• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "SPH"에 대한 통합 검색 내용이 457개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
SAP, AI 시대의 고객 성공 지원하는 데이터 기반 비즈니스 혁신 발표
SAP가 AI 시대에 고객이 데이터의 모든 역량을 활용해 더 깊은 인사이트를 확보하고, 더 빠르게 성장하며, 효율성을 높일 수 있도록 지원하는 데이터 혁신을 발표했다. 생성형 AI를 포함한 SAP 데이터스피어(SAP DataSPHere) 솔루션의 새로운 기능은 간소화된 데이터 환경과 더욱 직관적인 데이터 상호 작용을 통해 전사적 관리를 혁신하는 데에 초점을 맞췄다. 이번 발표의 핵심은 데이터를 단순한 자산이 아닌 모든 전략적 이니셔티브의 핵심으로 가져오는 비즈니스 데이터 패브릭이다. SAP가 발표한 혁신과 파트너십을 통해 조직은 비즈니스 컨텍스트와 로직을 그대로 유지하면서 모든 데이터 사용자에게 의미 있는 데이터를 제공할 수 있다. SAP 데이터스피어는 고객이 컨텍스트와 로직을 유지하면서 데이터 환경을 단순화하는 통합 데이터 뷰를 지원해 시장 변화에 더 빠르게 적응하고 보다 효율적인 결정을 내릴 수 있도록 돕는다. 이를 통해 SAP는 생성형 AI 결과물의 비즈니스 컨텍스트를 일정하게 유지하는 새로운 코파일럿 및 벡터 데이터베이스 기능부터 복잡한 데이터에서 인사이트와 패턴 도출을 돕는 새로운 지식 그래프까지, 고객이 손끝에서 데이터의 모든 기능을 활용할 수 있도록 지원한다. 이와 함께, SAP의 생성형 AI 어시스턴트 쥴(Joule)이 SAP 애널리틱스 클라우드(SAP Analytics Cloud)와 통합돼 보고서, 대시보드, 계획 등의 제작 및 개발을 자동화한다. 이는 SAP HANA Cloud(SAP HANA Cloud) 벡터 기능을 통해 구현된다. 벡터 기능은 대규모 언어 모델의 성능과 조직의 모든 관련 데이터를 결합해 생성형 AI 결과물에 대한 비즈니스 컨텍스트가 불변수로 유지되도록 지원한다. 신뢰할 수 있고 관리되는 데이터 없이는 비즈니스 전반에 걸쳐 생성형 AI를 통합할 수 없다. SAP는 조직에 AI 정책, 프로세스, 관행을 관리할 솔루션을 제공하기 위해 콜리브라와 파트너십을 확대해 콜리브라의 AI 거버넌스 플랫폼을 SAP 데이터 자산과 통합한다고 발표했다. 이는 조직에 투명성과 책임성을 제공하고 규제, 컴플라이언스 및 개인정보 보호 정책 준수를 돕는다. 한편, 새로운 SAP 데이터스피어 지식 그래프를 통해 조직은 애플리케이션과 시스템 전반에서 숨겨진 인사이트와 패턴을 도출할 수 있다. 이를 통해 기술 및 비즈니스 사용자는 데이터, 메타데이터, 비즈니스 프로세스 간의 관계를 심층적으로 이해할 수 있고, 머신러닝 및 LLM(대규모 언어 모델)의 효율성을 높일 수 있다. 새로운 SAP 데이터스피어와 SAP 애널리틱스 클라우드의 통합은 단일 데이터 관리 시스템과 고급 분석을 통해 조직 간 계획 수립을 강화한다. 계획 수립자는 데이터 준비, 모델링, 계획 수립을 위한 하나의 도구를 사용하는 유연한 단일 모델을 활용하여 계획 간의 사일로를 해소할 수 있다. 또한 SAP 애널리틱스 클라우드의 새로운 나침반 기능은 비즈니스 사용자가 데이터 기반 시뮬레이션을 통해 계획 및 분석에서 더 나은 결과를 실현할 수 있도록 지원한다. 이 기능을 통해 조직은 채팅 인터페이스를 통해 복잡한 시뮬레이션을 실행하여 예측 결과를 평가하고, 제어 가능한 변수를 지속적으로 조정하여 최적의 계획을 찾을 수 있다. 이는 고객이 재무, 운영, 공급망 및 인력 계획을 통합하고 SAP 애플리케이션 및 타사 데이터에 대한 기본 연결을 통해 계획을 혁신하도록 지원한다. SAP의 위르겐 뮐러(Juergen Mueller) 최고기술책임자 겸 이사회 임원은 “양질의 데이터에 의존하는 AI가 비즈니스의 모든 측면을 혁신함에 따라, 더 나은 결정을 내리기 위한 데이터 확보는 기업 기술의 필수 요소로 점점 더 중요해지고 있다”면서, “최신 SAP 데이터스피어 혁신과 콜리브라(Collibra)와의 파트너십 확대는 고객이 데이터를 통해 지능형 비즈니스 혁신을 추진할 수 있도록 지원하는 비약적인 도약을 보여준다”고 전했다.
작성일 : 2024-03-07
지멘스, 생성형 AI로 예측 유지보수 솔루션을 업그레이드
지멘스는 자사의 예측 유지보수 솔루션인 센스아이 예측 유지보수(Senseye Predictive Maintenance)에 새로운 생성형 인공지능(AI) 기능을 추가해, 예측 유지보수를 더욱 직관적으로 만든다고 밝혔다. 지멘스는 생성형 AI 기능이 포함된 센스아이 예측 유지보수의 새로운 릴리스를 통해 머신러닝 기능을 생성형 AI로 강화하면서, 인간과 기계의 상호 작용 및 예측 유지보수를 더욱 빠르고 효율적으로 수행할 수 있도록 지원할 계획이다. 센스아이 예측 유지보수는 인공지능과 머신러닝을 사용하여 기계 및 유지보수 작업자의 행동 모델을 자동으로 생성하고, 사용자의 주의력과 전문 지식을 필요한 곳으로 안내합니다. 생성형 AI 기능은 이에 기반해 모든 기계와 시스템에서 기존 지식을 가져와 올바른 조치 과정을 선택하고, 유지보수 작업자의 효율성을 높일 수 있도록 돕는다.     기계 및 유지보수 데이터는 머신러닝 알고리즘에 의해 분석되며, 플랫폼은 정적이고 독립적인 케이스 안에서 사용자에게 알림을 표시한다. 센스아이 예측 유지보수는 설정이 거의 필요 없는 대화형 사용자 인터페이스(UI)로 더욱 높은 유연성과 협업을 제공한다. 인터랙티브 대화는 사용자, AI, 유지보수 전문가 간의 대화를 촉진하고, 의사 결정 프로세스를 간소화하는 동시에 효율적으로 만든다. 이 앱에서 생성형 AI는 여러 언어로 된 사례를 스캔하고 그룹화할 수 있으며, 과거의 비슷한 사례와 해결책을 찾아 현재의 문제에 대한 맥락을 제공할 수 있다. 또한 다양한 유지 관리 소프트웨어의 데이터를 처리할 수 있다. 보안을 강화하기 위해 모든 정보는 외부 액세스로부터 안전하게 보호되는 프라이빗 클라우드 환경에서 처리되며, 외부의 생성형 AI를 학습시키는 데 사용되지 않는다. 또한, 간결한 유지보수 프로토콜과 이전 사례에 대한 메모도 고려하여 고객사 내부의 지식을 향상시키는데 도움을 주며, 정보를 맥락화함으로써 효과적인 유지 관리 전략을 도출할 수 있게 한다. 지멘스의 마르게리타 아드라그나(Margherita Adragna) 디지털 산업 고객 서비스 부문 CEO는 “머신러닝, 생성형 AI, 인간 인사이트의 힘을 활용하여 센스아이 예측 유지보수를 한 단계 더 발전시켰다. 새로운 기능은 예측 유지보수를 더욱 대화적이고 직관적으로 만들어, 고객이 유지보수 프로세스를 간소화하고 생산성을 높이며 리소스를 최적화할 수 있도록 지원한다. 이는 기술 인력 부족에 대응하고 고객의 디지털 전환을 지원하는 데 있어 중요한 이정표가 될 것”이라고 전했다. 서비스형 소프트웨어(SaaS) 솔루션으로 제공되는 센스아이 예측 유지보수의 새로운 생성형 AI 기능은 올봄부터 모든 센스아이 사용자에게 제공될 예정이다. 
작성일 : 2024-02-16
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(SPHere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
구조 해석 소프트웨어, LS-DYNA
주요 CAE 소프트웨어 소개 ■ 개발 : Livermore Software Technology, www.lstc.com ■ 자료 제공 : 한국시뮬레이션기술, 031-903-2061, www.kostech.co.kr LS-DYNA는 대변형(Large deformation)이 발생하고 복잡한 비선형 소재특성(Non-linear Material)과 복잡한 접촉(Complex Contact) 조건의 구조 역학 문제에 대한 동적 거동 물리현상을 해석하는데 적합한 프로그램이다.  이러한 복잡한 문제를 매우 짧은 시간에 해결할 수 있도록 데스크톱 컴퓨터 및 클러스터의 리눅스, 윈도우 및 유닉스 환경에서 실행되는 SMP(Symmetric Multi Processing) 및 MPP(Massively Parallel Processing) Solver를 제공하고 있다. 1. 주요 특징 LS-DYNA의 ‘One model’ 및 ‘One Code’ 개념과 기능을 통해 사용자는 하나의 시뮬레이션 모델을 구조, 유체, 충돌 및 고유값 시뮬레이션을 비롯한 여러 유형의 시뮬레이션에 적용할 수 있다. 뿐만 아니라 ‘Multi-Physics’, ‘Multi-Processing’, ‘Multiple Stages’, ‘Multi-Scale’이 필요한 문제를 하나의 코드로 결합하여 원활하게 해결할 수 있는 기능을 제공하고 있다.  LS-DYNA는 explicit와 explicit의 시간 증분 방식 간의 상호 호환이 가능하며 열연성해석(coupled thermal analysis), CFD(Computational Fluid Dynamics),FSI(fluid-structure interaction) SPH(Smooth Particle Hydrodynamics), EFG(Element Free Galerkin), CPM(Corpuscular Method), BEM(Boundary Element Method)과 같은 이질적인 분야를 결합할 수 있다.   2. 주요 활용 분야 LS-DYNA에서 제공하는 이러한 다양한 솔루션 및 기능은 여러 분야에서 활용되고 있으며, 대표적인 해석 분야는 다음과 같다. ■ Crashworthiness/ Driver Impact / Drop test simulation ■ Mesh Free Method : ALE, EFG, SPH, Airbag particle ■ Heat Transfer Analysis ■ Metal Forming Analysis ■ Earthquake Engineering ■ Acoustic / Vibration / Fatigue ■ Discrete element method ■ CFD(incompressible, compressible) ■ EM(Electromagnetism)   3. 제품 구성 (1) LS-DYNA Solver LS-DYNA는 사용자의 다양한 사용환경에 맞추어 LS-DYNA Solver를 사용할 수 있도록 여러 플랫폼의 Solver를 제공하고 있다. 윈도우의 경우 기존의 LS-DYNA Manager뿐만 아니라 MPP 환경도 제공하는 Winsuit을 제공하고 있으며, 리눅스와 유닉스의 경우 OS와 MPI 플랫폼 환경에 따라 각각 별도의 Solver를 제공하고 있다. (2) LS-PrePost  LS-PrePost는 키워드 입력 파일을 기반으로 LS-DYNA 모델을 가져오고 편집하고 내보내는 등의 기능을 통하여 LS-DYNA의 입력 파일을 편집하는 Preprocess 전문 툴이다. 동시에 LS-DYNA의 해석 결과를 불러들여 3차원 애니메이션, 응력과 변형류의 시간 이력, XY Plot 등등 LS-DYNA의 해석 결과를 다양한 방법으로 확인할 수 있는 GUI를 제공하고 있다.  (3) LS-OPT LS-OPT는 LS-DYNA의 최적화 도구로서 디자인 스페이스를 쉽게 조사하고 최적 디자인을 찾는 환경을 제공한다. 또한, 문제 정의 시스템을 위한 솔루션도 함께 제공한다. LS-OPT는 SRSM(Successive Response Surface Method)과 통계학적인 접근(Robustness analysis)에 기반하고 있다.    (4) LS-TaSC LS-TaSC는 토폴로지 및 형상 계산 툴이다. LS-TaSC는 동적 하중 및 접촉 조건이 관련되어 있는 비선형 문제들의 토폴로지 최적화를 가능하게 한다. (5) LSTC Dummy / Barrier Model LS-DYNA 개발사에서는 LS-DYNA 사용자의 비용 절감을 위해서 다양한 종류의 Dummy Model과 Barrier Model을 제공하고 있다. 이들 모델은 주기적으로 업데이트되어 기존 모델의 변경 사항을 반영하고 새로운 모델을 출시하고 있다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-25
오토데스크, 산업 클라우드 플랫폼에 추가될 ‘오토데스크 AI’ 소개
오토데스크가 연례 행사인 ‘오토데스크 유니버시티(AU) 2023’을 열고, 향후 제공될 새로운 혁신 기술인 오토데스크 AI(Autodesk AI)를 공개했다. 오토데스크 AI는 오토데스크 제품에서 사용 가능하며 디자인&메이크(Design&Make) 플랫폼에 기본으로 탑재되어 있다. 오토데스크의 디자인&메이크 플랫폼은 포마(Autodesk Forma), 퓨전(Autodesk Fusion), 플로우(Autodesk Flow) 등 세 가지 산업 클라우드와 오토데스크 플랫폼 서비시스(Autodesk Platform Services)로 구성되어 있으며 산업 간 데이터와 워크플로를 통합한다.  오토데스크 AI는 세계를 디자인하고 만드는 산업 전반에 걸쳐 창의성을 발휘하고 문제를 해결하며 비생산적인 작업을 방지하는 데 도움을 준다. AU 2023에서 소개된 오토데스크 AI의 주요 기능으로는 ▲프로젝트 문서 및 도면을 자동화하는 툴 ▲프로그래밍 시간을 줄이는 CNC 툴패스 생성 ▲건설 환경의 모든 프로젝트에 있어 필수 요소를 안내하는 머신러닝 ▲미디어 제작 일정 관리 ▲장면 조작 등이 있다. 또한 오토데스크는 디자인&메이크 플랫폼의 성능을 시연하기 위해 마블 스튜디오의 영화 ‘더 마블스(The Marvels)’에서 영감을 얻어 제작한 광고를 소개했다. 이 광고는 미국 라스베이거스의 명소로 꼽히는 구 형태의 공연장인 ‘스피어(SPHere)’에서 송출된다. 오토데스크와 마블 스튜디오는 시각 효과 스튜디오인 더 밀(The Mill)과의 협력 아래, 마야를 활용해 광고를 디자인하고 제작했다.     오토데스크는 자사의 플랫폼에 AI 중심의 데이터 주도 방식을 적용하여 혁신적인 솔루션을 빠르고 광범위하게 제공하며, 고객을 위해 전례 없는 진보와 돌파구를 만들어 나간다는 비전을 밝혔다. 오토데스크의 앤드류 아나그노스트(Andrew Anagnost) CEO는 “작업을 올바르게 수행한 AI는 아무도 상상하지 못한 능력을 발휘하게 하는 변혁적인 힘을 지니고 있다”면서, “AU 2023을 통해 어떻게 AI를 현실로 구현하고 디자인&메이크 플랫폼이 우리를 새로운 시대로 이끌고 있는지 공개하고자 한다”고 말했다. 오토데스크코리아의 김동현 대표는 “오토데스크는 미래의 디자인&메이크 산업을 선도하는 기업으로서 세계를 구성하는 모든 분야에서 효율적인 업무 수행을 지원하기 위해 오토데스크 AI를 도입했다”면서, “오토데스크 AI를 통해 고객들이 다양한 분야에서 높은 수준의 생산성을 달성하는 데 기여할 것”이라고 전했다.
작성일 : 2023-11-17
리커다인 2024 : 솔버 성능과 접촉 해석 속도 향상된 다물체 동역학 해석 소프트웨어
개발 및 공급 : 펑션베이 주요 특징 : 지속적인 솔버 개발을 통해 Static 솔버의 수렴성 향상, 접촉 해석 속도 향상, FFlex Static 신규 출시, Linked Assembly 툴킷 신규 출시, 지오메트리의 관계에 따른 메시 자동 업데이트, 부력 및 Gap Force 추가, 유연체 간 열전달 계산, Pre-Stress가 적용된 셸 요소 생성, DriveTrain 개선 등 사용 환경(OS) : 윈도우 10/11(64비트)     2023년 11월 출시된 리커다인(RecurDyn) 2024는 지난 리커다인 2023에서 2년여의 지속적인 연구 개발을 통해 N-R Static 솔버 성능과 접촉 해석 속도가 향상되었다. 이번 리커다인 2024에서도 지속적인 솔버의 연구 개발을 통해 Static 솔버의 수렴성이 개선되었으며, 접촉 성능 또한 향상되었다. 이러한 솔버 성능 개선을 통해 유연체를 포함한 MFBD(Multi Flexible Body Dynamics) 모델의 정적 해석을 수행하는 기능인 FFlex Static이 새롭게 추가되었다. 또한, 새로운 힘 요소인 부력과 Gap Force가 추가되었으며, 유연체 간 열전달을 계산할 수 있는 Thermal Contact도 새롭게 추가되었다. 그리고 일반 CAD 지오메트리를 이용하여 체인, 무한궤도, 고무트랙, 벨트, 케이블 체인과 같은 어셈블리를 손쉽게 모델링하고 해석할 수 있는 Linked Assembly 툴킷이 새롭게 추가되었다.   솔버 기능 강화 Static 솔버 개선 및 FFlex Static 리커다인 솔버는 매 버전마다 개선을 거듭하고 있다. N-R Static 솔버의 경우 최근 3년여의 연구 개발을 통해 성능이 대폭 향상되었다. 안정적이고 정확하게 정적 평형상태를 계산할 수 있으며, 강체와 RFlex 보디(Modal method)는 물론 FFlex 보디(Nodal method)가 포함된 비선형 MFBD 모델의 정적 해석 수렴성도 대폭 강화되었다.     특히, FFlex 보디가 포함된 모델의 정적 해석을 수행할 수 있는 FFlex Static이 새롭게 추가되어 유연체에 대한 구조 해석을 통해 정적 상태의 변형 및 응력 확인이 가능하며, FFlex 보디의 Self-Contact는 물론 다른 보디 간의 접촉까지 고려한 MFBD 모델의 정적 해석을 지원한다. 또한, 유연체의 변형된 형상이 필요한 경우, 정적 해석과 Extract 기능을 활용하면 손쉽게 변형된 형상을 만들 수 있다.     이를 통해, 자동차, 굴착기와 같은 모델의 초기 평형 상태를 사전에 계산함으로써, 해석 속도와 정확도를 개선하고 동적 조건을 고려하기 전 정적 해석을 이용한 사전 튜닝을 통해 전체적인 해석 시간을 절감할 수 있다. 또한, 관성의 효과가 작은 모델의 경우 준정적 해석(quasi-static analysis)을 이용하여 모델의 거동을 빠르게 확인할 수 있으며, 시스템의 가동 범위(range of motion)나 보디 간의 간섭을 정적 해석으로 예측할 수 있다.     접촉 해석의 다중 프로세서 처리 확대 다중 프로세서 처리(SMP) 지원과 알고리즘 개선을 통해 대폭 향상된 성능을 보여준 기존 Geo Surface Contact 요소에 이어, 이번 리커다인 2024에서는 Geo SPHere/Cylinder/Curve(3D, 2D)/Circle(2D) Contact 요소까지 다중 프로세스 처리를 확대 지원하게 되었다. 리커다인 2024에서 별도의 모델 수정 없이 향상된 접촉 성능이 적용된다.   ▲ SMP를 통한 접촉 해석 성능 향상   또한, 커브(curve)의 3차원 접촉 모델링에 최적화된 Geo Curve 3D와 Geo SPHere to Curve 3D가 새롭게 추가되어 빔(beam) 케이블이나 베어링과 같이 커브 혹은 서클(circle) 형상을 가지는 기계 부품의 3차원을 고려한 접촉해석을 더욱 빠르고 정확하게 수행할 수 있다.   ▲ 빔 케이블의 접촉 모델   MFBD 기능 강화 Thermal Contact 유연체의 열전도에 의한 열응력을 MFBD 해석에 실시간으로 적용할 수 있는 FFlex Thermal 기능에 Thermal Contact가 새롭게 추가되었다. Thermal Contact는 전도에 의한 두 유연체 사이의 열전달을 계산하는 기능이다. 이 기능을 통해 서로 다른 부품 간 열전도, 열팽창 및 열응력을 고려할 수 있다. 예를 들어 모터와 같이 회전자에 열에너지가 발생하고 고정자로 전달되는 경우를 Thermal Contact 기능을 이용하여 모델링하고 결과를 확인할 수 있다.   ▲ Thermal Contact를 활용한 열전도 모델   지오메트리 연결 관계를 통한 메시 자동 업데이트 리커다인 2024에서는 메셔(Mesher)에 Surface Mesh 기능을 추가하고 기능을 강화하여 기존 지오메트리 연결관계에 따른 형상 자동 업데이트 기능을 메시에도 확장 적용하였다. Surface Mesh를 통해 생성한 셸 요소를 기반으로 솔리드(solid) 요소를 생성하면 커브 형상 등의 기반이 되는 지오메트리 수정을 통해 솔리드 요소까지 자동으로 업데이트할 수 있다.     셸 요소의 Pre-Stress 리커다인 2024에서는 손쉽게 Pre-Stress가 적용된 셸 요소를 생성할 수 있게 되어 복잡한 형상의 메시에도 Pre-Stress를 적용할 수 있게 되었다. 이 기능을 통해 모델링 시간도 크게 줄일 수 있다.   ▲ Pre-Stress가 적용된 웹 핸들링 모델   Professional(MBD) 기능 강화 Buoyancy Force(부력) 부력을 계산할 수 있는 Buoyancy Force가 새롭게 추가되었다. 수면 및 유속 방향의 기준 좌표와 부력 대상이 될 보디를 선택하여 부력을 적용할 수 있으며, 강체와 유연체에 모두 적용할 수 있다. 또한, 부력 계산을 위한 다양한 유체 속성 정보를 설정할 수 있으며, 시간에 따라 유속 크기가 변화하는 것도 표현할 수 있다.   ▲ 부력을 적용한 해상 크레인 모델   CFD 연성 해석을 수행하지 않고도 부력을 적용할 수 있기 때문에, 복잡한 유동은 고려할 필요 없이 부력만 적용하면 되는 모델을 빠르게 시뮬레이션할 수 있다.   Gap Force 보디와 보디 사이에 사용자가 지정한 간격을 유지하도록 두 보디 양쪽에 힘을 가하는 Gap Force 요소가 새롭게 개발되었다. 각 보디의 위치 및 자세가 변경되어 사용자가 지정한 간격보다 커지거나 작아지면 지정된 간격을 유지하도록 Action Body에 힘이 가해진다. Gap Force를 이용하여 공력이나 자력에 의해 부품이 떠 있는 모델을 만들어 시뮬레이션할 수 있다. 예를 들어, 에어 베어링이나 마그네틱 베어링으로 부품 간의 접촉을 방지한 리니어 가이드 등을 모델링할 수 있다.   ▲ Gap Force를 이용한 리니어 가이드 모델   툴킷 기능 강화 Linked Assembly 리커다인 2024에서 새롭게 추가된 Linked Assembly는 일반 CAD 지오메트리를 이용하여 체인(Chain), 무한궤도(Caterpillar), 고무트랙(Rubber Track), 벨트(Belt), 케이블 체인(Cable Chain) 같은 어셈블리를 생성할 수 있는 모델링 자동화 및 해석 툴킷이다. 어셈블리를 생성할 때 Contact, Force와 같은 연결 관계도 자동화 기반으로 쉽게 생성할 수 있다. 이를 통해 다양한 형상 또는 더욱 정밀한 형상으로 어셈블리 시스템을 만들고 동역학 해석을 할 수 있다.     또한, Assembly Body의 특정 부분이나 Passing Body, Guide를 손쉽게 유연체로 변환하고 MFBD 해석도 수행할 수 있다.     DriveTrain 개선 DriveTrain에 내장된 KISSsoft가 최신 버전으로 업그레이드되어 향상된 KISSsoft 기능을 활용할 수 있다. 또한 선기어를 제외한 유성기어를 모델링할 수 있도록 개선되었으며, KISSsoft의 Z70(베벨 기어)과 Z80(웜 기어)의 CAD 형상을 생성할 수 있다.   ▲ 선기어를 제외한 유성기어 모델   그리고 랙&피니언(rack&pinion)에 대한 Involute Contact를 지원한다. 이를 통해 보다 빠른 접촉 해석이 가능하게 되었으며, 필요한 기어쌍의 접촉만을 계산함으로써 효율적인 해석을 수행하는 것도 가능해졌다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-11-02
[무료기사] 입자와 함께 하는 유동해석, 앤시스 로키와 함께하는 SPH 소개부터 활용까지
앤시스 워크벤치를 활용한 해석 성공 사례   SPH는 라그랑지언(Lagrangian) 기법을 활용한 유동해석 방법으로, 자유표면이 있는 다상유동해석에 적합하다. 앤시스 2022 R2 버전의 첫 소개 이후 신규 버전이 나올 때마다 업그레이드되고 있는 앤시스 로키(Ansys Rocky)의 SPH 기능을 통해, 플루언트(Ansys Fluent)가 없어도 DEM-CFD 커플링 해석이 가능해졌다. 이번 호에서는 DEM-CFD 커플링(coupling) 해석에 대한 새로운 접근 방법을 통해 기존과의 차이점, SPH 소개 및 설정 방법, 활용 예를 알아보자.    ■ 박성근 태성에스엔이 유동 1팀 수석매니저로 유동 및 입자해석에 대한 기술 지원을 담당하고 있다. 이메일 | sgpark@tsne.co.kr 홈페이지 | www.tsne.co.kr   “플루언트가 없는데… 로키로 DEM-CFD 커플링이 가능하다고요?” 아직 해당 방법을 모르는 분들께 종종 듣는 말이다.  SPH(Smoothed Particle Hydrodynamics)는 앤시스 로키 2022 R2 버전에서 정식으로 출시된 유동해석 방법으로, DEM-CFD 커플링 해석도 가능하다. 먼저 기존 DEM-CFD 커플링 방법은 크게 ▲LBM ▲1-Way Constant ▲1-Way Fluent Steady ▲1-Way Fluent Transient ▲2-Way Fluent ▲Semi-Resolved(2-Way Fluent)로 나누어진다. 여기에 로키에 새롭게 추가된 유동 해석 방법인 SPH로 플루언트 없이 DEM-CFD 커플링 해석이 가능하게 된 것이다.  SPH의 장점은 CPU와 GPU 모두 사용 가능하고 특히 멀티 GPU를 이용할 경우 매우 빠른 해석이 가능하다는 것이다. 또한 다상 해석의 경우 일반 CFD 대비 하나의 상만 해석을 하기 때문에 해석 시간을 크게 감소시킬 수 있다. 이번 호에서는 SPH에 대한 소개와 설정 방법, 그리고 활용 예에 대해 알아보고자 한다.    SPH란? 로키의 SPH는 LBM처럼 내장된 유동해석 방법으로, 비압축성 유동의 weakly compressible에 적합하여 mach number가 0.1보다 작을 때 유리하다. 일반적인 CFD와 달리, SPH는 라그랑지언 기법을 이용해 격자 생성이 필요 없는 해석으로 로키의 DEM 해석방법과 유사하다. 이때 SPH 요소는 유체의 물리적 특성을 갖기 때문에, 압력 및 점성력을 통해 이웃 요소와 상호 작용하는 작은 유체 조각으로 정의할 수 있으며, 불규칙한 간격을 가지는 노드 점의 유한 집합으로 나비에-스토크스(Navier-Stokes) 방정식을 해결하기 위한 보간점(interpolation point)으로 사용된다. 이러한 SPH는 자유표면이 있는 다상 유동 및 SPH-DEM 커플링 해석에 적합하기 때문에 slurry mill, sloshing, wave breaker 해석이 가능하며, 표면 장력을 고려할 경우 spray, washing machine 해석에 적용할 수 있다. <그림 1>은 slurry mill로 SPH-DEM 커플링 해석을 이용한 예이다.   그림 1. SPH-DEM 커플링 해석 예   이러한 커플링 해석의 경우 DEM 입자가 SPH 요소 크기보다 매우 커야 하며, <그림 2>와 같이 DEM 입자 내부에 SPH 요소를 배치하여 솔리드(solid)-플루이드(fluid)간 상호작용을 처리한다. 이때 내부 SPH 요소는 연관된 인공질량, 밀도 및 속도를 가지며, 입자 표면에서 미끄럼 방지조건을 충족할 수 있게 모델링되어 있다.   그림 2. DEM 입자 내 SPH 요소   그렇다면 SPH의 장점은 무엇일까? 앞서 말했듯 SPH는 CPU와 GPU 모두 사용 가능하며, 특히 멀티 GPU를 이용할 경우 매우 빠른 해석이 가능하다. 또한 다상해석의 경우 일반 CFD 대비 하나의 상만 해석을 하기 때문에 해석 시간을 크게 줄일 수 있다.  이 기능은 로키에 내장되어 있어 다양한 모션과 같이 사용할 수 있기 때문에, 플루언트보다 넓은 분야에 대한 유동 해석이 가능하다. 다만, 라그랑지언 기법을 이용하여 SPH 요소의 위치를 각 시간별로 저장하기 때문에 HDD의 용량이 많이 필요하다는 주의점이 있다.   SPH 설정 방법 이제 SPH 해석을 위한 물성치 및 입/출구 조건, 설정방법에 대해 알아보자.   SPH Fluid Materials  SPH는 하나의 유체 물성만 설정하여 사용할 수 있다. 예를 들어 물과 공기 두 개의 상이 존재할 때 SPH는 물의 거동만 해석하고, 나머지 영역은 공기로 가정한다. <그림 3>과 같이 기본값은 water의 물성치로 설정되어 있으며, 열전달 모델을 활성화할 때 열전도도와 비열을 설정할 수 있다. Sound Speed는 일반적인 유체에서의 Sound Speed를 의미하는 것은 아니며, 해석 영역 내 최대 속도보다 10배 이상의 값을 사용하는 것을 권장한다. Sound Speed는 Time Step Size의 결정에 영향을 미친다.   그림 3. Material 내 Default Fluid 설정     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-10-05
[케이스 스터디] 제조 업계의 디지털 트윈 기반 인터랙티브 마케팅
고객 참여 확대부터 시장 출시 단축까지 실시간 3D 기술의 효과를 얻는 방법   디지털 전환, 4차 산업혁명, 사물인터넷, 실시간 3D 등 제조 부문은 엄청난 변화를 겪고 있다. 인터랙티브 기술은 혁신에 힘입어 작업 현장뿐만 아니라 고객이 제품을 검색하고 구매 결정을 내리는 과정에서도 분명한 영향을 미치고 있다. 이 글에서는 제조 부문에서 마케팅에 성공하기 위해 인터랙티브 디지털 트윈 기술이 반드시 필요한 이유 다섯 가지를 설명한다. ■ 자료 제공 : 유니티 코리아     잠재 고객의 참여 유도 몰입감 높은 맞춤화 경험을 제공해 고객이 제작 프로세스에 참여하도록 유도할 수 있다. 시간을 들여 원하는 사양에 맞게 제품을 직접 테스트하고 구성해 보는 고객은 제품에 애착을 느끼게 된다. 처음부터 고객이 참여하도록 하여 브랜드와 제품에 대한 고객의 유대감을 높일 수 있다. iXtenda의 벤저민 브로스티안(Benjamin Brostian) CEO는 “마케팅에서 경쟁업체보다 한발 앞서는 것은 엄청난 가치를 지닌다. 디지털 트윈 실시간 3D 기술을 사용하면 구매자가 제품을 구매하기 전과 구매를 진행하는 동안 시각적 진실성과 개인적 경험의 가치를 더할 수 있다”고 전한다. 복잡한 기계 산업의 B2B(Business-to-Business) 구매자가 자신에게 필요한 제품을 시각화하기는 쉽지 않다. 기존에는 제품 옵션이 2D 이미지 또는 평면도만 제공되었다. 하지만, 이제는 고객이 인터랙티브 3D 컨피규레이터를 사용해 제조가 시작되기도 전에 새로운 기계 제품을 구상하고 계획할 수 있다. 목공 기계 제조업체 호막(HOMAG)은 Live.HOMAG 가상 쇼룸을 제작했다. 호막은 구매자가 35종이 넘는 기계를 확인하고, 다양한 설정을 적용해 보고, 교육 동영상을 시청하고, 웨비나에 접속하고, 기계별 교육 정보를 참조하고, 제품 웹 페이지로 바로 이동할 수 있는 가상 월드를 만들었다.   ▲ 이미지 제공 : 호막 및 iXtenda   옴니채널 마케팅 이용 B2B 구매자들은 소파를 구매하는 것처럼 편하게 기계를 업그레이드하거나 확장하고 싶어 한다. 고객이 이미 온라인으로 쇼핑하고 있다면 여러분도 온라인에 있어야 한다. 바로 이 지점에서 디지털 트윈 기반 인터랙티브 3D 마케팅 경험이 빛을 발한다. 실시간 3D 기술을 사용하면 옴니채널 제품 컨피규레이터를 설정해 모바일, 데스크톱, WebGL, AR(증강현실), VR(가상현실) 등 원하는 플랫폼에 배포할 수 있다. 어느 온라인 공간에서든 여러분의 기업을 발견한 고객은 기계 액세서리, 부품 레이아웃, 브랜딩 요소 등을 다양하게 조합해 볼 수 있다. 유니티로 만든 TIMI는 GX7 스키드 로더의 포괄적인 인터랙티브 제품 설정 데모이다. 이 컨피규레이터는 모바일, 데스크톱, WebGL을 포함해 여러 플랫폼과 기기에서 실행된다.   ▲ GX7 스키드 로더 제품 컨피규레이터 동영상   브랜드 정체성 유지 브랜드 정체성은 귀중한 자산이다. 브랜드를 보호하고 온라인 입지를 강화하려면 높은 품질로 온전하게 제품을 표현해야 한다. 제품의 설계 데이터를 기반으로 삼으면 해당 제품의 디지털 트윈을 정확하게 제작할 수 있다. 유니티 인더스트리(Unity Industry)및 픽시즈(Pixyz) 같은 데이터 가공 툴을 사용하면 기존 제품 데이터와 배리언트를 임포트하여 컨피규레이터 애셋과 경험을 더 쉽게 제작할 수 있다. 이렇게 하면 제품의 마케팅용 디지털 트윈을 정확하게 제작할 수 있으며, 설계 모델의 변경 사항을 온라인 컨피규레이터로 간편하게 적용할 수도 있다.   ▲ 픽시즈 스튜디오(Pixyz Studio)로 탐사선 모델 데이터를 최적화   고객 이해도 향상 비즈니스 성공의 핵심은 잠재 고객과 현재 고객의 행동에 대한 인사이트를 제공하는 데이터이다. 맞춤형 마케팅 경험을 제공하면 고객이 제품과 상호 작용하는 과정에서 드러나는 선호도 정보를 수집할 기회도 만들어진다. 제품 컨피규레이터를 통해 옵션을 제시하고 컨피규레이터 데이터를 판매 전환에 활용하면 소비자 행동에 대한 인사이트를 얻을 수 있다. 그렇게 얻은 정보에 따라 마케팅 캠페인을 조정하면 고객이 올바른 구매 결정을 내리는 데 필요한 콘텐츠를 제공할 수 있다.     시장 출시 기간 단축 마케팅 콘텐츠 제작을 설계 워크플로에 바로 통합하면, 마케팅 자료를 더 신속하게 제작하고 제품을 더 빠르게 출시할 수 있다. 실시간 3D 판매 및 마케팅 솔루션을 사용하면 설계 팀이 제품 제조에 사용하는 것과 동일한 모델을 바탕으로 마케팅 팀이 제품을 정확히 반영하는 최신 비주얼 애셋을 제작할 수 있다. 그러면 실물 프로토타입을 촬영장으로 운반할 필요가 없게 된다. 한 소비자 가전제품 기업은 실시간 3D 디지털 트윈 기술을 사용해 설계 및 마케팅 워크플로를 통합했다. 이를 통해 기존 프로세스를 사용할 때보다 2.5개월 더 빠르게 제품을 시장에 출시할 수 있었다. 디지털 트윈은 더 이상 자동차 제조업체와 고급 소매 브랜드만의 전유물이 아니다. 제조 기업도 마케팅 성과를 높이기 위해 디지털 트윈을 사용할 수 있다. 제조업체는 이 몰입형 기술로 기존 제품 데이터를 사용해 3D 제품 컨피규레이터와 같은 디지털 애셋을 만들고, 마케팅 콘텐츠를 더 효율적으로 제작하고, 시장 출시 기간을 단축하며, 소비자 참여도를 높일 수 있다.       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-10-04