• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "불러오기"에 대한 통합 검색 내용이 145개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(sphere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
프론트 라이트 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 3D CAD 기반의 역설계 소프트웨어로 CGM(CATIA) 커널이 적용되었으며, 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공한다. 이번 호에서는 포인트셰이프 디자인을 활용해 프론트 라이트 부품의 3D CAD 모델을 쉽게 생성하는 방법에 대해 소개한다.   ■ 자료 제공 : 드림티엔에스, www.pointshape.com   이번 호에서 소개할 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업  Analyzing 기능을 통한 설계 데이터 편차 확인  최종 설계 데이터 완성    스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다.  스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 오프셋(Offset) 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(Polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(Trim)을 하고 필렛(Fillet) 기능을 이용하여 라인을 다듬는다.    그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.    그림 5   그림 6   스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후, 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-01-04
제너레이티브 설계 솔루션, MSC Apex
제너레이티브 설계 솔루션, MSC Apex   주요 CAE 소프트웨어 소개    ■ 개발 : MSC Software, www.mscsoftware.com/kr ■ 자료 제공 : 한국엠에스씨소프트웨어, 031-719-4466, www.mscsoftware.com/kr 1. MSC Apex Generative Design - 자동화된 경량 설계 최적화 MSC Apex(에이펙스) Generative Design은 직관적인 CAE 환경, MSC Apex를 기반으로 제작된 완전 자동화된 제너레이티브 설계 솔루션이다. 이 제품은 기본적으로 혁신적인 제너레이티브 설계 엔진을 사용하고 있으며, 또한 MSC Apex의 사용하기 쉽고 배우기 쉬운 기능을 활용한다. 따라서 설계 최적화 워크플로에 필요한 노력과 비용을 크게 줄일 수 있다. MSC Apex Generative Design은 적층 공정으로만 제조할 수 있는 세밀하고 매우 복잡한 구조를 생성하도록 특별히 개발되었다. 혁신적인 응력 기반 알고리즘은 무게를 최소화하고 기존의 사고방식으로는 상상할 수 없는 독특한 형상을 안정적으로 이끌어낼 수 있다. ■ 편리하고 쉬운 사용법 : 사용자 중심 소프트웨어 디자인을 통해 별도의 전문 지식 없이도 최적화를 쉽게 수행할 수 있다. ■ 자동화된 디자인 : 무게는 최소화하면서 디자인 기준을 모두 만족하는 여러 개의 디자인 후보를 자동으로 생성할 수 있다 ■ 가져오기 및 검증 : 단일 CAE 환경에서 기존 형상 또는 메시를 가져와서 최적화된 디자인 후보를 찾고, 디자인 검증을 수행할 수 있다. ■ 직접 출력 : 수동 재작업 없이 직접 제조하여 즉시 사용할 수 있는 형상을 내보낼 수 있다. ■ 단일 프로세스 : Simufact Additive 또는 Digimat AM으로 결과 형상을 가져와서 모든 부품에 대해 비용 효율적이며 최초의 적정한 결과를 얻을 수 있다. (1) 주요 기능  ■ CAD 파일 불러오기  ■ 다양한 설계 형상 제공  ■ 선형 해석의 하중 케이스를 이용한 자동화된 최적화 프로세스  ■ 정확하고 부드러운 표면으로의 효율적 전환 & 스트럿 및 쉘 구조 요소 사이에 완벽한 전환  ■ 응력 기반 알고리즘을 통한 많은 무게 감소  ■ 짧은 시간 안에 다양한 설계 형상을 제공하는 제너레이티브 디자인 연구  ■ CPU, Nvidia GPU를 이용한 해석 기능과 Windows & Linux 환경에서의 원격 작업  ■ 로컬 좌표계, 압력, 중력 고려  (2) 적용 효과  ■ 수동 작업이 필요하지 않은 새롭고 혁신적인 설계 구조  ■ 별도의 사용법을 배우지 않아도 사용하기 쉬운 소프트웨어  ■ 효율적이고 혁신적인 제품 설계를 통한 비용 절감  ■ 최적화 설정을 토대로 여러 개의 설계 후보 생성  ■ 실현 가능한 부품 설계 생성  ■ 적층 제조 생산에 적합  ■ 기계적 무결성 및 제조 능력 검증을 위한 상호 호환성  ■ 유기 형태의 설계를 통한 경량화 및 생산 및 운영 비용 절감 2. MSC Apex | Modeler - 직접 모델링, CAD&메시 솔루션 MSC Apex Modeler는 CAD 형상 정리, 메시 생성, 물성 및 하중 부여 작업의 워크플로를 간소화고 CAE에 특화된 직접 모델링이 가능한 CAD와 메시가 상호 작용하는 솔루션이다 ■ 스마트 도구 : MSC Apex는 매우 빠르고 효율적인 방식으로 CAD 형상 정리를 수행할 수 있는 직접 모델링 도구를 제공한다. 형상 수정이 필요한 대상을 선택하고 마우스를 이용해서 밀거나 당기거나 드래그하여 수정할 수 있다. 이러한 도구를 통해 사용자는 CAD를 정리할 수 있으며, 작업량을 10분의 1까지 줄일 수 있다. ■ 제품 워크플로 : MSC Apex는 스마트한 FEA/CAE 워크플로를 목표로 설계되었다. 대표적인 예로 3D 모델을 2D 모델로 빠르게 만들어주는 미드 서피스 추출 기능이 있다. 사용자는 MSC Apex에서 제공하는 워크플로를 통해 일반적인 CAD에서 해석이 가능한 FEA 모델까지 10배 이상의 생산성을 높일 수 있다. ■ 기반 기술 : MSC Apex는 제너레이티브 프레임워크를 통해서 CAD와 해석 데이터 간의 완전한 연관성을 가능하게 한다. 어셈블리 모델의 경우 일부 파트 변경이나, CAE 모델을 수정할 경우에 유용하다. 상위 모델이 수정되면 메시, 물성, 하중 등을 포함하여 수정된 사항이 하위 모델에 자동으로 동기화된다. 이러한 직접 모델링은 사용자에게 많은 이점을 제공한다. ■ 사용하기 쉽고 배우기 쉬움 : MSC Apex는 다양한 목적의 도구를 쉽게 사용할 수 있도록 설계되었다. 설치 시 내장된 튜토리얼, 비디오 기반 문서, 마우스 커서에 자동으로 나타나는 사용 방법과 같은 다양한 학습 도구를 제공한다 (1) 주요 기능 1) 스케치 ■ 선, 사각형, 원, 타원, Fillet, Chamfer 그리고 복잡한 형상을 스케치 평면 위에 직접 스케치 ■ 기존 스케치의 형상을 Project, split, 수정 가능 2) CAD 수정 ■ 점이나 선을 마우스 드래그를 이용해서 서피스 수정(Vertex/Edge drag) ■ 서피스를 마우스 드래그를 이용해서 솔리드 형상의 수정(Push/Pull) ■ 서피스의 자르기(Split), 채우기(Fill) ■ 메시에 영향을 주는 점을 추가/삭제, 선(curve)을 억제/억제 해제 ■ 어셈블리에서 특정 파트만 교체 가능(Part Replace) 2) 미드 서피스 생성 및 수정 ■ 오프셋 옵션(자동, 일정한 두께, 사용자 입력 등)에 따라 미드 서피스 추출 ■ 평면 또는 곡면 솔리드의 균일 또는 불균일한 두께의 중간면을 점진적으로 생성(Incremental mid-surface) ■ FEA 모델로부터 CAD 생성 ■ FEA 모델로부터 Facet 형상과 Nurbs 형상 생성, 수정, remesh ■ 일부 FEA만 Facet 형상 생성 후에 메시 수정하면 기존 FEA의 물성, 두께, connector 등도 자동 업데이트 ■ 2D, 3D FEA 모델로부터 2D, 3D CAD 생성 ■ 생성된 CAD 내보내기 가능 3) 메시 및 메시 수정 ■ curve, surface, solid에 메시 ■ Beam, Quad, Tria, Tet, Hex 메시 ■ CAD가 수정될 때 자동으로 메시 재 생성  ■ Feature Base Meshing, mesh Seeding, mesh control curve를 통한 메시 개선 ■ 부품 연결을 용이하게 하는 Hard Point ■ 다양한 map mesh 옵션 ■ 시각적인 element quality 확인 및 편리한 수정 4) 모델 특성 ■ 물성 생성 및 할당 ■ 자동 두께 할당(균일하지 않은 단면 및 오프셋 특성 고려 가능) ■ 부품 연결 : 접촉(Mesh Independent Die), RBE2/RBE3 요소(Discrete Tie)  ■ 중력, 하중, 강제 변위, 구속, 압력 하중  5) MSC Nastran과 상호 운용성 ■ MSC Nastran 데이터(bdf,op2,h5) 지원, 가져오기 및 내보내기  ■ Adams/Car 모델 및 결과 데이터 확인 가능  ■ 단일 환경에서 Adams/Car 결과 데이터를 구조 FEA 모델에 연결 및 하중 매핑 가능 6) 후처리  ■ 이미지 캡처/동영상 녹화 기능 포함 ■ 멀티뷰를 통한 결과 탐색 환경 지원 7) Python 기반의 API를 통한 자동화 ■ 반복적인 작업을 자동화하고 사내 워크플로를 개발할 수 있는 사용자 정의 도구 ■ 완벽한 통합 개발 환경(IDE) 지원 ■ 코딩 없이 Micro Record/Play로 간편한 사용 3. MSC Apex | Structures - Computational parts 기반의 구조 해석 MSC Apex Structures는 유한 요소 해석 솔버가 통합된 모듈로 사용자에게 선형(비선형 기능 지원 예정) 구조 해석에 대한 접근을 제공한다. 현재 MSC Apex는 선형 정적, 선형 좌굴, 노말 모드 및 주파수 응답 해석을 포함한 4가지 유형의 선형 해석을 지원한다. MSC Apex Structures는 시나리오 정의, 해석 준비 상태 확인 및 통합 솔버를 위한 직관적인 사용자 인터페이스가 포함된 패키지이다. 사용자 인터페이스와 솔버의 통합은 사용자에게 FEA 모델을 대화식으로 그리고 점진적으로 검증하고 해결할 수 있는 고유한 기능을 제공한다. 이 점진적인 검증 및 해석은 전처리/후처리 프로세스와 솔버가 분리되어 매우 시간이 많이 소요되는 기존 FEA 워크플로에 대한 창의적이고 지능적인 방식의 변화이다. MSC Apex - MSC Nastran - MSC Apex의 워크플로를 지속적으로 확장하여 사용자는 다양한 설계 단계 및 작업에 따라 최상의 시나리오를 선택할 수 있다. ■ 시나리오 1 - MSC Nastran 솔버 사용 : 기존의 MSC Nastran 솔버 사용자는 MSC Nastran 솔버를 사용한다. ■ 시나리오 2 - MSC Nastran 솔버를 지원하는 내장된 MSC Apex Structures : 통합된 솔버는 해석 사전 검증 기능을 이용해서 FEA 모델을 생성한다. 생성된 FEA 모델을 MSC Nastran으로 외부에서 해석할 수 있으며 MSC Apex를 통해서 후처리 작업이 가능하다. ■ 시나리오 3 - 내장된 MSC Apex Structures 솔버 사용 : 내장된 MSC Apex 솔버의 모든 기능을 할 수 있다.
작성일 : 2023-12-25
구조 해석 소프트웨어, midas MeshFree
주요 CAE 소프트웨어 소개 ■ 개발 및 자료 제공 : 마이다스아이티, 031-789-2000, www.midasit.com 수년에 걸쳐 CAD(Computer-Aided Design) 시스템은 와이어 프레임 또는 면 기반의 모델에서 솔리드 모델과 파라메트릭 기반 모델까지 개발되었으며, 생산성 및 기하 형상의 완성도가 비약적으로 발전해 왔다.  midas MeshFree(마이다스 메시프리)는 설계 엔지니어에 의해서 완성된 CAD 모델 원형을 그대로 활용하여, 사용자가 요소망 생성 없이 시뮬레이션을 할 수 있는 기법으로 개발된 구조해석용 소프트웨어이다. midas MeshFree는 간략화 작업과 노동 집약적인 요소망 생성 작업 없이 빠르고 직관적으로 해석을 수행할 수 있다. 요소망을 생성하지 않는 작지만 새로운 변화는 시뮬레이션의 환경을 크게 변화시키고 있다. 개념 및 초기 설계 단계에서 설계 엔지니어를 중심으로 설계한 원본 CAD 형상을 그대로 활용하여 빠르고 효율적으로 분석할 수 있으며, 성능 검토 후 빠른 의사 결정으로 통해 설계에 보다 개선된 사항을 반영할 수 있다.  1. 설계 단계 CAE와 MeshFree CAE의 목표는 제품의 제반 성능을 정략적으로 예측하고, 설계에 적용하여 최적설계를 달성하는 것이다. 설계 단계 CAE는 설계 초기 단계인 기획 및 기본 설계 단계에서 성능을 분석하여, 양산 후 발생 가능한 문제점을 사전에 찾아내고, 이를 개선하는 것을 목적으로 한다.  midas MeshFree는 기존 FEM 기반의 해석 프로세서에서 가장 많은 노동력과 경험이 필요했던 부분인 간략화 과정 및 요소망 생성 작업을 제거함으로써 설계 엔지니어가 직관적으로 사용할 수 있도록 개발되었다. midas MeshFree의 개발 개념은 설계단계 CAE를 적극적으로 지원하고, 설계 엔지니어가 빠르게 제품을 학습하여 설계 과정 중에서 자신이 설계한 제품을 성능을 빠르게 파악하는 것으로 다음과 같은 원칙을 기반으로 개발하였다. ■ No geometry cleanup and simplifications ■ No mesh generation by user ■ No failed analysis ■ Performance and accuracy comparable to finite element method   midas MeshFree는 CAD 모델을 직접 이용하며 해석을 수행하기 위해서는 3D CAD 불러오기, 하중/경계조건 정의, 마지막으로 해석 실행 및 결과 분석인 3단계의 프로세스만으로 해석 결과를 도출할 수 있는 사용 편의성을 제공한다. 또한, 상용 CAD와의 연계성을 강화하여 CAD에서 정의한 재료 정보를 자동으로 불러올 수 있으며, 설계 변경된 모델도 최소한의 작업으로 해석을 수행하여 결과를 확인할 수 있는 Auto-Update 기능을 제공하고 있다. 단순히 설계 엔지니어가 간단하게 시뮬레이션을 수행하는 것을 목적으로 하는 것이 아니라, 결과를 분석하고 이를 빠르게 설계에 반영하여 변경된 성능을 빠르게 분석할 수 있도록 개발하였으며, 기업 내에서 최소의 노력으로 설계 단계 CAE 프로세스를 구축할 수 있도록 개발하였다.  2. MeshFree 주요 해석 기능 midas MeshFree 솔버는 강성 및 강도를 검토할 수 있는 선형 및 비선형 정적 해석, 진동 특성을 분석할 수 있는 모드 및 동해석(과도, 주파수, 랜덤진동, 응답 스펙트럼), 온도 하중에 대한 영향을 파악할 수 있는 정상/비정상 상태 열전달 해석을 제공하고 있으며, 설계 제품의 수명을 검토할 수 있는 피로해석과 최적 설계 안을 도출할 수 있는 위상 최적 설계 기능까지 제공하고 있으며, 주요 해석 기능은 다음과 같다. 현재 상용적으로 사용하는 무요소 방법들은 공통적으로 경계조건을 만족시키는 어려움과 비선형성에 의해 강성을 갱신하여 해석에 반복적으로 반영해야 하는 방식에 어려움을 겪고 있다. MeshFree는 체적 적분 기법을 통해 해석 대상의 강성을 계산하며, Update Lagrangian 기법을 이용하여 다양한 비선형성에 의해 갱신되는 강성을 반영할 수 있도록 개발하였다.  midas MeshFree에서 제공하는 비선형성은 대변형, 대회전이 유발되는 기하학적 비선형 문제, 탄소성 모델의 항복 이후 성능과 고무와 같은 초탄성 재료의 성능을 검토할 수 있는 재료 비선형, 그리고 공간상의 두 물체가 서로 맞닿을 수는 있으나, 관통할 수 없다는 조건을 기본 가정으로 하는 접촉 비선형 문제를 검토할 수 있다. midas MeshFree의 정렬격자 기반의 최신 해석 기술은 모델 간략화 및 이상화 없이 3D CAD 원형을 그대로 해석할 수 있는 기술이며, 강성, 강도, 진동, 열전달 및 열응력, 내구수명 그리고 최적화 기술까지 제공하고 있어 초기 설계단계에서 다양한 설계 안에 대한 제품의 성능을 설계 엔지니어를 중심을 검토할 수 있는 혁신적인 해석 기술이다. midas MeshFree는 설계 초기 단계에서 제품의 제반 성능을 정략적으로 예측하고 최적 설계를 달성할 수 있도록 지원하여 설계 시간 및 비용을 절감하고 혁신적인 설계안을 도출할 수 있도록 개발된 제품이다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-25
플라스틱 병 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 3D CAD 기반의 역설계 소프트웨어로 CGM(CATIA) 커널이 적용됐으며, 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공한다. 이번 호에서는 플라스틱 병의 스캔 데이터에서 3D CAD 모델을 쉽게 생성하는 방법을 소개한다.   ■ 자료 제공 : 드림티엔에스, www.pointshape.com   이번 호에서 살펴볼 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업  Analyzing 기능을 통한 설계 데이터 편차 확인  최종 설계 데이터 완성    스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다.  스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 오프셋(Offset) 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(Polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(Trim)을 한 후에 필렛(Fillet) 기능을 이용하여 라인을 다듬는다.    그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.    그림 5   그림 6   스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.    그림 7   그림 8     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-12-04
전열 해석 자동화 프로그램 BeHAP의 소개 및 사용법
버스바의 최적 설계 프로세스 단축하기   파워서플라이나 전기차 배터리와 같은 고전력 장치에 사용되는 버스바(BusBar)는 최적 설계 도출을 위해 다수의 전열 해석이 동반되어 수많은 워크플로를 진행해야 한다. 태성에스엔이가 자체 개발한 전열 해석 자동화 프로그램인 BeHAP을 이용하면 단일 환경에서 전열 해석을 한 번에 진행 가능하다. 이번 호에서는 버스바 전열 해석 자동화 프로그램에 대한 소개와 사용 방법을 설명하고자 한다.   ■ 김재원 태성에스엔이 구조 2팀 매니저로 구조해석 및 자동화 프로그램에 대한 기술 지원을 담당하고 있다. 이메일 | jwkim21@tsne.co.kr 홈페이지 | www.tsne.co.kr   파워 서플라이나 전기차 배터리와 같은 고전력이 필요한 장치에 많이 사용되는 버스바는 전선과 동일한 기능을 가지면서 형상적으로 단단하고 정밀한 제작이 가능하기 때문에, 보다 효율적인 공간 활용이 가능하다.  그에 따라 형상 최적 설계에 대한 연구가 많이 진행되고 있으나 최적 설계 도출을 위해서 다수의 전열 해석을 수행해야 하기 때문에, 수많은 워크플로 생성으로 인해 업무 효율성이 떨어지는 어려움이 있다. 태성에스엔이에서 제작한 버스바 전열 해석 자동화 프로그램인 BeHAP을 사용하면 다수의 전열 해석이 필요 없이 단일 환경에서 다양한 전열 해석 수행이 가능하다.    BeHAP 소개 전열 해석은 전기 해석과 발열 해석의 연성 해석이 필요하기 때문에, 다양한 환경에서 해석이 진행된다.(그림 1)   (a) 해석 시스템 생성   (b) 물성 추가   (c) 형상 수정   (d) 격자 생성 및 경계 조건 부여   (e) 결과 확인 그림 1. 앤시스 환경에서의 전열 해석 프로세스   <그림 1>과 같이 앤시스의 전열 해석 프로세스는 워크벤치(그림 1-a~b), SCDM(그림 1-c), 메커니컬(그림 1-d~e) 환경을 거쳐 전/후처리를 진행하기 때문에, 워크플로가 매우 복잡해진다. 이러한 경우 BeHAP을 사용하여 이러한 문제를 해결할 수 있다. BeHAP은 <그림 2>와 같이 하나의 환경에서 전/후처리를 한 번에 수행할 수 있다. 또한, 해석 워크플로의 단순화로 해석 숙련도가 낮은 설계 엔지니어도 쉽게 사용할 수 있다는 장점이 있다.   (a) 모델 불러오기   (b) 물성 추가 및 적용   (c) 경계 조건 부여   (d) 결과 확인 그림 2. BeHAP에서의 전열 해석 프로세스     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-12-04
자동차 서스펜션 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 역설계 소프트웨어이다. 3D CAD 기반의 CGM(CATIA) 커널이 적용됐고, 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공한다. 이번 호에서는 자동차의 서스펜션 제품의 3D CAD 모델을 쉽게 생성하는 방법에 대해 소개한다.   ■ 자료 제공 : 드림티엔에스, www.pointshape.com   이번 호에서 살펴 볼 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업 Analyzing 기능을 통한 설계 데이터 편차 확인 최종 설계 데이터 완성   스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다. 스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 Offset 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(Trim) 기능을 이용하여 라인을 다듬는다.   그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.   그림 5   그림 6   스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.   그림 7   그림 8   스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2023-11-02
[케이스 스터디] 건설 산업에서 언리얼 엔진을 활용한 플랫폼 구축
BIM 데이터와 실시간 3D 기술 결합해 최적의 의사결정 지원   삼성물산과 삼성물산의 IT 개발 협력사인 일레븐스디(11thD)는 에픽게임즈 코리아가 개최한 언리얼 페스트 2023 행사에서 ‘건설 산업에서 언리얼 엔진을 활용한 플랫폼 구축하기’라는 주제의 강연을 통해 건설 산업에서 언리얼 엔진을 활용할 수 있는 방법 중 하나인 플랫폼 구축 예시를 소개했다. 이번 강연에는 삼성물산 데이터센터 기술 Proposal 및 마케팅 총괄 이태관 부장과 일레븐스디 이종걸 대표가 강연자로 나섰으며, S-DCIS(Samsung Data Center Information System)의 개발 배경, 언리얼 엔진 도입 계기, S-DCIS 개발의 기술적 과정 등에 대해 설명하는 시간을 가졌다. ■ 자료 제공 : 에픽게임즈   S-DCIS의 개발 배경 S-DCIS 플랫폼은 삼성물산이 데이터센터에 대한 노하우와 기술력을 바탕으로 삼성물산과 협업하는 고객에게 제공하는 데이터센터 전문 플랫폼이다. 삼성물산은 데이터센터 EPC 사업자로서, 국내외 데이터센터 PM 역할과 시공을 수행하면서 고객들이 추구하는 데이터센터 사업 모델을 함께 고민하고 있다. 이러한 경험을 바탕으로 공조 방식 및 랙(rack) 부하량에 따라 기본 제안 모델 5개 타입과 특화 모델 chiller Free, Liquid Cooling, Immersion Cooling의 3가지 타입을 추가해, 실제 BIM으로 구현해 가며 삼성물산의 EPC 노하우를 반영하여 총 8개 타입의 데이터센터 제안 모델을 개발했다. 삼성물산은 데이터센터 제안 모델 개발 과정에서 고객의 어려움을 실시간으로 해결하고, 적은 인적 오류와 빠른 의사 결정을 위해 사업 검토 자동화라는 목표를 설정했다. 이를 위해 초기에는 BIM을 고려하였으나, 검토하는 과정에서 BIM은 굉장히 디테일하며 강력하지만 다루기 어렵고 무겁다는 단점이 있었다. 이에 BIM을 가볍게 사용하는 방법에 집중하면서, 실시간 규모 검토 및 사업성 분석 그리고 데이터센터 입주사의 의견을 반영하기 위해서 언리얼 엔진 도입을 결정했다.   언리얼 엔진 도입 계기   ▲ S-DCIS 언리얼 엔진 도입 계기   삼성물산은 IT 전문이 아니기에 게임 엔진을 통한 BIM 활용 가능성은 보았지만, 어떤 엔진을 사용할지 고민이었다. S-DCIS는 개발자가 BIM, 설계, 건설, 데이터센터 상품 등에 대한 이해가 충분해야 개발이 가능하지만, 건설과 더불어 데이터센터에 대한 지식을 보유한 IT 전문가를 찾는 일은 쉽지 않았다. 특히, 데이터센터는 건설사 중에서도 진입 장벽이 높은 상품으로 국내 건설사 중 실적이 10개 이상인 회사는 2~3개뿐이다. 이렇게 쉽지 않은 과정이었지만 설계와 BIM 전문가이면서 IT 개발도 하는 일레븐스디의 도움으로 진행할 수 있었다. 엔진을 선택하기 위해 많은 IT 전문가들과 협의했고 건설 분야에 적합한, 즉 데이터센터 규모 및 사업성 분석 플랫폼 개발에 적합한 엔진을 선정하는 기준을 마련했다. 첫째는 ‘최종 결과물의 성과품이 건설에서 사용하는 투시도 즉 실사와 같이 고품질이어야 한다’, 둘째는 ‘확장성을 위해 BIM과 호환은 물론 3D 데이터 형식에 구애받지 않고 어느 데이터와도 호환이 쉬워야 하며, 수정 및 확장을 위한 지속적 지원과 오픈소스여야 한다’, 셋째는 ‘건설사가 기존에 사용하는 업무 환경 및 BIM 환경에 적합하고, 추후 스트리밍 서비스 및 타 산업과의 융합을 고려해야 한다’는 것이었다. 이 같은 기준으로 선택한 엔진이 언리얼 엔진이었고, 삼성물산은 IT 개발 협력사인 일레븐스디와 언리얼 엔진을 통해 S-DCIS의 개발을 진행했다.   S-DCIS 사업 개요   ▲ S-DCIS 사업 개요   S-DCIS의 개발 목표는 세 가지였다. 첫 번째는 BIM과 언리얼 엔진을 활용한 규모 검토 알고리즘 구축, 두 번째는 사업을 운영할 수 있는 사업성 검토 알고리즘 구축, 마지막은 규모 검토와 사업성 검토를 잘 활용하고 삼성물산과 데이터센터 발주처가 이 시스템을 통해 최적의 결정을 내릴 수 있는 플랫폼 구축이었다. 총 9개월동안 진행된 이번 프로젝트의 가장 중요한 성과는 데이터 센터 기획, 검토 단계에서의 각 전문가들의 모든 전문 지식 활용에 대한 프로세스 정형화와 시스템 개발 가능성에 대한 검토를 완료했다는 점이다. 최종 성과물 다섯 가지에 대해 살펴보면 다음과 같다. 우선 ‘GIS 정보조회 플랫폼’은 기획자가 발주처와 협의 시 위치 정보, 입지조건이 포함된 대지 검토를 언리얼 엔진으로 개발된 플랫폼에서 확인하면서 최적의 결정을 내릴 수 있도록 한다. 최적의 대지, 사이트가 결정된 후에는 엔지니어들이 각자의 노하우가 포함돼 있는 ‘규모 검토 시스템 Part 1’과 ‘Part 2’를 통해 기획, 검토, 설계를 진행한다. 전문지식을 바탕으로 진행된 검토안은 네 번째 성과물인 ‘규모 검토 보고서’로 전달되는데, 이는 앞에서 검토된 모든 내용을 인터랙티브한 보고서 형식으로 정리한 보고서이다. 이러한 절차로 결정된 사항을 마케팅, 홍보 차원에서도 적극 활용할 수 있도록 개발한 것이 마지막 성과물인 ‘통합 정보 시각화 대시보드’이다. 다섯 개의 성과물이 선형적으로 연계된 만큼 데이터의 흐름도 및 구축 시스템도 중요하다. 처음과 마지막을 구성하는 ‘GIS 정보조회 플랫폼’과 ‘통합 정보 시각화 대시보드’ 시스템은 언리얼 엔진을 기반으로 개발되었다. 2, 3, 4번째에 해당되는 전문적 산식이나 보고서처럼 분석된 자료 등의 시각화 작업 등은 닷넷 프레임워크(.NET Framework)로 진행되었고, 3번째 설계 프로세스가 필요한 시스템은 레빗(Revit) 애드인으로 개발되었다.   GIS 정보조회 플랫폼   ▲ GIS 정보조회 플랫폼   GIS 정보조회 플랫폼은 일레븐스디에서 언리얼 엔진을 이용해서 자체 개발한 3D 맵 시스템에, 삼성물산에서 제공하는 데이터센터 특화 정보를 임베드해서 만든 데이터센터 특화 플랫폼이다. 최적의 결정을 내리기 위한 정보 조회를 하는 만큼, 플랫폼에서의 조회 결과에 대한 저장하기, 가져오기, 공유하기 기능까지 추가 개발했다 예를 들어, 삼성 데이터센터 프로젝트를 위해 커스터마이즈된 UI/UX와 필요한 기능에 맞춘 글로벌 내비게이션 바는 모든 지형과 건물, 인프라를 공공기관에서 제공하는 공신력 있는 데이터만을 변환시켜 스트리밍으로 빠르고 정확하게 자동 피드되도록 자체 개발했다. 3D 맵이다 보니 지번 조회 기능 및 맵을 둘러보다가 대지를 선택할 수 있는 기능을 추가했으며, 선택된 대지의 건폐율과 연면적, 고도 제한에 맞춰서 최대로 개발 가능한 알고리즘 매싱(massing) 구현을 통해 시각적으로도 프로젝트 적합성 검토의 효율성과 정확도를 향상시켰다. 또한, 검토하고자 하는 해당 대지의 법규 검토, 데이터센터 특화 정보, 대지정합성 검토를 동시에 가능하게 하였고, 더 필요한 정보는 토지이음 링크를 통해 확인할 수 있도록 구축했다. 해당 대지에 관한 정보뿐 아니라, 데이터센터를 기획하는 데 있어서 무엇보다 중요한 주변 환경, 입지 조건 정보까지도 함께 검토할 수 있도록 구현했다. 무엇보다 수없이 많은 대지를 검토하는 과정에서 각 팀원들의 검토 내용을 수집, 활용하는 게 필요했는데, 이를 위해 검토 사항을 북마크 형식으로 저장할 수 있도록 하고, 회사 차원에서 최종 결정을 내리기 위한 ‘우선 선택 대지’를 결정권자에게 ‘공유항목’ 기능을 통해 보고 공유하는 기능 또한 추가했다.   일레븐스디의 3D 맵 개발 배경 및 구현 프로세스   ▲ 일레븐스디의 3D 맵 구현 프로세스   3D 맵을 제작 및 개발하면서, 효율성 향상을 위해 차별화를 뒀던 점은 크게 세 가지다. 첫 번째는 언리얼 엔진에서 제공하는 블루프린트를 최대한 활용하면서도, 건설산업에 필요한 설계 BIM 툴과의 연계성을 위해서 비주얼 스크립팅 외의 C++ 스크립팅까지 도입하면서 개발했다는 점이다. 두 번째는 데이터의 호환성과 지속적으로 업데이트가 필요한 환경에 맞춰서 맵과 관련된 형상 데이터 서버와 공간 함수 데이터 서버를 이원화해서 시스템을 구축했다는 점이다. 이를 통해, 필요한 데이터나 맵 정보만 별도로 분리해서 가볍고 빠른 업데이트가 가능하게 됐을 뿐 아니라, 보안에 민감한 데이터만 저장, 활용할 수 있는 서버를 따로 구축해서 삼성의 개발 조건에 충족할 수 있는지도 검토했다. 세 번째는 3D 맵의 성과품 구현 최적화를 위해, 별도 서버에 저장된 데이터들을 불러오기 위한 ‘RestAPI’ 기능을 자체 설계하여 시스템을 개발했다는 점이다. 3D 맵의 구현 프로세스에 대해 알아보면, 공공데이터 수집, 취합, 정제, 활용과 관련해 NASA의 지형(terrain) 데이터와 국토교통부에서 제공하는 공공데이터를 취합하고, 일레븐스디만의 데이터 분석 기준에 맞춘 데이터베이스 설계서를 작성해서 프로젝트에 적용했다. 형상 데이터와 공간 함수 데이터는 언리얼 엔진과의 통합이 잘 호환되는 조건으로 데이터베이스 설계서를 작성했으며, 이렇게 정의된 데이터베이스 설계서를 중심으로 형상화 서버와 공간 함수 서버를 이원 분리하여 작업했다. 일레븐스디만의 데이터베이스 설계서를 기본으로 이원화된 2개의 서버까지 구축한 후에 데이터 활용을 위한 자체 기능인 RestAPI를 설계했다. 여기에는 기능에 따라 ‘형상화된 3D 데이터 추출’, ‘지번 주소 검색 기능’, ‘선택 대지의 예상 규모 자동생성’ 등이 있다. 마지막으로, RestAPI로 설계된 기능을 언리얼 엔진 기반으로 작성된 데이터센터 플랫폼에 구현하기 위해서, 자체 설계된 RestAPI을 호출할 수 있는 C++ 클래스를 개발한 후 블루프린트 노드화를 통해 일레븐스디 자체 데이터베이스와 연결된 RestAPI를 언리얼 엔진 내에 구현할 수 있었다. 이렇게 언리얼 엔진으로 개발된 일레븐스디만의 ‘위치기반 공간정보 3D 맵 시스템’이 구성되어 있는 상태에서 삼성물산 데이터센터 규모 검토 시스템 S-DCIS에 필요한 정보와 노하우를 연계하는 작업을 진행했다. 삼성물산 데이터센터 시스템에 특화된 추가 개발 내용 중 중요한 부분으로는 첫 번째로 선택된 대지의 건설 적합성 검토와 데이터센터만의 고유한 개발/기획 특성상 교통 인프라, 민원 우려 시설, 소방서 위치, 화재 위험 시설과 같은 주변 인프라 검토를 수반하는 개발이 있었다. 그리고 두 번째는 매싱 자동 생성 알고리즘 작업과 결정 프로세스의 원활화를 위한 저장, 공유, 결정 내용 정보 가져오기 등의 기능 개발이었다.   규모 검토 시스템   ▲ 규모 검토 시스템 Part 1   규모 검토 시스템 Part 1에서 살펴볼 점은 삼성물산의 표준 모델을 기반으로 데이터센터 규모 검토 수행 프로세스 시스템을 구축한 부분과, 표준 모델에서 건물의 가로-세로 길이 조절을 통해 규모 검토의 세분화를 이루게 한 점, 이렇게 추출된 최종 기획안을 다시 언리얼 엔진으로 가져와 플랫폼 안에서 검토한 내용을 컨펌할 수 있도록 개발된 부분 등이다. GIS 정보조회 플랫폼에서 선택된 대지 정보와 알고리즘으로 구성된 예상 최대 건축 규모 매싱을 가져오는데, 이를 기준으로 삼성물산 표준 모델 중 기준 타입을 추천하게 된다. 추천받은 표준 모델 기준 타입을 선택된 대지에 이동, 회전 등을 통해 원하는 자리에 배치할 수 있도록 개발했고, 배치가 완료된 후 본격적인 규모 산정 시스템과 연동되면서 검토가 시작된다. 규모 산정은 층수 조절부터 시작해서 가로-세로 조절을 통한 레이아웃 조정하기로 이루어져 있고, 무엇보다 중요한 건 ‘랙 당 전력밀도’, ‘랙 개수’ ‘수전용량’을 계속 확인하면서 규모 검토를 진행할 수 있게 개발했다는 점이다. 또한, 엔지니어가 검토, 기획하는 중에 최적의 규모 산정 조건을 초과했을 경우 경고가 나오도록 개발됐다. 이렇게 레이아웃 조정이 마무리된 후 MEP 용량 검토하기를 진행한다. 규모 검토를 마무리하는 단계에서는 건축, 기계, 전기, 구조 등 모든 공종의 검토 내용을 다시 한 번 확인할 수 있도록 했다. 확인 작업까지 마무리된 최종 규모 검토 모델을 다시 언리얼 엔진 기반 플랫폼에 가져와서 대지 정보와 주변 환경 조건에 맞춰 검토한다.   ▲ 규모 검토 시스템 Part 2   규모 검토 시스템 Part 2는 규모 검토 시스템 Part 1에서 결정된 검토 결과를 BIM 데이터로 전환 및 MEP 장비 배치 검토를 수행하는 과정으로, 검토 결과를 기반으로 BIM 데이터 자동 생성 및 장비 배치 시 인적 오류 방지에 초점을 두고 있다. 여기에서 사용되는 레빗 애드인은 시스템상에서 검토된 기획안을 레빗이라고 하는 BIM 툴로 가지고 와서 건설 환경에 필요한 설계안으로 발전시킬 수 있다. 시스템 내에서 규모 검토를 마친 기획안을 레빗으로 불러오기하면 가져오기를 함과 동시에 대지경계선, 건축한계선, 각 층고 레벨, GIS 기반 정북방위, 그리드 등이 검토안에 맞춰 자동 생성된다. 그리고 검토된 데이터에 맞춰 층별 라이브러리가 조정되고, 건물 전체 가로-세로 길이도 조정돼 자동으로 들어오게 된다. 자동으로 배치된 건물에 필요한 실을 구성한 후에는 데이터센터 장비를 배치하는데, 일레븐스디에서 자체 개발한 BIM 라이브러리 매니징 시스템을 활용해 시각적으로 필요한 장비를 체크하는 동시에 선택한 장비를 드래그앤드롭 방식으로 손쉽게 각 층, 각 실에 배치할 수 있다. 레빗 애드인의 주요 목적은 어려운 건축 설계 BIM 툴을 모르더라도 손쉽게 작업하면서 정확한 설계안을 도출할 수 있게 하는 것이다. 중간에 사람의 수작업이 조금은 필요한데 이는 장비 배치를 하는 과정에서 개수가 초과했을 경우 경고 빨간색 창이 뜰 수 있도록 개발해서, 어떠한 상황에서도 인적 오류를 방지하면서 정확하고 신뢰도 있는 설계 검토안을 도출할 수 있도록 하는 것이 목적이었다.   규모 검토 보고서   ▲ 규모 검토 보고서   규모 검토 보고서는 규모 검토 시스템 Part 2에서 생성된 BIM 데이터를 기반으로 모든 검토 내용과 설계안을 지능적이고 인터랙티브한 보고서로 구성해, 사용자가 원하는 정보를 직접 클릭·조회하여 정보를 취득할 수 있다. 또한, 이 보고서에서는 삼성물산의 노하우 및 데이터센터의 SDCPET 시스템을 통해 얻은 데이터 등을 활용하여 CAPEX, OPEX, 공기까지도 검토할 수 있으며, 이러한 특징을 통해 초기 사업성을 검토할 수 있다.   통합 정보 시각화 대시보드   ▲ 통합 정보 시각화 대시보드   앞서 설명한 네 가지의 시스템은 선형적으로 데이터 흐름이 연결되면서 각 시스템이 연계되지만, 마지막 ‘통합 정보 시각화 대시보드’ 시스템은 조금 다르다. 규모 검토 보고서가 인터랙티브한 보고서라면, 통합 정보 시각화 대시보드는 추가 작업이 된 대시보드 형태의 ‘규모 검토 체험형 보고서’라고 할 수 있다. 비주얼 스크립팅 시스템인 블루프린트, UI 제작을 위한 UMG 등 언리얼 엔진의 장점을 살려서 최종 의사결정권자의 최적 의사결정 지원 및 마케팅, 홍보에 초점을 맞췄다. 첫 번째 성과물인 언리얼 기반의 ‘GIS 정보조회 플랫폼’과는 다르게 고품질화, 안정화, 경량화 작업을 통해서 스트리밍 상태에서도 문제 없이 실사와 같은 검토 자료 및 기획 설계안을 확인할 수 있도록 개발돼 정보 전달이 더욱 용이하도록 만들어졌다. 타일셋(tileset)으로 자동 배치되는 대지와 공공데이터로 구성된 건물/인프라 모델은 스트리밍으로 피드되며, 주변 GIS 정보 및 주변 환경 정보 또한 자동으로 피드되도록 했다. 중요한 검토 자료 중 하나인 선택된 대지로부터 변전소 간의 거리 표현도 언리얼 엔진의 블루프린트를 활용해 자체 제작됐으며, 이러한 기본 정보 위에 데이터센터만의 특화된 규모 검토 자료와 검토를 통한 최적화된 설계안이 선택된 대지 위에 배치된다. 또한, 삼성물산의 표준 모델에서 시작된 규모 검토안이 어떻게 대지 조건에 맞춰 수정 및 보완되었는지 더 자세하고 정확하게 확인할 수 있도록 층별 검토 부분에 대해서 더 집중했다. 이는 언리얼 엔진의 데이터스미스로 BIM 데이터를 가져와 언리얼 엔진의 블루프린트, UMG 등을 활용해 구현했으며, 층별 레이아웃을 3D Axon으로 확인할 수 있을 뿐 아니라 각 실에 지정된 장비들 개수와 스펙까지도 클릭하면서 더 자세히 확인할 수 있도록 했다. 통합 정보 시각화 대시보드는 언리얼 엔진의 리얼타임 3D 기술을 통해 렌더링이나 동영상의 개념이 아닌 게임과 같이 최종사용자가 카메라를 돌려보기도 하고, 원하는 정보를 선택적으로 조합하여 볼 수 있는 일종의 체험형 가상공간 대시보드로 개발할 수 있었다.   S-DCIS를 통해 보는 향후 비전   ▲ 일레븐스디의 향후 비전   일레븐스디는 삼성물산과 규모 검토 시스템 플랫폼을 개발하면서 현재 다섯 개의 시스템으로 연계되어 있는 플랫폼을 몰입형 연결 경험을 위하여 하나의 플랫폼으로 통합해야 할 필요성을 느꼈으며, 사용자 편의를 위한 원 플랫폼 제작을 추후 개발 방향으로 정했다. 또한, ‘데이터 기반 글로벌 위치정보 및 공간정보 활용 플랫폼 개발’이란 소신을 갖고 있는 일레븐스디는 대지 정보 활용 영역을 확장하고, 데이터 활용 기술 개발 또한 꾸준히 진행할 예정이다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-11-02
플라스틱 커버 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 3D CAD 기반의 역설계 소프트웨어로 CGM(CATIA) 커널이 적용되었다. 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공하여 다양한 제품의 3D CAD 모델을 쉽게 생성할 수 있는 것이 특징이다. 이번 호에서는 플라스틱 커버 스캔 데이터의 역설계 작업 과정을 살펴본다.   ■ 자료 제공 : 드림티엔에스, www.pointshape.com   이번 호에서 살펴 볼 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업  Analyzing 기능을 통한 설계 데이터 편차 확인  최종 설계 데이터 완성    스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다.  스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 오프셋(offset) 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(trim) 기능을 이용하여 라인을 다듬는다.    그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.  스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후, 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.    그림 5   그림 6     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-10-05
자동차 포크 시프트 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 역설계 소프트웨어로, 3D CAD 기반의 CGM(CATIA) 커널이 적용됐으며 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공하는 것이 특징이다. 이번 호에서는 포인트셰이프 디자인을 통해 자동차 포크 시프트(fork shift)의 3D CAD 모델을 쉽게 생성하는 방법을 소개한다.   ■ 자료 제공 : 드림티엔에스   이번 호에서 살펴 볼 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업 Analyzing 기능을 통한 설계 데이터 편차 확인 최종 설계 데이터 완성   스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다. 스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 오프셋(Offset) 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(Polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(Trim) 기능을 이용하여 라인을 다듬는다.   그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.   그림 5   그림 6   ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-08-31