한 번 원하는 두 세그먼트를 선택하여 각도를 연속적으로 측정한다. 크레오 10.0에서는 이처럼 쉽게 인체모형의 세그먼트 사이의 각도를 측정할 수 있게 되었다.     다양한 스냅샷 적용과 관리 크레오 10.0 마네킹에서는 이제 장면 레벨 스냅샷과 개별 인체 모형 레벨 스냅샷의 두 가지 스냅샷 유형을 지원한다. 크레오 9.0 마네킹에서 장면 스냅샷까지만 지원하였다면, 크레오 10.0에서는 개별 인체 모형 스냅샷까지 지원하게 되었다. 장면 스냅샷은 해당 컴포넌트 및 모델의 모든 인체 모형을 포함하여 전체 설계 장면에 적용되는 모든 제약 조건을 캡처한다. 하지만 개별 인체 모형 스냅샷은 설계 장면 내에서 고유한 위치에 있는 특정 인체 모형에 대한 활성 제약 조건 및 컴포넌트 위치만 캡처한다. 개별 인체 모형 스냅샷을 캡처하는 기능은 한 장면에서 여러 인체 모형으로 작업하고 스냅샷을 사용하여 여러 인체 모형을 재배치 및 캡처할 때 유용하다. 동일한 장면에서 개별 레벨 스냅샷과 장면 레벨 스냅샷을 모두 사용할 수 있으며, 스냅샷 유형 간에 전환할 수도 있다. 모델 트리에서 장면 스냅샷은 그림과 같은 레벨에서 생성한다.     개별 인체 모형 레벨 스냅샷은 각 인체 레벨에 맞춰 스냅샷을 생성한다. 인체 모형 스냅샷을 클릭 → 카메라 아이콘을 클릭하여 스냅샷을 생성한다.   ■ 기사의 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-08-02
AWS의 에지 컴퓨팅 서비스, IoT 그린그래스 Ⅱ
산업 현장에서 활용할 수 있는 AWS IoT 서비스 (4)   지난 호에서는 AWS IoT 그린그래스(AWS IoT Greengrass)의 개념 및 활용 방법을 살펴보았다. 이번 호에서는 AWS IoT 그린그래스가 제공하는 주요한 5가지 기능에 대해 소개하고, 지난 호에 언급한 일종의 소프트웨어 모듈인 컴포넌트(component)의 개념 및 배포 방법에 대해 자세히 소개하도록 한다.   ■ 연재순서 제1회 AWS IoT를 활용한 스마트 공장의 구현 제2회 AWS IoT의 핵심 서비스, IoT 코어 제3회 AWS의 에지 컴퓨팅 서비스, IoT 그린그래스 Ⅰ 제4회 AWS의 에지 컴퓨팅 서비스, IoT 그린그래스 Ⅱ 제5회 산업용 데이터를 쉽게 수집하고 분석하게 해주는 AWS IoT 사이트와이즈 제6회 AWS 클라우드가 제공하는 디지털 트윈 솔루션, IoT 트윈메이커 Ⅰ 제7회 AWS 클라우드가 제공하는 디지털 트윈 솔루션, IoT 트윈메이커 Ⅱ   ■ 조상만 | AWS코리아에서 AWS 클라우드를 통해 제조 대기업의 디지털 트랜스포메이션을 기술적으로 돕는 역할을 담당하고 있다. 이메일 | smcho@amazon.com 홈페이지 | https://aws.amazon.com/ko   AWS IoT 그린그래스로 무엇을 할 수 있을까 대표적으로 AWS IoT 그린그래스를 적용할 수 있는 기능 사례로는 다음의 다섯 가지가 있다.   로컬 메시징 AWS IoT 그린그래스 서비스가 제공하는 기능 중 가장 많이 활용되는 기능으로, 로컬 환경에서 클라우드와 네트워크 연결이 단절되는 경우에도 로컬에 존재하는 디바이스 간 MQTT 메시지를 지속적으로 주고 받을 수 있는 기능을 제공한다. 클라우드와의 연결이 일시적으로 단절된 경우 AWS IoT 그린그래스 코어 디바이스가 일종의 게이트웨이 역할인 로컬 MQTT 메시지 브로커 역할을 수행하게 된다. 로컬 메시징 기능에 대한 설명은 <그림 1>에서 확인할 수 있다. <그림 1>의 아래쪽에 있는 2개의 개별 디바이스(Publisher & Subscriber)는 AWS의 IoT 코어 서비스를 통해 클라우드에 등록되었지만, 클라우드 연결 없이도 AWS IoT 그린그래스를 통해 디바이스 간 통신이 가능함을 보여주고 있다. 이러한 기능은 우리나라와 같이 통신 환경이 매우 우수한 경우에는 크게 의미가 없을 수 있다. 그러나 동남아 또는 중동과 같이 인터넷 상황이 열악한 환경에서 다수의 디바이스 연동이 필요한 비즈니스에는 오프라인 시나리오를 준비하는 데 매우 유용한 기능이다.   그림 1. AWS IoT 그린그래스 서비스의 로컬 메시징 기능   산업용 데이터의 수집 공장과 같은 산업용 설비 현장에서는 AWS IoT 그린그래스 코어 디바이스가 일종의 OPC-UA 클라이언트 역할을 하며, 산업용 업계 표준 통신 프로토콜인 OPC-UA를 통해 설비에서 발생하는 산업용 데이터를 클라우드로 수집한다. 만약 OPC-UA가 아닌 모드버스(Modbus)와 같은 또 다른 산업용 프로토콜로 연결된 장비로부터 데이터를 수집해야 한다면, 이러한 데이터를 수집할 수 있는 일종의 애플리케이션인 컴포넌트를 AWS IoT 그린그래스 코어 소프트웨어 위에 구현할 경우 클라우드로 데이터 수집이 가능하다.   데이터 스트림의 관리 기존에는 공장의 설비와 같은 디바이스로부터 수집되는 엄청나게 많은 데이터의 대부분을 클라우드에 업로드하여 분석을 시도하였으나, 실제로 상당수의 설비 데이터가 분석에 도움이 되지 못한다는 사실을 알게 되었다. 따라서 AWS IoT 그린그래스 코어 소프트웨어에서 제공하는 스트림 매니저 기능을 사용하여 로컬 AWS IoT 그린그래스 코어 디바이스에서 데이터에 대한 필터링을 수행함으로써, 높은 가치를 지니는 데이터만 클라우드로 전송하는 것이 가능하다. 이렇게 필터링된 데이터는 <그림 2>와 같이 AWS IoT 애널리틱스(AWS IoT Analytics), 아마존 키네시스 데이터 스트림(Amazon Kinesis Data Streams), AWS IoT 사이트와이즈(AWS IoT SiteWise), 아마존 S3(Amazon Simple Storage Service, Amazon S3) 등 AWS가 제공하는 데이터 분석 및 저장 서비스로 전송된다. <그림 2>는 스트림 매니저를 통한 AWS 클라우드로의 데이터 유입 아키텍처를 보여준다.   그림 2. AWS IoT 그린그래스의 스트림 매니저를 이용한 AWS 클라우드로의 데이터 전송   ■ 기사의 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-08-02
MBSE 실현을 위한 다분야 솔루션 통합 환경 구축 및 활용 방안
제품 개발의 새로운 방법론, MBSE (3)   Larger System of System(SoS) 관점에서 제품의 임베디드 시스템 및 구성 요소에 이르기까지 MBSE 방법론은 제품의 개발 전반에 걸쳐 적용된다. 제품 및 프로그램 개발의 폭과 깊이를 이해하고 복잡한 특성을 관리하는 것은 초기 요구사항을 정확하게 정의하고, 아키텍처의 추적이 가능하며, 개발 도메인 전반에 걸친 규정을 준수하는 것으로 귀결된다. MBSE(모델 기반 시스템 엔지니어링) 솔루션의 주요 목표는 초기 개념 설계 및 개발, 시뮬레이션, 테스트에서 제조 및 운영에 이르기까지 라이프사이클 전반에 걸쳐 제품 개발 활동 및 프로세스가 효율적이고 정확하게 조정되도록 하는 것이다. 따라서 MBSE 솔루션은 특정 유형의 애플리케이션 모델링에 국한되지 않고 MBSE 비전을 주도하는 다양한 엔지니어링 활동과 도메인을 포함한다. 여기에는 여러 부서의 협업, 제품 라이프사이클 관리(PLM)뿐만 아니라 시스템 요구사항, 설계, 개발, 분석 및 V&V 활동과 같은 도메인 요구사항과 시스템 엔지니어링 내에서 모델링 연관성을 확장하는 작업이 포함된다. 이를 통해 라이프사이클 초기에 더 많은 시스템 검증을 통하면 공급망 및 제조, 생산에 대한 다운스트림을 예방하고 개선할 수 있다.   ■ 이상훈 | 다쏘시스템코리아의 기술 컨설턴트로 SIMULIA 브랜드의 다양한 해석 솔루션을 담당하고 있다. 특히 구조해석 영역에서 다양한 프로젝트 경험과 Pre-sales 활동을 겸하고 있다. 홈페이지 | www.3ds.com/ko   ■ 안치우 | 다쏘시스템코리아의 기술 컨설턴트로 CATIA Dymola를 활용한 1D 시뮬레이션을 담당하고 있다. 한국항공우주산업의 디지털엔지니어링TF 선임연구원으로 재직하여 Dymola를 활용한 KF-21 Fuel System 개발에 참여하였다. 홈페이지 | www.3ds.com/ko   ■ 윤재민 | 다쏘시스템코리아의 기술 컨설턴트로서 CATIA Dymola 솔루션을 통한 1D 시뮬레이션 영역을 전문으로 업무를 수행하고 있다. Vehicle Dynamics, Multi Body Dynamics, Control, Optimization, Design Process 등 다양한 분야에 대한 연구 경험을 갖고 있다. 홈페이지 | www.3ds.com/ko   그림 1. MBSE 솔루션 내 다양한 엔지니어링 도메인   MBSE 솔루션을 통한 시뮬레이션 검증   설계와 시뮬레이션 프로세스는 시스템의 요구사항에 따라 개발된 아키텍처 모델로부터 시작한다. 3D익스피리언스(3DEXPERIENCE) 플랫폼에서는 카티아(CATIA) 3D 설계가 통합되어 CAD 모델과 연계된 CAE 모델의 개발 분석뿐만 아니라 이를 통해 더욱 세분화된 연구의 수행이 가능하다. 설계 탐색 프로세스의 결과는 성과 목표에 대해 평가 및 검증되고 필요에 따라 요구사항을 업데이트한다. 제품 엔지니어링 프로세스를 효과적으로 관리하려면 요구사항과 시스템의 논리적/물리적 설계(RFLP)뿐만 아니라 기능 분석에 어떻게 연결되는지에 대한 디지털 관리가 필요하다. 이 접근 방식의 이점은 제품 개발 팀이 설계 요소를 독립적으로 분석하여 재사용 가능성을 열어주고, 통합을 위한 논리적 경로를 기본적으로 제공하여 전체적인 제품 정의가 가능하다는 것이다. 3D익스피리언스 플랫폼은 효율성, 생산성 엔드 투 엔드(end-to-end) 프로세스 개선에 대한 요구사항을 해결하고자 물리적 설계를 넘어 요구사항 및 모델의 초기 검증을 포함하는 시스템 디지털 목업(mock-up)을 제공한다. 또한 3D익스피리언스 플랫폼은 개발을 촉진하고 품질을 개선하기 위한 설계 작업의 효율적인 협업 및 최적화를 위한 공통 제품 정의 공간을 제공한다.   그림 2. 3D익스피리언스 플랫폼에서의 설계/시뮬레이션/아키텍처 연계   1D 시스템 M&S 솔루션 카티아 다이몰라(CATIA Dymola)는 모델리카(Modelica) 언어를 기반으로 개발된 1D 시스템 M&S(Modeling and Simulation) 솔루션으로 다중물리 시스템(multi-physics system) 라이브러리를 통한 모델링을 지원하며, 인터페이스 환경을 통해 사용자가 시스템을 표현하는 복잡한 미분방정식(DAE, ODE : Ordinary Differential Equation)을 알지 못하여도 실제 물리적으로 해당 시스템을 구성하는 부품들과 대치되는 컴포넌트 모델들의 조합을 통해 시스템 모델링이 가능하기에 물리적 관점의 접근이 용이한 특징을 가진다.   그림 3. 다이몰라 라이브러리   비인과성 다이몰라의 다양한 특징 중 비인과성(acausal)은 가장 강력하고 주요한 특징이다. 대다수의 솔루션은 ‘인과성(causal)’을 가지는데, 이는 시스템을 기준으로 입.출력에 대한 정의가 명확해야 한다는 한계점을 가진다. 이에 반해 비인과성은 입·출력 간의 구분이 없으며, 구성 요소간의 관계를 수학적으로 표현하여 나타낼 수 있다.   그림 4. 인과적/비인과적 모델링 기법의 차이점   객체지향 프로그래밍 객체지향 프로그래밍(object-oriented programming)은 각각 독립적인 기능을 수행하는 객체(object)를 구성하고 객체간의 소통을 통해 하나의 프로그램을 구성하는 방식이다. 다이몰라는 해당 방식을 통해 각각의 컴포넌트 모델을 커넥터(connector)를 사용하여 연결하고, 시스템의 계층구조(hierarchy)와 통일한 템플릿(template)을 구성하여 재사용할 수 있다.   ■ 기사의 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-08-02