• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "전처리"에 대한 통합 검색 내용이 221개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
PyMAPDL의 기초부터 활용까지
앤시스 워크벤치를 활용한 해석 성공사례   파이앤시스(PyAnsys)는 파이썬(Python)을 활용하여 앤시스(Ansys) 제품을 사용할 수 있는 라이브러리를 뜻한다. 파이앤시스는 구조해석과 관련한 PyMAPDL, PyMechanical과 전처리 및 후처리에 대한 PyDPF가 있다. 이와 같은 라이브러리를 이용하면 파이썬 내에 있는 패키지와 함께 다양한 작업이 가능해진다. 이번 호에서는 파이앤시스 중에서도 PyMAPDL에 대한 사용 방법과 활용 예시를 소개하고자 한다.   ■ 노은솔 태성에스엔이 구조 3팀 매니저로 구조해석 및 자동화 프로그램에 대한 기술 지원을 담당하고 있다. 이메일 | esnoh@tsne.co.kr 홈페이지 | www.tsne.co.kr   앤시스에서 구조, 열, 음향 등 다양한 해석에 사용되는 유한요소 솔버 중 하나인 Mechanical APDL은 명령어를 기반으로 구동된다. 복잡한 연산이나 매개변수 설정 및 자동화 기능이 가능하기 때문에 여전히 많이 사용되고 있다. 하지만 앤시스 워크벤치(Ansys Workbench)의 제한적인 기능을 활용할 경우, 추가적으로 APDL 명령어를 사용해야 한다. 말하자면 APDL 명령어로 여러 기능을 구현할 수 있지만, 넓은 범위에서 적용하기에는 한계가 있는 것이다. 예로 머신러닝이나 딥러닝과 관련한 라이브러리인 텐서플로(TensorFlow)나 케라스(Keras) 등은 APDL 명령어 내에서는 사용할 수 없으며, 파이썬과 APDL 연동에도 한계가 있다.  이 때 PyMAPDL 라이브러리를 사용하면 파이썬 내에서 APDL을 사용하기 때문에 활용도가 넓어진다. 이번 호에서는 PyMAPDL의 사용 방법과 활용 예시를 다뤄보고자 한다.    PyMAPDL 사용 방법 PyMAPDL은 파이썬에서 사용될 때 gRPC(Google Remote Procedure Call)를 기반으로 파이썬 명령어를 APDL 명령어로 변환하여 MAPDL 인스턴스(Instance)에 전송하고, 결과를 파이썬으로 다시 반환한다. 이러한 작업 과정 때문에 파이썬과 MAPDL 간 원활한 데이터 통신이 가능해지며, 다수의 MAPDL 인스턴스를 생성하여 다른 명령으로 동시 작업 또한 가능하다.   그림 1. PyMAPDL gRPC   먼저 PyMAPDL을 사용하기 위해서 앤시스 메커니컬(Ansys Mechanical)이 설치되어 있어야 하며, 관련 라이선스를 보유하고 있어야 한다. 현재 파이앤시스 홈페이지에 따르면 파이썬 3.8 이상 버전을 지원하고 있으며, gRPC 기반으로 사용하기 위해서 앤시스 2021 R1 이상을 권장한다. 파이썬과 앤시스 모두 설치되어 있는 환경이라면 추가적으로 PyMAPDL 라이브러리를 설치해야 한다. 터미널 창에 ‘pip install ansys-mapdl-core’ 한 줄의 입력으로 쉽게 설치되며, 버전을 따로 지정하지 않을 경우 최신 버전으로 설치된다. PyMAPDL은 <그림 2>와 같이 ‘launch_mapdl’ 함수를 호출하여 사용한다. 이는 Mechanical APDL Product Launcher를 실행하는 것과 유사하다. 해당 함수를 활용할 때 입력 가능한 주요 인자들을 입력하여 작업 폴더 위치나 파일 이름, 계산 방식 및 라이선스 등을 지정할 수 있다.    그림 2. PyMAPDL 실행 명령어   기존에 APDL에서 육면체 형상을 모델링하여 요소를 생성하는 과정은 <그림 3>과 같이 작성되고, 동일한 작업을 PyMAPDL로는 <그림 4>와 같이 구성할 수 있다. 작성된 APDL과 PyMAPDL 명령어를 비교하면 형태가 매우 유사한 것을 볼 수 있다. 이 때 PyMAPDL은 파이썬에서 두 가지 방식으로 사용된다. 첫 번째는 ‘run’ 명령어를 활용하여 APDL 명령어를 스트링(string)으로 입력해 직접 실행하는 방법이며, 두 번째는 파이썬 명령어로 변환해서 처리하는 방법이다.   그림 3. MAPDL 모델링 및 요소 생성 예시   그림 4. PyMAPDL 모델링 및 요소 생성 예시     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
[피플 & 컴퍼니] 한국알테어 이승훈 기술 총괄 본부장
더욱 빠르고 효율적인 제품 개발을 위한 AI 기술 본격화 추진   제조산업에서도 AI(인공지능)에 대한 관심이 높아지고 있다. 한편으로 실질적인 AI 도입과 활용에 대한 제조업계의 고민도 커졌다. 알테어는 시뮬레이션, HPC, 클라우드, 데이터 애널리틱스 등 자사의 기술 역량을 바탕으로 제조산업을 위한 AI 기술 개발을 가속화하고 있으며, 향후 본격적으로 제조시장에 확산시킨다는 전략을 내세웠다. ■ 정수진 편집장   ▲ 한국알테어 이승훈 기술 총괄 본부장은 제품 개발에서 AI의 활용이 구체화되고 있다고 짚었다.   제조산업에서 AI에 대한 관심이 높아지고, 도입과 활용이 확산되는 배경은 무엇이라고 보는지 제품의 생산 방식이 다품종 소량 생산 방식이 확대되면서 제품의 개발 주기가 꾸준히 짧아지고 있다. 이에 따라 제품 개발과 관련한 예측과 의사결정은 더욱 빨라져야 한다는 요구도 높다. 이를 위해 프로토타입을 만들어 실험하는 방식에서 컴퓨터와 CAE 소프트웨어를 사용하는 시뮬레이션으로 변화해 왔는데, 시뮬레이션 역시 해결해야 하는 과제가 있다. 시뮬레이션을 활용하려면 전문적인 엔지니어링 지식이 필요하고, 시뮬레이션에 걸리는 시간이 더욱 빨라지는 제품 개발 주기에 맞추기 어려워졌다. 시뮬레이션이 제품의 초기 개발에서 생산까지 더욱 폭넓게 쓰이는 상황이 시뮬레이션 기반의 의사결정에 걸리는 시간을 늘리게 된 측면도 있다. AI는 이에 대한 해결책으로 관심을 모으고 있다. 제조업체에서 실험 데이터와 해석 데이터가 상당히 쌓여 있는 상황인데, 이를 AI 학습에 활용해서 빠르게 인사이트를 얻고 제품 개발에 반영할 수 있겠다는 아이디어가 이제 구체화되고 있는 시점이라고 볼 수 있겠다.   최근 AI와 관련한 제조산업의 동향이나 이슈가 있다면 제조업체에서 해석 데이터와 실험 데이터가 쌓여 있기는 한데, 이 데이터가 각 엔지니어의 PC에 흩어져 있는 것이 현실이다. 이에 따라 여러 곳에 저장된 데이터를 통합 관리하는 시스템에 대한 요구가 있다. 또한, 이 데이터를 AI에 활용하기 위한 추가 가공의 자동화에 대한 목소리도 있다. 엔지니어링 데이터를 AI에 활용하기 위해서는 AI에 맞는 데이터의 전처리(pre-processing)가 중요하다. 전처리란, 아무렇게나 쌓여 있는 데이터를 분류하고 AI에 적용하기 위해 적절한 포맷의 데이터로 변환하는 작업을 가리킨다. 이 부분에서 많은 제조기업 고객사들이 데이터를 어떻게 가공해야 할 지에 대한 고민을 갖고 있기도 하다. 이전에는 파이썬(Python)과 같은 프로그래밍 언어를 배워서 데이터 변환 코드를 만들어야 했는데, 알테어는 데이터를 자동으로 변환할 수 있는 솔루션을 제공해 쌓여 있는 데이터의 분류와 정제 과정을 더 쉽게 할 수 있도록 돕는다. 이런 부분에서 LG전자의 사레를 소개할 만하다. LG전자는 알테어와 협업해서 해석 엔지니어가 퇴근한 후에 해석 데이터를 취합하고 변환과 AI 학습까지 수행하는 자동화 시스템을 구축했다. 학습된 AI는 웹 환경에서 설계 엔지니어에게 필요한 데이터를 제공하고, 설계 엔지니어는 제품에 대한 치수나 조건을 입력하면 시뮬레이션을 거치지 않고 빠르게 가상 시험 결과를 확인할 수 있게 됐다. AI는 제품의 초기 개발 단계뿐 아니라 전체 개발 과정에 적용할 수 있다. 초기 단계에서는 실험에서 나온 데이터가 존재한다면 이를 기반으로 어떤 결과가 나올지 쉽게 확인할 수 있다. 이후 단계에서도 다양한 데이터를 학습해 추가적인 예측을 할 수 있고, 대시보드 등을 통해 누구나 데이터 및 예측 결과를 확인하거나, 몇 가지 조건을 입력해 새로운 예측을 할 수 있는 단계로 나아갈 수도 있다. 최종 단계의 데이터는 후속 제품이나 다른 제품을 개발할 때 활용하는 것도 가능하다.   제품 개발 사이클의 단축이라는 점에서는 시뮬레이션이 가져다 줄 수 있는 이점과 비슷한 부분이 있어 보인다. AI의 역할은 시뮬레이션을 보완하는 것인가, 아니면 시뮬레이션을 대신할 수 있는 것인가 지금은 AI가 기존의 시뮬레이션을 완전히 대체할 수 있는 단계는 아니다. 하지만 AI를 통해 제품의 초기 개발 단계에서 데이터 기반의 예측 결과를 빠르게 얻을 수 있고, 향후 설계를 위한 인사이트를 얻을 수 있다는 점에서 의미가 있다. AI를 학습시키기 위한 데이터는 필요하기 때문에 시뮬레이션은 여전히 중요하다. 지금의 상황은 실험이나 해석 데이터를 기반으로 AI를 통해 인사이트를 얻는 단계라고 볼 수 있다. 시뮬레이션이 자리잡기까지의 과정을 살펴보면, 초기에는 실험과 시뮬레이션을 함께 사용하다가 시뮬레이션 부분이 강화되면서 실험의 비중을 줄여 왔다. 앞으로 AI 기술이 더욱 발전하고 데이터가 더 많이 쌓인다면 AI가 확대되고 시뮬레이션이 줄어들 수도 있을 것 같다. 이런 흐름은 단계적으로 일어날 수도 있고, 제품별로 변화의 속도가 달라질 수도 있다고 본다.   ▲ 알테어는 시뮬레이션과 연계해 제조 분야에서 활용할 수 있는 AI 솔루션을 내세운다.   제조산업의 AI 활용을 위한 알테어의 기술 차별점은 무엇인지 알테어는 멀티피직스 시뮬레이션뿐 아니라 복잡한 시뮬레이션을 활용하기 위한 고성능 컴퓨팅(HPC)과 클라우드, 데이터 애널리틱스와 AI 등 폭넓은 기술 역량을 갖추었다는 점에서 차별점이 있다고 본다. 이는 온프레미스와 클라우드, CPU 컴퓨팅과 GPU 컴퓨팅을 모두 지원해 시뮬레이션 및 AI를 유연하게 활용하도록 도울 수 있다는 뜻이다.  알테어는 지난 2022년 데이터 기반 AI를 위한 머신러닝 분석 플랫폼인 래피드마이너(RapidMiner)를 인수하면서 AI 분야 진출을 시작했다. 래피드마이너는 제조뿐 아니라 BFSI(은행.금융.서비스.보험) 등 다양한 산업에서 활용할 수 있는 솔루션이다. 예를 들어, 고객 지원이나 불만사항에 대한 다응, 주가 예측 등에도 래피드마이너가 유용하다. 또한, 2023년부터는 래피드마이너 등 기존 제품군으로 AI 시장에 대응하는 것 외에 제조산업을 타깃으로 하는 특화 기술을 개발했고, 올해는 이 부분을 본격적으로 선보이고자 한다. 제조산업을 위한 알테어의 AI 기술로는 설계 탐색과 최적화를 위한 디자인AI(DesignAI), 비슷한 형상을 자동 인식하고 분류하는 셰이프AI(shapeAI), 해석 결과를 학습해 물리현상을 빠르게 예측하는 피직스AI(physicsAI), 시스템 레벨에서 빠른 3D → 1D 변환을 위한 롬AI(romAI)가 있다.  이런 AI 기술은 적은 수의 데이터로도 학습이 가능하며, 알테어의 기존 시뮬레이션 솔루션 제품군에 들어가는 형태로 제공되어 익숙한 인터페이스로 사용할 수 있다. 하이퍼메시(HyperMesh)에는 이미 피직스AI와 셰이프AI가 포함되어 있고 향후 심랩(SimLab)과 인스파이어(Inspire)를 비롯해 다양한 솔루션에 AI가 추가될 예정이다. 알테어는 래피드마이너를 활용한 데이터 기반의 AI와 시뮬레이션 기반의 AI를 모두 지원한다. 그리고 타사 솔루션의 데이터를 활용할 수 있는 개방성과 유연한 라이선스 사용도 장점으로 내세우고 있다.    향후 제조 분야의 AI 전망과 알테어의 전략을 소개한다면 AI에 대한 고객들의 기대치가 높다고 느낀다. 알테어는 지난 4월 4일 ‘AI 워크숍’을 진행했는데, 기업의 의사결정권자부터 현업 엔지니어까지 예상보다 많은 분들이 참여해 높은 관심을 보였다. 관심이 높은 만큼 실제 활용 방향에 대한 고민이 많다는 것을 알 수 있었다. 사용자의 기대치와 실제로 할 수 있는 것 사이의 거리, 알테어와 같은 솔루션 기업과 사용자인 제조기업의 시각차도 어느 정도 확인할 수 있었다. 이런 부분은 고객들을 많이 만나고 의견을 나누면서 간극을 좁혀야 할 것 같다. 당장 AI가 시뮬레이션을 완벽하게 대체하기는 어렵겠지만, 클라우드 기반의 통합 환경에서 시뮬레이션과 AI를 통합해 사용할 수 있도록 하는 것을 목표로 삼고 있다. 클라우드는 데이터의 통합 관리와 공유 측면에서도 이점이 있다고 본다. 시뮬레이션과 AI를 위해 대규모 데이터를 관리하기 어려운 소규모 기업은 클라우드의 장점에 주목할 만하다고 본다. 한편으로 보안 등의 우려를 가진 기업에게는 프라이빗 클라우드 환경을 제공해 데이터 보안을 유지하면서 알테어 원 클라우드와 동일한 환경에서 작업할 수도 있다. 알테어는 AI 솔루션 제품군을 빠르게 업데이트하면서 사용자의 피드백을 반영하고 있다. 고객들이 AI에 대해 갖고 있는 기대치 또는 눈높이가 상당히 높은 것으로 보여서, 이에 대응해 경쟁 우위를 확보하고자 노력 중이다. 제조 분야에서도 AI에 대한 관심이 높지만, 어떻게 활용할지에 대한 고민이 큰 상황으로 보인다. 알테어는 이런 부분에서 도움을 줄 수 있도록 AI 기술 개발과 함께 커스터마이징과 컨설팅 등을 폭넓게 제공하고자 한다. 본사의 개발팀과도 활발히 소통하면서 사용성이나 적용 범위 등에 대한 고객의 어려움을 덜고, 최대한 빠르게 고객이 원하는 AI를 구현할 수 있도록 할 계획이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-05-02
[넥스트폼] BARAM v24.1.3 Release
              SW 소식 >             BARAM v24.1.0 공개 >             BARAM v24.1.0이 공개되었습니다. BARAM v24.1.0에는 밀도 기반 압축성 솔버와 Batch Process 등 다양한 기능이 포함되어 있습니다. (링크)를 누르시면 BARAM v24.1.0 안내 페이지로 이동합니다.  이외에도 baramFlow tutorials 6개, baramMesh tutorials 1개가 추가되었습니다. (링크)에서 확인해주세요.             baramFlow New Features 밀도 기반 압축성 솔버 및 Far-field Riemann 경계 조건 추가 (TSLAeroFoam) User Parameters 기능 추가 Batch Process 기능 추가 User Parameters를 조합하여 순서대로 계산 실행 가능 격자 정보 확인 기능 추가 (격자 갯수, 해석 영역 크기, 최대/최소 격자 체적) baramFlow Improvement Realizable k-ε 모델의 벽함수 개선 정상 상태 계산을 비정상 상태 계산의 초기값으로 사용하는 기능 추가 cell zone source term에 단위 표시 계산 종료 시, 종료 팝업 창 띄우는 기능 추가 특정 경계면은 이름에 따라 경계 조건 자동 부여 다상 유동의 정상 상태 계산 시 maximum Courant number 설정 가능             baramMesh New Features snap 단계에서 Implicit Feature Snapping 지원 baramMesh Improvement 형상 이름의 공백에 _ (underscore) 자동 추가 Region 단계에서 고체 영역만 설정하도록 기능 개선                                     BARAM ARM 64 버전 Azure Marketplace 공개 >              Azure Marketplace에서 사용할 수 있는 BARAM CFD Package가 공개되었습니다. 이제 고사양의 HPC (High Performance Computing) 없이도 BARAM을 이용하여 복잡한 CFD 계산을 돌릴 수 있습니다.  Azure Marketplace에서 NEXTFOAM BARAM을 검색하시거나 (링크)를 클릭하시면 Azure Marketplace에 등록되어 있는 BARAM CFD Package를 사용하실 수 있습니다.                         교육 소식 >             4월 CAE / AI 엔지니어를 위한HPC 교육 >             CAE / AI 엔지니어를 위한 HPC 교육 4월 CAE / AI 엔지니어를 위한 HPC 교육 일정을 안내드립니다. HPC 환경에서 OpenFOAM 수행 방법 및 병렬 AI 학습 방법 / HPC 구축 실습을 통해 HPC의 개념 이해 / 최적 성능을 도출할 수 있는 방안 및 효율적인 HPC 관리 방안을 목표로 교육이 진행됩니다. 일정 : 4월 24일 ~ 4월 25일 (링크)를 클릭하시면 4월 CAE/ AI 엔지니어를 위한 HPC 교육 내용을 확인하실 수 있습니다.                         일반 소식 >             2024년 AI CFD 춘계 워크샵              지난 2월 29일 서강대학교 AS관 509호에서 AI CFD 워크샵이 있었습니다. GIST 최성임 교수님, 인하대학교 고승찬 교수님, KAIST 이승철 교수님을 비롯하여 AI CFD를 주제로 연구하시는 분들과 모임을 가지는 뜻 깊은 시간이었습니다.  이 자리에서 PINN (Physics-Informed Neural Network)를 비롯하여 FNO, DeepONet 등 Neural Network를 CFD에 적용한 연구 및 활용 성과에 대해 의견을 나누었습니다.  저희 회사에서도 이보성 박사님께서 NEXTFOAM 연구 성과 및 근황을 주제로 발표를 진행해주셨습니다.                         WHAT IS OPENFOAM? OpenFOAM은 오픈소스 CFD 소프트웨어이다. GNU GPL 라이센스를 사용하고 있어 누구나 자유롭게 사용이 가능하며 수정 및 재배포를 할 수 있다.       WHAT IS MESHLESS CFD? 질점격자 기반의 CFD해석 기법으로 FVM해석 기법의 보존성을 갖추고 있으며 전처리 작업시간을 획기적으로 줄일 수 있습니다.FAMUS는 무격자 기법의 CFD 해석 SW 입니다.       WHAT IS BARAM SERIES? BARAM은 넥스트폼이 개발한 OpenFOAM CFD 해석 프로그램입니다. 넥스트폼이 개발한 OpenFOAM Solver와 Utility를 GUI 기반으로 사용이 가능합니다.           수신거부
작성일 : 2024-04-29
알테어, “심솔리드에 전자 부품 설계의 해석/설계 기능 확장”
알테어가 칩, 인쇄회로기판(PCB) 및 집적회로(IC) 등 전자 부품에서 전체 시스템에 이르기까지 빠르고 정확한 다중 물리 시뮬레이션을 지원하는 '알테어 심솔리드'를 2024년 2분기 중 출시한다고 밝혔다. 심솔리드는 복잡한 형상의 구조 문제를 빠르고 정확하게 예측하는 시뮬레이션 소프트웨어로, 전처리 과정 없이 빠르게 시뮬레이션할 수 있다는 점이 특징이다. 전자 CAD(ECAD)에서 해석 단계로 넘어갈 때 필수인 메시 생성은 매우 복잡하고 오래 걸리는 작업이다. 하지만 심솔리드는 메시 생성을 제거해 시뮬레이션 속도를 기존 대비 최대 25배까지 향상시킨다. 이는 엔지니어들이 더 빠르고 효율적으로 설계 대안을 탐색하고 최적화할 수 있음을 의미한다.     이번 출시로 조선, 항공우주와 자동차 산업에서 대형 구조물 구조 해석에 많이 쓰이던 심솔리드는 이제 전자 산업을 위한 기능까지 확장하게 됐다. 최신 버전은 반도체 칩, PCB와 IC의 구조 및 열 해석을 지원한다. 또한 신호 무결성(SI), 전력 무결성(PI), 전자기 호환성/간섭(EMC/EMI) 등 복잡한 요소들을 반영한 시뮬레이션도 할 수 있고, 단위는 미터에서 나노미터까지 지원해 반도체 칩 설계에도 적용이 가능하다. 알테어는 심솔리드에 향후 전자기 해석 기능도 추가할 계획이다. 이를 통해 전자회로와 전자 부품의 전자기적 특성도 함께 시뮬레이션 할 수 있게 된다. 효율적인 메시리스(meshless) 환경에서 열, 구조, 전자기 등 다양한 해석 기능을 통합적으로 제공해 엔지니어들이 보다 나은 설계 결정을 내릴 수 있도록 지원한다는 목표다. 알테어의 짐 스카파 CEO는 “전자 산업이 점점 복잡해지고, 소형화에 대한 요구가 커지면서 엔지니어들은 종종 시뮬레이션의 정확성과 신속성 사이에서 타협해야 하는 상황에 직면한다”면서, “심솔리드는 PCB와 IC의 복잡한 세부 사항까지도  빠르고 정확하게 분석할 수 있도록 도와주기 때문에 전자부품 설계 및 해석 과정의 효율성과 정확성을 높일 수 있을 것”이라고 말했다.
작성일 : 2024-04-22
AMD, 임베디드 시스템의 AI 기반 가속 지원하는 2세대 버설 적응형 SoC 발표
AMD는 새로운 2세대 버설 AI 에지 시리즈(Versal AI Edge Series)와 버설 프라임 시리즈(Versal Prime Series) 적응형 SoC(System on Chip)를 출시해 버설 적응형 SoC 포트폴리오를 강화했다고 밝혔다. 2세대 버설 시리즈는 전처리에서 AI 추론 및 후처리에 이르기까지 단일 디바이스로 AI 기반 임베디드 시스템의 엔드 투 엔드 가속을 제공한다. 2세대 버설 시리즈 포트폴리오의 첫 제품군은 새로운 AI 엔진을 바탕으로 1세대 디바이스보다 최대 3배 더 높은 와트당 TOPS를 제공한다. 또한, 새로운 고성능 통합 Arm CPU를 통해 1세대 버설 AI 에지 및 프라임 시리즈 디바이스 대비 최대 10배에 달하는 스칼라 컴퓨팅을 제공한다. 지능형 단일 칩 솔루션인 2세대 버설 시리즈 디바이스는 다중 칩 기반 프로세싱 솔루션을 대체하여 시장 출시 시간을 단축하고, 더 작고 효율적인 임베디드 AI 시스템을 구현할 수 있다. 이를 통해 첨단 기능 안전 및 보안 기능과 함께 성능, 전력 및 면적을 조합해 자동차, 항공우주 및 방위, 산업, 비전, 의료, 방송 및 프로AV 시장용 에지 디바이스에 최적화된 고성능 제품 설계가 가능한 새로운 차원의 성능과 기능을 제공한다. 스바루는 자사의 차세대 ADAS(첨단 운전자 보조 시스템) 비전 시스템인 ‘아이사이트(EyeSight)’에 2세대 버설 AI 에지 시리즈를 탑재한다. 아이사이트 시스템은 스바루의 일부 자동차 모델에 탑재되어 ACC(어댑티브 크루즈 컨트롤), 차선 이탈 방지, 충돌 방지 제동 등 첨단 안전 기능을 지원한다. 스바루는 현재 아이사이트가 장착된 차량에 AMD 적응형 SoC 기술을 활용하고 있다.     2세대 버설 AI 에지 시리즈는 실제 시스템에서 요구되는 복잡한 프로세싱 요건을 충족하기 위해 총 3단계로 이뤄지는 AI 기반 임베디드 시스템의 모든 가속 성능을 지원하는 프로세서 조합을 갖추고 있다. 광범위한 센서를 연결하고, 높은 처리량의 저지연 데이터 프로세싱 파이프라인을 구현할 수 있는 유연성을 갖춘 FPGA 프로그래머블 로직으로 실시간 전처리를 지원하며, 차세대 AI 엔진 형태의 벡터 프로세서 어레이를 통해 효율적인 AI 추론을 지원한다. 또한, Arm CPU 코어를 통해 안전에 초점을 맞춘 애플리케이션의 복잡한 의사결정 및 제어에 필요한 후처리 성능을 제공한다. 2세대 AMD 버설 프라임 시리즈는 센서 프로세싱을 위한 프로그래머블 로직과 고성능 임베디드 Arm CPU를 결합하여 기존의 비 AI 기반 임베디드 시스템을 위한 엔드투엔드 가속을 제공한다. 이 디바이스들은 1세대에 비해 최대 10배 더 많은 스칼라 컴퓨팅을 제공하도록 설계되어 센서 프로세싱 및 복잡한 스칼라 워크로드를 효율적으로 처리한다. 최대 8K의 다중 채널 워크플로를 비롯해 높은 처리량이 요구되는 비디오 프로세싱을 위한 새로운 하드 IP를 갖춘 2세대 버설 프라임 디바이스는 초고화질(UHD) 비디오 스트리밍 및 녹화, 산업용 PC 및 항공 컴퓨터와 같은 애플리케이션에 적합하다. 2세대 버설 AI 에지 시리즈와 2세대 버설 프라임 시리즈 포트폴리오는 에지 센서에서 중앙집중식 컴퓨팅에 이르기까지 AI 기반 시스템을 위한 확장성을 제공한다. 이 시리즈는 고객들이 성능, 전력 및 면적 풋프린트를 선택하여 애플리케이션의 성능 및 안전성 목표를 효율적으로 달성할 수 있도록 AI 및 적응형 컴퓨팅의 규모에 따라 다양한 디바이스로 구성되어 있다. 한편, AMD 비바도 디자인 수트(Vivado Design Suite) 툴과 라이브러리는 임베디드 하드웨어 시스템 개발자의 생산성 향상 및 설계 주기의 간소화를 통해 컴파일 시간 단축, 개발 결과물의 품질 개선 등의 효과를 제공한다. 임베디드 소프트웨어 개발자를 위한 AMD 바이티스 통합 소프트웨어 플랫폼(Vitis Unified Software Platform)은 사용자가 선호하는 추상화 단계에서의 임베디드 소프트웨어, 시그널 프로세싱 및 AI 설계를 지원하며, 기존 FPGA 설계 경험 없이도 활용 가능한 장점이 있다. 설계자들은 2세대 AMD 버설 AI 에지 시리즈 및 2세대 버설 프라임 시리즈용 얼리 액세스 문서와 1세대 버설 평가 키트 및 설계 툴을 현재 이용할 수 있다. AMD는 2025년 상반기에 2세대 버설 시리즈의 실리콘 샘플을, 2025년 중반에는 평가 키트 및 SOM(System-on-Module) 샘플을, 2025년 말에는 양산 반도체를 공급할 예정이다. AMD의 적응형 및 임베디드 컴퓨팅 그룹 총괄 책임자인 살릴 라제(Salil Raje) 수석 부사장은 “AI 지원 임베디드 애플리케이션에 대한 수요가 폭발적으로 증가하면서 전력 및 공간이 제한적인 임베디드 시스템에서 가장 효율적으로 엔드투엔드 가속을 지원하는 단일 칩 솔루션에 대한 요구가 높아지고 있다”면서, “40년 이상 축적된 적응형 컴퓨팅 리더십을 바탕으로 구현된 최신 세대 버설 디바이스는 단일 아키텍처에 다중 컴퓨팅 엔진을 통합해, 로엔드에서 하이엔드에 이르기까지 뛰어난 컴퓨팅 효율과 성능, 확장성을 제공한다”고 밝혔다.
작성일 : 2024-04-11
[넥스트폼 3월] 넥스트폼 3월 OpenFOAM / BARAM 사용자 교육 안내
              교육 소식 >             3월 OpenFOAM 사용자 교육 안내 >             3월 OpenFOAM 사용자 교육 안내 OpenFOAM에 관심은 있으나 첫 발을 내딛지 못한 고객 여러분께 도움을 드리고자 초보 사용자를 위한 예제 실습 위주의 교육을 진행합니다. OpenFOAM 소개, 사용방법 및 예제 실습을 통해 사용자의 OpenFOAM 숙련도를 높일 수 있도록 도와드립니다. 일정 : 3월 20일 ~ 22일 (링크)를 클릭하시면 3월 OpenFOAM 사용자 교육 내용을 확인하실 수 있습니다.                         3월 BARAM을 활용한 CFD 실전 교육 안내 >               BARAM을 활용한 CFD 실전 교육 CFD 기본 이론, 개념, 과정과 예제 실습을 하며 CFD를 처음 접하시는 분들의 이해를 도와드립니다. 실습은 공개소스 S/W인 BARAM을 사용하기 때문에 교육 후에도 제한 없이 사용할 수 있습니다. 일정 : 3월 28일 ~ 29일 (링크)를 클릭하시면 BARAM을 활용한 CFD 실전 교육 내용을 확인하실 수 있습니다.                         4월 HPC 교육 안내 >              CAE / AI 엔지니어를 위한 HPC 교육 4월 CAE / AI 엔지니어를 위한 HPC 교육을 안내드립니다. [HPC 환경에서 CFD 및 AI 학습 방법] / [HPC 구축 실습을 통해 HPC 개념 이해] / [최적 성능을 도출 방안 및 효율적인 HPC 관리 방안]의 내용으로 교육이 진행됩니. 일정 : 4월 24일 ~ 25일 (링크)를 클릭하시면 CAE / AI 엔지니어를 위한 HPC 교육 내용을 확인하실 수 있습니다.                           일반 소식 >             19th OpenFOAM WORKSHOP (OFW) >   19th OpenFOAM WORKSHOP OpenFOAM 유저들의 국제 워크샵인 19th OpenFOAM WORKSHOP (이하 OFW)가 중국 북경에서 개최됩니다. 지난 18th O.F.W.에 이어 이번 19th OFW에서도 OpenFOAM을 활용한 다양한 CFD 해석 사례들이 발표될 예정입니다. 여러분들의 많은 관심 부탁드리겠습니다. 장소 : 중국 베이징대학교 일정 : 6월 25일 ~ 6월 28일 사전 등록 기간 : ~4월 30일 (링크)를 클릭하시면 19th OFW에 대한 보다 자세한 안내를 확인할 수 있습니다.             WHAT IS OPENFOAM? OpenFOAM은 오픈소스 CFD 소프트웨어이다. GNU GPL 라이센스를 사용하고 있어 누구나 자유롭게 사용이 가능하며 수정 및 재배포를 할 수 있다.       WHAT IS MESHLESS CFD? 질점격자 기반의 CFD해석 기법으로 FVM해석 기법의 보존성을 갖추고 있으며 전처리 작업시간을 획기적으로 줄일 수 있습니다.FAMUS는 무격자 기법의 CFD 해석 SW 입니다.       WHAT IS BARAM SERIES? BARAM은 넥스트폼이 개발한 OpenFOAM CFD 해석 프로그램입니다. 넥스트폼이 개발한 OpenFOAM Solver와 Utility를 GUI 기반으로 사용이 가능합니다.           수신거부
작성일 : 2024-02-23
전기전자 해석 소프트웨어, ZWSim-EM
  주요 CAE 소프트웨어 소개 전기전자 해석 소프트웨어, ZWSim-EM ■ 개발 : Zwsoft, www.zwsoft.com ■ 자료 제공 : 인피니크, 02-565-4123, www.zw3d-cad.kr ZWSim-EM은 고정밀, 고효율,낮은 메모리 공간 및 강력한 모델링 기능을 갖춘 3D 전파 전자기 시뮬레이터이다. 사용자에게 산업별 RF 관련 올인원 시뮬레이션 솔루션을 제공하기 위해 최선을 다하고 있다. 1. 주요 기능 (1) EIT : 임베디드 통합 기술 ZWSim-EM의 주요 알고리즘인 EIT(Embedded Integral Technique)는 FDTD(Finite-Different Time-Domain)를 기반으로 자체 개발한 기술이다. Conformal Technology 및 Irregular Grid Processing Technology와 같은 일련의 기술과 함께 ZWSim-EM의 시뮬레이션 정확도와 효율성을 높인다. (2) 정확하고 효율적이며 적은 메모리 사용 EIT 알고리즘은 고정밀, 고효율 및 낮은 메모리 공간을 보장한다. (3) 쉬운 사용성 ZWSim-EM은 친숙한 사용자 인터페이스와 명확한 작업순서로 사용하기 쉽다. 사용자 인터페이스는 다른 영역을 드래그하여 사용자 정의할 수 있으며, 시뮬레이션 프로세스는 사용자 인터페이스 디자인과 일치한다. 전체 시뮬레이션 프로세스는 탐색 트리에서 위에서 아래로, 또는 리본 메뉴에서 왼쪽에서 오른쪽으로 설정할 수 있다. (4) 뛰어난 호환성 20 개 이상의 주요 CAD 형식과 완벽하게 호환되며, 다양한 CAD 파일을 자유롭게 가져오고 내보낼 수 있다. (5) 강력한 3D 모델링 ZWSim-EM은 파라메트릭 모델링과 같은 ZW3D의 강력한 모델링 기능을 사용하여, ZWSim-EM에서 직접 모델을 빌드 및 편집하여 모델링 효율성을 개선하고 향후 최적화를 용이하게 한다. 2. 주요 특징 (1) 풍부한 재료 라이브러리 ZWSim-EM은 160 가지 이상의 재료가 포함된 풍부한 재료 라이브러리를 제공하여 할당할 다양한 전자기 재료를 제공한다. 형상 모델의 경우 수백 종류의 재료를 선택할 수 있다. Infinitely Thin Faces의 경우 PEC 재료가 제공된다. 또한 특정 요구 사항에 따라 재료를 사용자 정의하고 새로 만든 재료를 재료 라이브러리에 추가할 수 있으므로 액세스 및 재사용이 편리하다. (2) 매개 변수 스윕 매개 변수 스윕은 특정 매개 변수 범위에서 결과가 어떻게 영향을 받는지 확인하고, 이에 따라 최적화하여 예상 결과를 얻도록 도와준다. 정산된 변수 매개 변수를 스캔 및 시뮬레이션하고, 특정 범위의 매개 변수가 결과에 미치는 영향을 분석하여 모델을 최적화하고, 설계 효율성을 개선하기 위한 참조를 제공할 수 있다. 여러 스위핑 작업을 설정하고 각 작업에 여러 스위핑 매개 변수를 추가할 수 있다. (3) 다중 어레이 패턴 ZWSim-EM은 안테나를 위한 강력한 어레이 기능을 제공하여 어레이 안테나 시뮬레이션의 효율적인 전처리를 실현한다. 어레이 안테나를 형성하고 시뮬레이션 요구 사항을 충족하기 위해 어레이 안테나 장치를 지원한다. 선형 배열, 원형 배열, 다각형 배열, 점 대 점 배열, 곡선 또는 표면을 따른 배열과 같은 다양한 배열 패턴을 사용할 수 있다. 또한 모델, 재료 및 포트를 동시에 배열하여 배열 안테나를 효율적으로 시뮬레이션할 수 있다. (4) 다중 배경 및 경계 옵션 다양한 종류의 배경과 경계가 있으며 안테나 및 도파 관과 같은 다양한 전자기 개체를 시뮬레이션해야 하는 요구를 충족한다. 기본 배경 재질은 진공이거나 재질 라이브러리에서 다른 재질을 선택하거나 직접 정의할 수도 있다. 개방 경계(기본값), PEC, PMC 및 주기적과 같은 다양한 경계가 지원된다. 안테나 시뮬레이션의 경우 배경은 진공이고 경계는 개방이다. 전력 분배기, 필터 등과 같은 도파관 시뮬레이션의 경우 배경은 PEC과 같은 도체일 수 있으며 경계는 PEC여야 한다. (5) 지능형 검사 시뮬레이션이 원활하게 실행될 수 있도록 사전 처리 설정의 유효성을 확인하기 위해, 그에 따라 분석 및 조정하여 프로젝트를 확인할 수 있다. 겹친 객체 검사, 배경 및 경계 검사, 여기 신호 검사, 여기 소스 검사, 프로브 검사, 메시 검사 및 솔버 검사를 포함한 여러 검사 옵션이 있다. 통과된 항목은 ‘√’로 표시되고, 실패한 항목은 메시지 보드에 오류 경고와 함께 ‘×’로 표시된다. 3. 도입 효과 기존의 값비싼 제품들의 오래된 논리들을 떠나 새로운 논리를 사용하여 솔루션을 제공함으로써, 전자기해석을 도입하고자 하는 사용자가 손쉬운 결과를 얻을 수 있도록 한다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-02-12
[넥스트폼 2024년 2월] NextFOAM v24, BARAM v24 공개
  SW 소식 >   NextFOAM v24 공개 >   NextFOAM v24가 공개되었습니다. OpenFOAM ESI버전인 OpenFOAM v2212에서 수렴성 및 기능을 개선하였습니다. NextFOAM Github 페이지에 NextFOAM 24 소스 코드, 다운로드와 사용 방법을 업로드하였으니, 많은 관심 바랍니다. 다운로드 및 사용 방법은 (링크)를 참고하세요.   NextFOAM v24 Features pressure-velocity coupling 개선 velocity & density interpolation 개선 navier-stokes equation의 under-relaxation factor 의존성 개선 압력 구배항 이산화 방법 개선 비정상상태 솔버의 time step 의존성 개선 난류 모델의 생성항 선형화 방법 개선 CHT 솔버의 수렴 판정 기능 개발 porous media model 개선 MRF (Multi Reference Frame) 개선         BARAM Subscription 공개 >    BARAM의 기술지원이 필요하신 분들을 위해서 BARAM Subscription이 공개되었습니다. BARAM의 설치 지원, 기술 지원 뿐만 아니라 BARAM을 이용하여 User들이 원하는 해석 세팅 및 사용 방법, 교육 등을 지원해드립니다. BARAM을 이용해서 CFD 해석을 수행하고 싶지만 실무 적용에 어려움을 겪고 계신 분이라면 언제든지 도움을 받을 수 있습니다. 자세한 안내는 (링크)를 눌러 확인해주세요.   문의 : marketing@nextfoam.co.kr / 김동규 선임연구원           BARAM v24 공개 >   CFD for Everyone!! BARAM v24가 공개되었습니다. BARAM v24는 NextFOAM이 개발한 NextFOAM v24를 기반으로 GUI를 입힌 프로그램 패키지로 개발되었습니다. BARAM v24에는 어떤 기능이 추가됐는지 아래에서 함께 만나보시죠. (링크)를 누르시면 BARAM v24 안내 페이지로 이동합니다. baramFlow Porous media model의 수렴성 증가 모니터링 포인트의 위치 preview 기능 추가 Reference pressure cell을 이용하여 operating pressure location을 자동으로 지정 baramMesh Object preview 기능 추가 교육 소식 >   1월 CAE / AI 엔지니어를 위한HPC 교육 >   CAE / AI 엔지니어를 위한 HPC 교육 1월 CAE / AI 엔지니어를 위한 HPC 교육 일정을 안내드립니다. HPC 환경에서 OpenFOAM 수행 방법 및 병렬 AI 학습 방법 / HPC 구축 실습을 통해 HPC의 개념 이해 / 최적 성능을 도출할 수 있는 방안 및 효율적인 HPC 관리 방안을 목표로 교육이 진행됩니다. 일정 : 1월 31일 ~ 2월 1일 (링크)를 클릭하시면 1월 CAE/ AI 엔지니어를 위한 HPC 교육 내용을 확인하실 수 있습니다.         2월 코드 개발자 교육 >   코드 개발자 교육 2월 OpenFOAM 코드 개발자 교육 일정을 안내드립니다. 사용자 요구에 맞는 OpenFOAM customized solver를 개발하고자 하는 사용자들 대상으로 교육이 진행됩니다. OpenFOAM 사용자 교육을 듣고 OpenFOAM 사용법을 숙지하고 계신 분들에게 수강 권장드립니다. 일정 : 2월 21일 ~ 2월 23일 (링크)를 클릭하시면 2월 OpenFOAM 교육 내용을 확인하실 수 있습니다.           3월 OpenFOAM 사용자 교육 >    OpenFOAM 사용자 교육 3월 OpenFOAM 사용자 교육 일정을 안내드립니다. OpenFOAM 소개, 사용방법 및 예제 실습을 통해 사용자의 OpenFOAM 숙련도를 높일 수 있도록 도와드립니다. 일정 : 3월 20일 ~ 22일 (링크)를 클릭하시면 3월 OpenFOAM 사용자 교육 내용을 확인하실 수 있습니다.         3월 BARAM 사용자 교육 >   3월 BARAM 사용자 교육 3월 BARAM 사용자 교육 일정을 안내드립니다. CFD 기본 이론 및 BARAM 소개와 BARAM을 통한 격자 생성, CFD 예제 실습을 통해 현업에 BARAM 적용을 도와드립니다. 일정 : 3월 28일 ~ 3월 29일 (링크)를 클릭하시면 3월 BARAM 사용자 교육 내용을 확인하실 수 있습니다.         WHAT IS OPENFOAM? OpenFOAM은 오픈소스 CFD 소프트웨어이다. GNU GPL 라이센스를 사용하고 있어 누구나 자유롭게 사용이 가능하며 수정 및 재배포를 할 수 있다.   WHAT IS MESHLESS CFD? 질점격자 기반의 CFD해석 기법으로 FVM해석 기법의 보존성을 갖추고 있으며 전처리 작업시간을 획기적으로 줄일 수 있습니다.FAMUS는 무격자 기법의 CFD 해석 SW 입니다.   WHAT IS BARAM SERIES? BARAM은 넥스트폼이 개발한 OpenFOAM CFD 해석 프로그램입니다. 넥스트폼이 개발한 OpenFOAM Solver와 Utility를 GUI 기반으로 사용이 가능합니다.    
작성일 : 2024-01-26
[무료다운로드] 시뮬레이션에서는 딥러닝을 어떻게 쓰고 있을까? 
물리 법칙을 학습하는 인공지능으로 시뮬레이션을 개선   최근 인공지능(AI)에 대한 관심이 높아짐에 따라 시뮬레이션 분야에서도 딥러닝을 적용하려는 움직임이 크다. 이번 호에서는 시뮬레이션에서 딥러닝을 어떻게 응용하고 있는지 살펴보고, DNN과 PINN 알고리즘을 응용한 두 가지 예시를 소개한다.   ■ 안지수 태성에스엔이 유동 2팀 매니저로 유동해석에 대한 기술 지원을 담당하고 있다. 이메일 | jsan@tsne.co.kr 홈페이지 | www.tsne.co.kr   신경망 기법에 대한 이해 시뮬레이션 분야에 인공지능을 적용하는 다양한 방법 중 하나는 딥러닝을 사용하는 것이다. 딥러닝은 기본적으로 신경망 기법을 기반으로 하며, 초기는 컴퓨팅 장비의 한계로 인해 간단한 구조의 단층 퍼셉트론을 사용하였다. 그러나 최근에는 컴퓨팅 장비 및 병렬 연산 능력의 발전으로 인해 대규모 데이터셋과 고성능 계산을 처리할 수 있는 환경이 조성되면서 생성형 인공지능, 설명 가능한 인공지능, AutoML 모델 등 다양한 알고리즘으로 발전할 수 있었다. 딥러닝의 대표적인 구조를 살펴보면 <그림 1>과 같이 입력층(Input), 은닉층(Function f:), 출력층(Output)으로 나눌 수 있다. 이 구조는 함수와 유사하게 작동하며, 입력층과 출력층에 데이터를 제공하면 은닉층을 스스로 찾아낸다. 은닉층의 구성을 살펴보면 노드와 노드를 잇는 선으로 표현된다. 각 노드에는 신호를 계산하는 활성화 함수가 포함되어 있으며, 이러한 노드들이 여러 층을 형성하여 최종적으로 은닉층을 구성하게 된다. 이 노드들은 서로 데이터를 전달하면서 반복적인 학습을 진행하고, 일정 기준을 달성하면 인공지능 모델이 생성된다. 딥러닝의 장점 중 하나는 입력과 출력에 사용할 원본 데이터 형태가 중요하지 않다는 것이다. 그림, 소리, 문자 등 다양한 형태의 데이터도 학습이 가능하다.   그림 1. 신경망 구조의 예   시뮬레이션 AI 접근 방식 소개 시뮬레이션에서 인공지능을 응용하는 방법은 크게 두 가지로 나눌 수 있다. 첫 번째는 이미 알고 있는 데이터를 기반으로 목표 값을 예측하는 방법이 있고, 두 번째는 데이터 없이 목표 값을 예측하는 방법이 있다. 물론 기술이 발전할수록 이 두 가지 방법은 상호보완적으로 진화하기 때문에 이분법적인 구분은 상대적으로 의미가 줄어든다. 그럼에도 불구하고, 이 두 가지 방법에 대한 이해는 다음 단계로 나아가기 위한 기반을 제공하기 때문에 각각의 방법을 소개한다.  첫 번째로, 데이터 기반 인공지능 예측 모델을 활용한 경우로는 앤시스 옵티스랭(Ansys OptiSLang)의 Adaptive Metamodel of Optimal Prognosis(AMOP) 기능이 있다. AMOP은 고전적 수치해석 및 통계 기법과 인공지능을 결합하여, 최적화를 위해 더 합리적인 기법을 찾아내는 기능을 제공한다. 이 방법이 데이터 기반인 이유는 원하는 정보를 얻기 위해 일부 데이터를 수집해야 하기 때문이다.(그림 2) 따라서 처음부터 알 수 없는 변수를 찾는 것보다는 차수 축소, 차원 축소, 시스템 최적화 등 ROM(Reduced Order Models)과 같은 목적으로 활용된다.    그림 2. AMOP을 사용하기 위한 전처리 데이터   이와 같이 데이터 기반 인공지능 모델의 경우 어느 정도 시뮬레이션 시장에 나타나고 있다. 그러나, 두 번째 경우인 데이터 없이 예측 값을 출력하는 모델은 수치해석의 정확도를 유지하면서 빠른 결과 도출을 목표로 하기 때문에 아직 많은 연구가 진행 중에 있다. 이 모델의 대표적인 알고리즘으로 PINN(Physics-Informed Neural Networks) 알고리즘이 있다. 기존 신경망 기법은 입력값과 결과값 사이의 물리적 상관관계를 고려하지 못하는데 반해, PINN은 물리적 상관관계를 바탕으로 결과값을 예측하기 때문에 다른 딥러닝 알고리즘에 비해 더욱 타당한 결과를 예측한다는 장점이 있다. 앤시스에서도 PINN 알고리즘을 응용하여 새로운 솔버를 개발 중에 있다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-01-04