• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "SDK"에 대한 통합 검색 내용이 423개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
어도비, 기업의 고객 경험 오케스트레이션 혁신을 지원하는 AI 에이전트 정식 출시
어도비가 기업의 고객 경험 및 마케팅 캠페인 구축, 전달, 최적화 방식을 혁신적으로 바꿀 AI 에이전트(AI Agents)의 정식 출시를 발표했다. 또한 어도비는 익스피리언스 플랫폼(Adobe Experience Platform : AEP) 에이전트 오케스트레이터(Agent Orchestrator)를 통해, 자사 및 서드파티 생태계 전반에서 에이전트가 맥락을 파악하고, 여러 단계의 작업을 계획하며, 응답을 개선하는 등 다양한 기능을 수행할 수 있도록 에이전트를 맞춤화, 관리하는 기업용 AI 플랫폼도 구축하고 있다고 밝혔다. 에이전트 오케스트레이터의 토대가 되는 어도비 익스피리언스 플랫폼은 기업들이 전사적으로 실시간 데이터를 연결해 기업 데이터, 콘텐츠, 워크플로에 대한 심층적인 인사이트를 제공하는 플랫폼이다. 어도비 익스피리언스 플랫폼 고객의 70% 이상이 어도비 및 서드파티 전반의 에이전트와 팀이 상호작용할 수 있도록 지원하는 대화형 인터페이스인 어도비의 AI 어시스턴트를 사용하고 있다. 허쉬 컴퍼니, 레노버, 머클, 웨그먼스 푸드 마켓, 윌슨 컴퍼니 등의 브랜드가 어도비의 에이전틱 AI 설루션을 사용해 조직 내 전문성을 강화하고 영향력 있는 고객 경험을 제공하고 있다.     어도비 익스피리언스 플랫폼 에이전트 오케스트레이터는 의사결정 과학 및 언어 모델 기반의 추론 엔진을 탑재해, 동적 및 적응형 추론도 지원한다. 자연어 프롬프트에서 사용자의 의도를 해석하고, 전체적으로 조율된 계획에 따라 어떤 에이전트를 활성화할지 상황에 맞춰 결정한다. 그 결과 에이전트 오케스트레이터는 맥락에 맞게 목표를 이룰 수 있도록 자동화 작업을 수행하고, 사람이 개입하는 방식을 사용해 세부 조정도 지원한다.  ▲오디언스 에이전트(Audience Agent ▲저니 에이전트(Journey Agent) ▲익스페리멘테이션 에이전트(Experimentation Agent) ▲데이터 인사이트 에이전트(Data Insights Agent) ▲사이트 옵티마이제이션 에이전트(Site Optimization Agent) ▲프로덕트 서포트 에이전트(Product Support Agent) 등의 AI 에이전트는 어도비 실시간 고객 데이터 플랫폼(Adobe Real-Time Customer Data Platform : RT-CDP), 어도비 익스피리언스 매니저(Adobe Experience Manager), 어도비 저니 옵티마이저(Adobe Journey Optimizer), 어도비 커스터머 저니 애널리틱스(Adobe Customer Journey Analytics) 등 어도비 엔터프라이즈 애플리케이션 내에서 직접 사용할 수 있다. 기업은 AI 에이전트를 활용해 마케터의 역량을 강화하고 고객 경험 오케스트레이션(CXO)를 가속화할 수 있다. 출시를 앞둔 익스피리언스 플랫폼 에이전트 컴포저(Experience Platform Agent Composer)는 기업이 브랜드 가이드라인, 조직 정책 관리 등에 기반해 AI 에이전트를 맞춤화하고 구성할 수 있는 단일 인터페이스를 제공한다. 이를 통해 팀은 AI 에이전트 작업을 세밀하게 조정하고 성과를 가시화하는 시간을 단축할 수 있다. 또 에이전트 SDK(Agent SDK) 및 에이전트 레지스트리(Agent Registry)를 포함한 새로운 개발자 툴을 통해 개발자는 에이전틱 애플리케이션을 구축, 확장 및 조율할 수 있게 돼, 새로운 산업과 사용자 페르소나에 맞춰 사용 사례를 확장할 수 있다. 팀이 더 나은 성과를 내기 위해 에이전틱 AI를 도입함에 따라, 서로 다른 생태계에 속한 AI 에이전트 간 상호운용성은 매우 중요하다. 에이전트 컴포저는 기업이 Agent2Agent 프로토콜을 사용해 여러 에이전트의 협업을 추진할 수 있는 툴을 제공한다. 특정 요구사항을 충족하는 맞춤형 역량을 통해 더 많은 워크플로에 걸쳐 에이전틱 AI의 가치를 확장시킨다. 또한 코그니전트, 구글 클라우드, 하바스, 메달리아, 옴니콤, PwC, VML과의 새로운 에이전틱 AI 파트너십을 통해 에이전트 간 워크플로의 원활한 실행과 다양한 산업 및 사용 사례에 걸친 맞춤화도 가능해졌다. 안줄 밤브리(Anjul Bhambhri) 어도비 익스피리언스 클라우드 엔지니어링 수석 부사장은 “어도비는 오랫동안 디지털 데이터를 실행 가능한 인사이트로 전환함으로써, 기업들이 고객에게 매력적인 경험을 제공하도록 지원해왔다. 이제 어도비는 에이전틱 AI(Agentic AI)를 활용해 특화된 에이전트를 구축하고, 이를 데이터, 콘텐츠, 경험 생성 워크플로에 내장하고 있다”면서, “어도비의 AI 혁신은 프로세스를 재구상하고 마케팅 팀의 생산성을 높이고, 개인화된 경험을 대규모로 제공해 비즈니스 성장을 촉진함으로써 고객 경험을 향상하고 있다”고 말했다.
작성일 : 2025-09-12
[포커스] AWS, “다양한 기술로 국내 기업의 생성형 AI 활용 고도화 돕는다”
아마존웹서비스(AWS)는 최근 진행한 설문조사를 통해 국내 기업들의 AI 활용 현황과 과제를 짚었다. 또한, 신뢰할 수 있는 고성능의 인공지능 에이전트(AI agent)를 구축하고 배포할 수 있는 환경을 제공하면서 한국 시장에 지원을 강화하고 있다고 밝혔다. AWS는 AI의 도입과 활용 과정에서 기업이 겪는 기술적 어려움을 줄이고, 더 많은 기업이 쉽고 안전하게 생성형 AI를 도입하여 비즈니스 가치를 창출할 수 있도록 돕는 데 집중하고 있다. ■ 정수진 편집장    기업의 AI 도입률 높지만…고도화 위한 과제는?  AWS와 스트랜드 파트너스(Strand Partners)는 2025년 4월 한국 기업 1000곳과 일반인 1000명을 대상으로 AI에 대한 행동과 인식에 대한 설문조사를 진행하고, 그 결과를 바탕으로 한국 기업의 AI 활용 현황을 평가했다. 이 조사는 유럽에서는 3년째 진행되어 왔는데, 이번에 글로벌로 확장해 동일한 방법론을 적용했다. 스트랜드 파트너스의 닉 본스토우(Nick Bonstow) 디렉터는 설문조사 보고서의 내용을 소개하면서, 한국 기업의 AI 도입 현황과 주요 과제를 분석했다. 조사에서는 한국 기업의 48%가 AI를 도입 및 활용하고 있는 것으로 나타났는데, 이는 전년 대비 40% 성장한 수치이다. 유럽 기업의 평균 AI 도입률인 42%보다 높았는데, 특히 지난해에만 약 49만 9000 개의 한국 기업이 AI를 처음 도입한 것으로 추정된다. 본스토우 디렉터는 “AI를 도입한 기업들은 실질적인 이점을 경험하고 있다. 56%가 생산성 및 효율성 향상으로 매출 증가를 경험했고, 79%는 업무 생산성 향상 효과를 확인했다. 그리고 AI 도입에 따라 주당 평균 13시간의 업무 시간을 절감했다”고 소개했다. AI 도입률은 높지만, 국내 기업의 70%는 여전히 챗봇이나 간단한 반복 업무 자동화와 같은 기초적인 수준의 AI 활용에 머무르고 있는 상황이다. AI를 다양한 업무 영역에 통합하는 중간 단계는 7%, 여러 AI 도구나 모델을 결합하여 복잡한 업무를 수행하거나 비즈니스 모델을 혁신하는 변혁적 단계는 11%에 불과했다. 본스토우 디렉터는 “기업들이 AI의 잠재력을 완전히 활용하기 위해 더 높은 단계로 나아가야 할 필요가 있다”고 짚었다. 본스토우 디렉터는 국내 기업의 AI 도입이 양극화되고, AI 혁신의 편차를 키울 수 있다고 전했다. 한국 스타트업의 70%가 AI를 확대하고 있는데 이는 유럽의 58%보다 높은 수치로, 국내 스타트업 생태계는 AI 도입에서 뚜렷한 강점을 보였다. 스타트업의 33%는 AI를 비즈니스 전략 및 운영의 핵심 요소로 두고 있으며, 32%는 가장 고도화된 방식으로 AI를 활용하고 있다. 또한, 21%는 AI 기반의 새로운 제품 및 서비스를 개발 중이다. 반면, 국내 대기업의 69%는 여전히 AI를 효율 개선, 업무 간소화 등 기초적인 수준에서만 활용하고 있는 것으로 나타났다. 대기업의 10%만이 AI 기반 신제품 또는 서비스 개발 단계에 진입했는데, 이는 스타트업의 절반 수준이다. 이번 조사에서는 AI 도입의 주요 장애 요인으로 기술 및 디지털 인재의 부족, 자금 접근성, 규제 환경 등이 꼽혔다. 조사 응답 기업의 43%가 디지털 인재를 확보하지 못해 AI 도입 또는 확산에 어려움을 겪고 있다고 응답했고, 지난 1년간 디지털 역량 교육에 참여한 직원은 약 34%였다. 67%의 기업은 정부의 지원 정책이 AI 도입 결정에 중요하다고 응답했으며, 45%의 스타트업은 벤처 자본 56 · 접근성이 성장을 위한 핵심 요소라고 평가했다. 그리고 국내 기업들은 기술 예산 가운데 평균 23%를 규제 준수 비용에 투입하고 있으며, 34%는 AI 기본법 등 관련 입법으로 인해 이 비용이 증가할 것으로 예상했다. 본스토우 디렉터는 “한국이 AI 부문에서 세계를 선도할 수 있는 인프라와 스타트업 생태계 그리고 강한 열정을 가지고 있음을 확인했다. 하지만 AI 활용의 깊이를 더해주는 변혁적인 활용으로 나아가지 못하고 있는 점과 인재 부족, 규제 불확실성 등의 장애 요인을 해결해야 AI를 미래의 성장 동력과 경쟁력의 원천으로 삼을 수 있을 것”이라고 평가했다. 그리고, 이를 위해 한국 정부가 ▲기술 인재에 대한 투자 ▲혁신 친화적이고 명확한 규제 환경 조성 ▲공공 부문의 기술 현대화 및 디지털 전환 추진 등에 관심을 기울일 것을 제안했다.   ▲ AWS 김선수 AI/ML 사업 개발 수석 스페셜리스트   기업의 생성형 AI 활용 문턱 낮춘다 AWS의 김선수 AI/ML 사업 개발 수석 스페셜리스트는 국내 기업들이 AI를 잘 활용할 수 있도록 돕는 AWS의 생성형 AI 기술 스택과 주요 서비스를 소개했다. 그는 “2023년이 생성형 AI 개념 검증(PoC)의 해였다면 2024년은 생산 적용, 2025년은 비즈니스 가치 실현의 해가 될 것”이라고 짚었다. 또한 복잡한 작업을 자율적으로 수행하는 에이전트 AI에 대한 관심이 커지고 있다면서, 가트너(Gartner)의 전망을 인용해 “2026년까지 기업의 80% 이상이 생성형 AI API(애플리케이션 프로그래밍 인터페이스)를 사용하거나 관련 기능이 탑재된 애플리케이션을 배포할 것”이라고 전망했다. AWS는 생성형 AI를 위한 기술 스택을 세 가지 계층으로 제공한다. 가장 아래쪽에는 GPU, AI 프로세서 등을 포함해 모델 훈련과 추론에 필요한 인프라 레이어가 있고, 중간에는 AI 모델에 연결하여 각 기업에 최적화된 생성형 AI 애플리케이션을 구현하도록 돕는 모델/도구 레이어, 가장 위쪽에는 복잡한 개발 없이 쉽고 빠르게 활용할 수 있는 생성형 AI 애플리케이션 레이어가 있다. 이 기술 스택의 핵심으로 AWS가 내세운 것이 아마존 베드록(Amazon Bedrock)이다. 베드록은 생성형 AI 애플리케이션을 쉽게 구축하고 확장할 수 있도록 지원하는 완전 관리형 서비스이다. 앤트로픽, 메타, 미스트랄 AI 등 12개가 넘는 AI 기업의 파운데이션 모델(FM)을 선택해 활용할 수 있다는 점이 특징이다. 아마존 베드록은 비용, 지연 시간, 정확도를 최적화할 뿐만 아니라 기업의 필요에 맞게 모델을 맞춤 설정하거나 유해 콘텐츠/프롬프트 공격 등을 필터링해 안전한 AI 활용 환경을 갖출 수 있도록 돕는다. 김선수 수석 스페셜리스트는 “베드록은 프롬프트 엔지니어링, 검색 증강 생성(RAG), 미세조정(파인 튜닝) 등 다양한 방식으로 모델을 활용할 수 있도록 지원한다. 특히 RAG 구현을 위한 지식 베이스 및 벡터 검색 기능을 기본으로 제공해, 기업의 내부 데이터를 안전하게 연결하고 관련성 높은 답변을 생성할 수 있다”고 전했다. 최근 생성형 AI는 어시스턴트(assistant)를 넘어 워크플로를 자동화하는 에이전트(agent)로 진화하고 있으며, 궁극적으로는 사람의 개입 없이 AI끼리 자율적으로 협업하는 에이전틱 AI(agentic AI) 시스템으로 나아갈 것으로 보인다. AWS는 생성형 AI 에이전트 구축을 위해 ▲아마존 Q 디벨로퍼(Amazon Q Developer)와 같이 사전 구축된 에이전트 제품 ▲아마존 베드록 에이전트(Amazon Bedrock Agents)와 같이 내장된 오케스트레이션을 제공하는 완전 관리형 설루션 ▲스트랜드 에이전트(Strands Agents)와 같은 경량 오픈소스 SDK(소프트웨어 개발 키트)를 활용해 직접 에이전트를 구축할 수 있는 제품 등을 선보이고 있다.    ▲ AWS는 AI 에이전트의 구축과 배포를 위해 다양한 기술을 제공한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[케이스 스터디] 유니티로 구현된 VR 자동차 수리 학습 경험
게임 기술이 충돌 수리 교육을 혁신하는 방법   이번 호에서는 게임 디자인의 원칙이 충돌 수리 산업과 같은 기업 사용 사례로 원활하게 전환되는 방법, 도전 과제와 해결책, 그리고 자동차 산업을 위한 몰입형 실습 학습 경험을 창출한 성과에 대해 짚어본다. ■ 자료 제공 : 유니티 코리아   마이크 머티스는 비디오 게임 및 음악 산업에서 25년 이상의 경험을 가지고 있으며, 게임 개발이 다양한 기업의 광범위한 응용 프로그램을 어떻게 형성하고 알릴 수 있는지를 이해하고 있다. 프리랜서 비디오 게임 저널리스트로 시작하여 다양한 게임 개발 프로젝트의 프로듀서로 기여하기까지, 그는 항상 게임 산업이 세계에 미치는 파급 효과에 영감을 받아왔다. 오늘날, 이 풍부한 기반은 I-CAR(자동차 충돌 수리 산업 간 회의)에서 그의 역할을 이끌고 있으며, 그는 가상현실(VR)을 사용하여 충돌 수리 교육을 혁신하는 학습 혁신 및 기술 팀을 이끌고 있다.   ▲ 이미지 제공 : I-CAR   게임 시작 : 기업 에디션 I-CAR의 VR 기반 시뮬레이션으로 자동차 교육 커리큘럼을 향상시키기 위한 노력에 참여했을 때, 머티스는 익숙한 느낌을 느꼈다고 한다. 새로운 게임 스튜디오를 설정하는 것과 매우 비슷했지만, 그는 비디오 게임을 출시하는 대신 충돌 수리 산업에서 기술자들이 사용할 수 있는 영향력 있는 교육 도구를 만드는 데 초점을 맞추었다. I-CAR는 충돌 수리의 안전성, 효율성 및 품질을 향상시키기 위해 헌신하는 비영리 조직이다. 1979년 설립 이후 탄탄한 명성을 쌓아왔으며, 골드 클래스 인정 프로그램을 통해 충돌 수리의 우수성에 대한 교육 기준을 설정하고 있어 VR 학습 통합과 같은 미래 지향적인 것을 탐구하기에 적합한 플랫폼이다. 머티스는 “가상 게임 기술과 자동차 수리 세계를 연결하는 복잡성은 내가 기꺼이 도전할 준비가 된 과제였다. 이전 경험과 많은 연구를 바탕으로, I-CAR의 학습 혁신 및 기술 팀의 기초를 구축하는 여정을 시작했다”고 소개했다.   ▲ 유니티 에디터에서 I-CAR VR 충돌 수리 교육 과정을 구축하는 모습(이미지 제공 : I-CAR)   개발 엔진의 선택 올바른 개발 엔진을 선택하는 것은 VR 기반 교육 시뮬레이션을 구축하는 데 있어 중요한 첫 번째 단계였다. 머티스는 “여러 게임 프로젝트에서 다양한 게임 엔진을 실험해본 결과, 게임 엔진 개발의 주력은 거의 20년 동안 유니티였다. 자신의 경험과 함께, 가상현실을 위해 개발하는 다른 회사들과 광범위하게 이야기했으며, 그들 모두가 유니티를 사용하고 있다는 공통점이 있었다”면서, “유니티의 OpenXR 및 Meta XR All-in-One 플러그인과의 통합은 높은 안정성을 보였으며, 엔진의 전반적인 유연성 덕분에 필요할 경우 미래에 다른 SDK로 빠르게 전환할 수 있었다”고 전했다. 또 다른 주요 고려 사항은 유니티 버전 컨트롤(Unity Version Control)이었다. 머티스는 “우리 팀의 많은 구성원이 원격으로 작업하고 있었기 때문에, 프로젝트 백업, 검색 및 개발 워크플로를 관리할 수 있는 강력한 시스템이 필요했다. 변경 사항을 쉽게 롤백하거나 필요에 따라 다양한 개발 경로를 위한 분기를 생성할 수 있는 견고한 버전 관리 시스템이 필수였다”고 설명했다. 그리고 “유니티가 우리의 모든 개발 요구 사항을 충족했기 때문에 선택은 간단했다. 돌이켜보면 그것은 중대한 결정으로 입증되었으며, 우리 팀의 성공과 개발 노력의 지속적인 진전에 중요한 역할을 했다”고 덧붙였다.     VR 혁신가 팀 구성 엔진이 선택된 후, 머티스는 내부 개발 팀을 찾기 시작했다. 유니티 개발자를 찾는 동안, 많은 후보자가 유니티 엔진으로 놀라운 성과를 이루는 것을 보는 것이 인상적이었다고 한다. 머티스는 “게임 산업에 대한 나의 지식과 우리의 교육 목표에 대한 명확한 이해가 게임 산업의 후보자들과 간극을 메우는 데 도움이 되었다. 이 덕분에 그들에게 그들의 개발 기술이 충돌 수리 산업에 있는 사람들을 위한 새로운 흥미로운 학습 방식을 형성하는 데 어떻게 도움이 될 수 있는지를 보여줄 수 있었다”고 전했다. 또한, 머티스는 3D 모델이 정확하고 시각적으로 매력적이도록 하기 위해 3D 모델러를 추가로 고용했다. 우리의 3D 모델러는 이전에 유니티를 사용한 적이 없었지만, 유니티 개발자들과의 협업 및 유니티 런(Unity Learn)의 학습 카탈로그 덕분에 빠르게 3D 자산을 유니티에 가져와 고품질 방식으로 작동시킬 수 있었다. 머티스의 팀은 유니티 개발자, 3D 애니메이터 및 XR 주제 전문가로 구성되었다. 이러한 인재들 덕분에 모든 개발, 경험 정확성, VR 헤드셋 지식 및 중요한 QA 테스트가 면밀히 모니터링되어 프로토타입의 성공을 보장할 수 있었다. 팀이 구성된 후에는 VR 프로토타입이 어떤 콘텐츠를 포함할지, 그리고 그것을 만드는 것이 I-CAR의 잘 확립된 커리큘럼 생성 과정에 어떻게 맞아들어갈지를 구체적으로 계획하는 단계를 거쳤다.   프로토타입 구축 머티스의 팀은 I-CAR의 제품 개발 및 커리큘럼 팀과 협력하여 VR을 그들의 과정 설계 프로세스에 원활하게 통합했다. 이와 함께, 머티스는 기존 개요 및 스토리보드에 맞춘 인터랙티브 단계 시트를 신속하게 개발하여 실제 수리 절차에서 핵심 프로세스 기술을 포착했다. 이 단계 시트는 VR 경험을 위해 유니티에서 작성될 필요가 있는 3D 자산, 상호작용, 소리 및 다른 요소를 추적하는 역할도 했다. 기술에 익숙하지 않은 커리큘럼 팀에 VR을 도입하는 것은 창작만큼이나 교육에 관한 것이었다. VR의 잠재력을 설명하기 위해, 머티스의 팀은 메타 퀘스트 2(Meta Quest 2) 헤드셋에서 사용할 수 있는 작은 프로토타입을 유니티에서 개발했다. 커리큘럼 팀을 위한 이 교육 프로토타입을 개발함으로써 개발 팀은 유니티에서 모든 기본 생산 프로세스를 설정할 수 있었다. 3D 자산을 유니티로 가져오는 방법과 상호작용을 위한 여러 코드 조각을 작성하는 것과 같은 것들로, 머티스의 팀은 주요 프로토타입을 위한 개발 템플릿을 갖게 되었다. 개발된 VR 교육 프로토타입은 커리큘럼 팀 구성원들이 도구와 차량과 상호작용할 수 있게 하여 몰입형 3D 경험의 힘에 대한 직접적인 통찰을 얻을 수 있게 했다. 머티스는 “이 작은 개발은 팀의 참여를 높일 뿐만 아니라 새로운 학습자가 더 복잡한 프로토타입에 뛰어들기 전에 VR에 익숙해질 수 있도록 도와주는 VR 트레이너로 발전한 성과였다. 이 성공은 우리가 실제 프로세스를 자연스럽고 매력적이며 기술자에게 정확한 강력한 가상 경험으로 변환하는 데 집중할 수 있게 해주었다”고 설명했다.   ▲ I-CAR VR 프로토타입 영상 캡처(비디오 제공 : I-CAR)   몰입형 학습으로 격차를 해소하기 머티스는 다음과 같은 시나리오를 소개했다. 전기차(EV)에 포함된 고전압 시스템을 다루는 수업을 듣기 직전이다. 이 수업 전에 다음에 대한 경험이 있는가? ① 멀티미터 사용하기 ② 전압 측정하기 ③ 2극 테스터 사용하기 ④ 안전 절차 ⑤ 고전압 분리 과정 수행하기 이러한 주제를 가르치는 수업에 들어가는 것은 꽤 벅차 보일 수 있으며, 어떤 사람은 수업 전에 프로세스를 더 잘 이해하기 위해 유튜브 비디오나 다른 자료를 찾고 있을 것이다. 이것은 자신감의 문제이다. 복잡한 프로세스에 들어갈 때 미리 알고 싶은 사람이 누가 있을까? 여기서 어려운 점은 어떤 자료가 있을 수 있지만, 언급된 모든 프로세스는 이해하기 위해 실습 경험이 필요하다. 멀티미터와 2극 테스터가 접근 가능하며, 전압을 측정할 수 있는 것이 있는가? 전기차 작업 프로세스와 관련이 있으면서도 안전한 작업은 무엇인가? 비용과 일반적인 접근성은 어떤가? 여기서 VR이 등장한다. VR은 실제 장비에서 연습하는 안전 위험이나 비용 없이 이러한 프로세스에 대한 실습 노출을 제공한다. 학습자는 헤드셋을 착용하고 즉시 가상 훈련실로 이동한다. 여기서 사람들은 멀티미터로 전압을 안전하게 측정하는 방법을 배우고, 고전압 연결 절차를 연습한다. 그리고 자신의 기술에 자신감을 가질 때까지 단계를 끝없이 반복한다. 이 기술은 학습자가 실수를 하고 안전하고 통제된 환경에서 그로부터 배우도록 허용한다. 훈련을 마스터했다고 느끼면 실제 응용 프로그램으로 전환할 수 있으며, 새로 습득한 기술과 지식을 직접 보여줄 준비가 되어 있을 뿐만 아니라 흥미를 느낄 수 있다.   미래를 엿보다 머티스는 “충돌 수리 산업 내에서 우리의 프로토타입을 선보이고 SEMA 및 CES와 같은 주요 산업 행사에서 발표한 후, 자동차 전문가들로부터 긍정적인 피드백을 받았다. 관심과 격려는 우리가 설계한 프로토타입을 완전한 VR 기반 과정으로 전환할 수 있는 신호를 주었다”고 소개했다. 전기차 기술 작업 및 ADAS 관련 수리 시나리오 문제 해결의 세부 사항에 중점을 둔 이 과정 중 두 개는 2025년 말에 출시될 예정이다. VR이 모든 실습 학습의 측면을 대체하지는 않지만, 복잡하고 접근하기 어려운 또는 비싼 시나리오를 더 접근 가능하게 만드는 데 뛰어나다. 이것은 도구이다. 전통적인 교육 방법을 보완하여 학습자에게 안전하고 확장 가능하며 상호작용적인 방식으로 기술을 마스터할 수 있는 방법을 제공한다. 유니티 인더스트리(Unity Industry)와 같은 플랫폼을 활용함으로써 기업은 교육의 미래를 재정의하고 고급 학습 경험을 더 영향력 있게 만드는 몰입형 VR 경험을 만들 수 있다.       ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
3D 애플리케이션 개발 플랫폼, 엔비디아 옴니버스(NVIDIA Omniverse)
 주요 디지털 트윈 소프트웨어   3D 애플리케이션 개발 플랫폼, 엔비디아 옴니버스(NVIDIA Omniverse) 개발 및 공급 : 엔비디아, www.nvidia.com   엔비디아 옴니버스(NVIDIA Omniverse)는 산업 디지털화와 물리 AI 시뮬레이션을 위한 3D 애플리케이션 개발 플랫폼이다. 오픈USD(OpenUSD)와 RTX 렌더링 기술을 3D 산업 디지털화 애플리케이션에 쉽게 통합할 수 있도록 서비스, API, SDK 등을 제공한다.  1. 제품 종류 (1) 옴니버스 엔터프라이즈(Omniverse Enterprise)  기업을 위한 협업과 시뮬레이션 플랫폼으로, 사용하기 쉬운 도구를 통해 고급 실시간 3D 애플리케이션을 구축하고 제품, 에셋, 시설을 고충실도로 시각화하고 시뮬레이션한다. (2) 엔비디아 아이작 심(NVIDIA Issac Sim) 로봇 개발과 시뮬레이션을 위한 플랫폼으로, 물리 기반 환경에서 로봇과 자율 머신을 테스트하고 검증하며 훈련할 수 있다.  이 외에도 산업, 엔터프라이즈, 크리에이터, 개발자들을 돕는 여러 옴니버스 솔루션들이 있다. 2. 주요 기능 (1) 옴니버스 엔터프라이즈 비파괴적 상호 운용성으로 데이터 전송 필요성을 줄인다. 맞춤형 워크플로우와 앱을 빠르게 개발하며, AI를 활용해 반복 작업을 자동화한다. (2) 엔비디아 아이작 심 AI 기반 로봇을 개발을 위한 가상 환경을 제공하며, 센서 시뮬레이션, 탐색, 조작, 딥 러닝 애플리케이션을 지원한다. 합성 데이터 생성, 도메인 무작위화, 강화 학습 기능도 포함된다. 3. 주요 이점 (1) 쉬운 맞춤화와 확장 옴니버스 SDK는 다양한 3D 개발에 활용되며, 로우코드나 노코드 샘플 앱, 수정이 용이한 확장 프로그램을 통해 새로운 도구와 워크플로우를 기초 단계부터 개발할 수 있다. (2) 3D 애플리케이션 확장 옴니버스 클라우드 API를 통해 오픈USD, RTX, 가속 컴퓨팅, 생성형 AI 기술로 기존 소프트웨어 도구와 애플리케이션을 강화할 수 있다. (3) 어디에나 배포 가능 RTX 지원 워크스테이션 또는 가상 워크스테이션에서 맞춤형 애플리케이션을 개발하고 배포하거나 옴니버스 클라우드에서 애플리케이션을 호스팅하고 스트리밍할 수 있다. 4. 도입 효과 (1) 산업 영상 제작사는 옴니버스로 사실적인 디지털 세트와 가상 환경을 구현해 몰입감 있는 영상 효과를 만들어낸다.  (2) 엔터프라이즈 다양한 지역과 소프트웨어 도구에서 협업해 실시간 공장 설계와 계획을 진행한다. 직원 능률과 공정 효율성을 높이는 새로운 워크플로우로 생산 속도와 고객 경험을 향상한다. (3) 크리에이터 옴니버스 머시니마(Machinima) 애플리케이션으로 캐릭터와 소품 등에 애니메이션 클립을 적용한다. AI 기능을 기반으로 표정과 움직임을 더욱 생동감 있게 구현한다. (4) 개발자 옴니버스 클라우드 API와 SDK를 통해 고급 3D 애플리케이션 개발을 지원하며, 오픈USD 네이티브 앱과 확장 프로그램을 제작할 수 있다. 5. 주요 고객 (1) 지멘스(Siemens) 클라우드 기반 제품 수명주기 관리 소프트웨어인 팀센터 X(Teamcenter X)와 지멘스 엑셀러레이터(Xcelerator) 플랫폼에 옴니버스 클라우드 API를 채택했다. 옴니버스 API에 연결된 팀센터 X 소프트웨어는 설계 데이터를 엔비디아 생성형 AI API에 연결한 다음, 옴니버스 RTX 렌더링을 애플리케이션 내에서 직접 사용할 수 있다. (2) 폭스콘(Foxconn) 생산설비와 장비 레이아웃을 가상으로 통합하는 데 옴니버스를 채택했다. 이러한 가상 통합은 실제 운영에서 비용이 많이 드는 변경 사항을 크게 줄인다. 폭스콘은 내년 초 가동 예정인 멕시코 공장 구축에도 옴니버스를 채택했으며, 연간 30% 이상의 전략 사용량 감소를 기대하고 있다.   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-06-29
엔비디아, “모델 양자화로 스테이블 디퓨전 성능 높였다”
엔비디아가 양자화를 통해 스테이블 디퓨전 3.5(Stable Diffusion 3.5) 모델의 성능을 향상시켰다고 발표했다. 생성형 AI는 사람들이 디지털 콘텐츠를 만들고, 상상하며, 상호작용하는 방식을 혁신적으로 바꾸고 있다. 그러나 지속적으로 AI 모델의 기능이 향상되고 복잡성이 증가면서 더 많은 VRAM이 요구되고 있다. 예를 들어 기본 스테이블 디퓨전 3.5 라지(Large) 모델은 18GB 이상의 VRAM을 사용하므로 고성능 시스템이 아니면 실행이 어렵다. 엔비디아는 이 모델에 양자화를 적용하면 중요하지 않은 레이어를 제거하거나 더 낮은 정밀도로도 실행할 수 있다고 설명했다. 엔비디아 지포스(GeForce) RTX 40 시리즈와 에이다 러브레이스(Ada Lovelace) 세대 엔비디아 RTX PRO GPU는 FP8 양자화를 지원해 이러한 경량화된 모델을 실행할 수 있다. 또한 최신 엔비디아 블랙웰(Blackwell) GPU는 FP4도 지원한다.     엔비디아는 스태빌리티 AI(Stability AI)와 협력해 최신 모델인 스테이블 디퓨전 3.5 라지를 FP8로 양자화해 VRAM 사용량을 40%까지 줄였다. 여기에 엔비디아 텐서RT(TensorRT) 소프트웨어 개발 키트(SDK)를 통한 최적화로 스테이블 디퓨전 3.5 라지와 미디엄 모델의 성능을 2배로 끌어올렸다. 또한, 텐서RT가 RTX AI PC 환경을 위해 새롭게 설계됐다. 높은 성능과 JIT(Just-In-Time), 온디바이스 엔진 구축 기능을 더하고 패키지 크기를 8배 줄여 1억 대 이상의 RTX AI PC에 AI를 원활하게 배포할 수 있게 됐다. RTX용 텐서RT는 이제 개발자를 위한 독립형 SDK로 제공된다. 엔비디아와 스태빌리티 AI는 인기 있는 AI 이미지 생성 모델 중 하나인 스테이블 디퓨전 3.5의 성능을 높이고 VRAM 요구 사항을 낮췄다. 엔비디아 텐서RT 가속과 양자화 기술을 통해, 사용자는 엔비디아 RTX GPU에서 이미지를 더 빠르고 효율적으로 생성하고 편집할 수 있다. 스테이블 디퓨전 3.5 라지의 VRAM 한계를 해결하기 위해 이 모델은 텐서RT를 활용해 FP8로 양자화됐다. 그 결과, VRAM 요구량이 40% 줄어 11GB면 충분해졌다. 즉, 단 한 대의 GPU가 아닌 다섯 대의 지포스 RTX 50 시리즈 GPU가 메모리에서 모델을 동시에 실행할 수 있게 됐다. 또한 스테이블 디퓨전 3.5 라지와 미디엄 모델은 텐서RT를 통해 최적화됐다. 텐서RT는 텐서 코어를 최대한 활용할 수 있도록 설계된 AI 백엔드로, 모델의 가중치와 모델 실행을 위한 명령 체계인 그래프를 RTX GPU에 맞게 최적화한다.  FP8 텐서RT는 스테이블 디퓨전 3.5 라지의 성능을 BF16 파이토치 대비 2.3배 향상시키면서 메모리 사용량은 40% 줄여준다. 스테이블 디퓨전 3.5 미디엄의 경우, BF16 텐서RT는 BF16 파이토치 대비 1.7배 더 빠르다. FP8 텐서RT를 적용한 결과, 스테이블 디퓨전 3.5 라지 모델은 BF16 파이토치(PyTorch)에서 실행했을 때보다 성능이 2.3배 향상됐고, 메모리 사용량은 40% 감소했다. 스테이블 디퓨전 3.5 미디엄 모델도 BF16 텐서RT를 통해 BF16 파이토치 대비 1.7배 더 높은 성능을 발휘했다. 최적화된 모델은 현재 스태빌리티 AI의 허깅페이스(Hugging Face) 페이지에서 이용할 수 있다. 또한 엔비디아와 스태빌리티 AI는 스테이블 디퓨전 3.5 모델을 엔비디아 NIM 마이크로서비스 형태로도 출시할 계획이다. 이를 통해 크리에이터와 개발자는 다양한 애플리케이션에서 보다 쉽게 모델을 접근하고 배포할 수 있게 된다. 이 NIM 마이크로서비스는 오는 7월 출시될 예정이다.
작성일 : 2025-06-18
HPE, 엔비디아와 협력해 AI 팩토리 포트폴리오 강화
HPE는 전체 AI 수명주기를 지원하고 기업, 서비스 제공업체, 공공기관, 연구기관 등 다양한 고객의 요구를 충족하는 ‘HPE 기반 엔비디아 AI 컴퓨팅(NVIDIA AI Computing by HPE)’ 설루션 포트폴리오를 강화한다고 발표했다. 이번 업데이트는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)와의 통합을 강화하고, 가속 컴퓨팅을 통해 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)에 대한 지원을 확대했다. 또한 엔비디아 AI 데이터 플랫폼(NVIDIA AI Data Platform)용 HPE 알레트라 스토리지 MP X10000(HPE Alletra Storage MP X10000) 소프트웨어 개발 키트(SDK)를 새롭게 출시했다. 이와 함께 HPE는 엔비디아 RTX PRO 6000 블랙웰 서버 에디션(NVIDIA RTX PRO 6000 Blackwell Server Edition) GPU 및 엔비디아 엔터프라이즈 AI 팩토리(NVIDIA Enterprise AI Factory)의 검증된 설계에 기반한 컴퓨팅 및 소프트웨어 제품도 출시했다. 엔비디아와 공동 개발한 턴키 방식의 클라우드 기반 AI 팩토리인 ‘HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)’는 통합된 AI 전략을 비즈니스 전반에 확산하고 수익성 높은 워크로드를 지원하며 리스크를 대폭 줄일 수 있도록 지원하는 전용 개발자 설루션을 포함하고 있다. 또한, 이는 AI 프레임워크, 사전 훈련 모델을 위한 엔비디아 NIM 마이크로서비스(NVIDIA NIM microservices) 및 SDK를 포함하는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)의 피쳐 브랜치(Feature Branch) 모델 업데이트를 지원할 예정이다. 피쳐 브랜치 모델 지원을 통해 개발자는 AI 워크로드를 위한 소프트웨어 기능과 최적화 사항을 테스트하고 검증할 수 있다.  가드레일이 내장된 프로덕션 브랜치 모델에 대한 기존 지원과 더불어, HPE 프라이빗 클라우드 AI는 모든 규모의 기업이 개발자 시스템을 구축하고 이를 프로덕션-레디 에이전틱 및 생성형 AI 애플리케이션으로 확장하는 한편, 기업 전반에 걸쳐 안전한 다계층 접근 방식을 도입할 수 있도록 지원한다. HPE 알레트라 스토리지 MP X10000은 엔비디아 AI 데이터 플랫폼 레퍼런스 설계와 연동되는 SDK를 선보일 예정이다. HPE의 최신 데이터 플랫폼과 엔비디아의 맞춤형 레퍼런스 설계를 연결함으로써, 고객은 에이전틱 AI 구현을 위한 가속화된 성능과 인텔리전트 파이프라인 오케스트레이션을 활용할 수 있다. 이번 X10000 SDK는 HPE의 데이터 인텔리전스 전략 확대의 일환으로, 컨텍스트 기반의 AI-레디 데이터를 엔비디아 AI 생태계에 직접 통합할 수 있도록 지원한다. 이를 통해 기업은 엔비디아 가속 인프라 전반에서 수집, 추론, 훈련 및 지속적인 학습을 위한 비정형 데이터 파이프라인을 간소화할 수 있다. HPE는 SDK 통합을 통해 데이터 가치 극대화, AI 데이터 플랫폼의 효율 향상, 워크로드 요구사항에 맞는 구축 최적화 등의 이점을 얻을 수 있을 것으로 보고 있다. 엔비디아 H100 NVL, H200 NVL 및 L40S GPU를 탑재한 HPE 프로라이언트 컴퓨트 DL380a Gen12(HPE ProLiant Compute DL380a Gen12) 서버는 최근 MLPerf Inference : Datacenter v5.0 벤치마크의 GPT-J, Llama2-70B, ResNet50 및 RetinaNet을 포함한 10개 테스트에서 최고 수준의 성능을 기록했다. 이 AI 서버는 곧 최대 10개의 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 탑재하여 출시될 예정이며, 이를 통해 향상된 기능과 함께 에이전틱 멀티모달 AI 추론, 피지컬 AI, 모델 미세조정 뿐만 아니라 디자인, 그래픽 및 비디오 애플리케이션을 포함한 엔터프라이즈 AI 워크로드를 위한 탁월한 성능을 제공할 예정이다. HPE 프로라이언트 컴퓨트 DL380a Gen12는 공랭식 및 직접 수냉 방식(DLC)으로 제공되며, HPE 프로라이언트 컴퓨트 Gen12 포트폴리오에 탑재된 HPE iLO(Integrated Lights Out) 7은 실리콘 RoT(Root of Trust) 기반으로 한 내장된 보호 기능을 갖추고 있다. 또한, HPE 컴퓨트 옵스 매니지먼트(HPE Compute Ops Management)는 사전 알림 기능 및 예측적 AI 기반 인사이트를 통해 서버 환경을 위한 안전하고 자동화된 수명 주기 관리를 지원한다. HPE 옵스램프 소프트웨어(HPE OpsRamp Software)는 AI 워크로드 모니터링을 위한 차세대 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU까지 지원할 수 있는 AI 인프라 최적화 설루션으로 확장됐다. HPE 그린레이크 플랫폼(HPE GreenLake Platform) SaaS(서비스형 소프트웨어) 방식으로 구성되는 이 설루션은 기업 내 IT 팀이 하이브리드 환경 전반에 분산된 AI 인프라를 모니터링하고, 최적화를 통해 AI인프라 운영을 효율적으로 관리, 지원한다. HPE 옵스램프는 풀스택 AI 워크로드에서 인프라 옵저버빌리티, 워크플로 자동화, AI 기반 분석 및 이벤트 관리를 가능하게 하고, 엔비디아의 모든 인프라를 정밀하게 모니터링하는 한편, AI 인프라의 성능과 복원력을 모니터링할 수 있는 세분화된 측정 지표를 제공한다. HPE의 안토니오 네리(Antonio Neri) 사장 겸 최고경영자(CEO)는 “HPE는 엔비디아와의 협업을 통해 고객에게 지속적인 혁신과 실질적인 성과를 제공하고 있으며, 강력한 설루션을 기반으로 공동 개발한 첨단 AI 기술을 통해 기업이 AI 도입의 어느 단계에 있든 기업 전반에서 그 잠재력을 효과적으로 실현할 수 있도록 지원하고 있다”면서, “HPE는 오늘날의 요구를 충족하는 동시에, AI 중심의 미래를 함께 만들어가고 있다”고 밝혔다. 엔비디아의 젠슨 황(Jensen Huang) 창립자 겸 CEO는 “기업은 HPE 시스템을 활용해 최첨단 엔비디아 AI 팩토리를 구축함으로써 생성형 및 에이전틱 AI 시대에 최적화된 IT 인프라를 준비할 수 있다”면서, “엔비디아와 HPE는 데이터센터부터 클라우드, 에지에 이르기까지 인텔리전스를 확장 가능한 새로운 산업 자원으로 활용할 수 있도록 기업을 위한 기반을 함께 만들어가고 있다”고 밝혔다.
작성일 : 2025-05-23
엔비디아, 마이크로소프트와 함께 RTX AI PC 생태계 확장 추진
엔비디아가 마이크로소프트와 협력해 RTX AI PC를 위한 다양한 기능과 개발자 도구를 통해 AI 생태계 전반을 확장하고 있다고 밝혔다. RTX AI PC용으로 새롭게 설계된 엔비디아 텐서RT(NVIDIA TensorRT)는 윈도우 ML(Windows ML)을 통해 제공되며, 고성능 AI 실행 환경을 지원한다. 생성형 AI는 디지털 휴먼부터 글쓰기 도우미, 지능형 에이전트, 크리에이티브 도구에 이르기까지 PC 소프트웨어를 획기적인 경험으로 변화시키고 있다. 엔비디아 RTX AI PC는 생성형 AI 실험을 더 쉽게 시작하고, 윈도우 11에서 더 뛰어난 성능을 발휘할 수 있도록 지원하는 기술이다. 엔비디아 텐서RT가 RTX AI PC를 위해 새롭게 설계됐다. 높은 수준의 텐서RT 성능과 함께 적시 온디바이스 엔진 구축과 기존 대비 8배 더 작은 패키지 크기를 통해 1억 대 이상의 RTX AI PC에 AI를 원활하게 배포할 수 있도록 돕는다. ‘마이크로소프트 빌드(Microsoft Bulid)’ 행사에서 발표된 RTX용 텐서RT는 앱 개발자에게 광범위한 하드웨어 호환성과 최첨단 성능을 모두 제공하는 새로운 추론 스택인 윈도우 ML에서 기본적으로 지원된다. 엔비디아는 AI 기능을 통합하려는 개발자를 위해 엔비디아 DLSS부터 엔비디아 RTX 비디오(RTX Video)와 같은 멀티미디어 향상 기능까지 다양한 소프트웨어 개발 키트(software development kits, SDKs) 옵션을 제공한다. 5월 중으로 오토데스크를 비롯해 빌리빌리(Bilibili), 카오스(Chaos), LM 스튜디오(LM Studio), 토파즈 랩스(Topaz Labs)의 인기 소프트웨어 애플리케이션에서 RTX AI 기능과 가속화를 위한 업데이트를 출시할 예정이다.     AI 애호가와 개발자는 엔비디아 NIM을 사용해 AI를 쉽게 시작할 수 있다. 이는 애니띵LLM(AnythingLLM), 마이크로소프트 VS 코드(VS Code), 컴피UI(ComfyUI)와 같은 인기 앱에서 실행 가능한 사전 패키징, 최적화된 AI 모델이다. 곧 출시되는 플럭스.1-쉬넬(FLUX.1-schnell) 이미지 생성 모델은 NIM 마이크로서비스로 제공되며, 인기 있는 플럭스.1-데브(dev) NIM 마이크로서비스는 더 많은 RTX GPU를 지원하도록 업데이트됐다. 엔비디아 앱 내 RTX PC AI 어시스턴트인 프로젝트 G-어시스트(Project G-Assist)는 코딩 없이 간단한 AI 개발을 시작하고자 하는 사용자들을 지원한다. 이를 통해 자연어 기반 AI로 PC 앱과 주변기기를 제어하는 플러그인을 직접 구축할 수 있다. 아울러 구글 제미나이(Google Gemini) 웹 검색, 스포티파이(Spotify), 트위치(Twitch), IFTTT, 시그널RGB(SignalRGB)등 새로운 커뮤니티 플러그인도 현재 제공되고 있다. 윈도우 ML은 ONNX 런타임(ONNX Runtime) 기반으로 구동되며, 각 하드웨어 제조업체에서 제공하고 유지 관리하는 최적화된 AI 실행 레이어에 원활하게 연결된다. 지포스(GeForce) RTX GPU의 경우, 윈도우 ML은 높은 성능과 빠른 배포를 위해 RTX용 텐서RT 추론 라이브러리를 자동으로 사용한다. 다이렉트ML(DirectML)과 비교했을 때, 텐서RT는 PC에서 AI 워크로드를 처리하는 데 50% 이상 빠른 성능을 제공한다. 또한 윈도우 ML은 개발자의 QoL(Quality of Life) 측면에서도 다양한 이점을 제공한다. 각 AI 기능을 실행하는 데 가장 적합한 하드웨어(GPU, CPU, NPU)를 자동으로 선택하고, 해당 하드웨어에 맞는 실행 공급자를 다운로드해 해당 파일을 앱에서 패키징할 필요가 없게 한다. 이로써 최신 텐서RT 성능 최적화가 준비되는 즉시 사용자에게 제공될 수 있다.  텐서RT는 원래 데이터센터용으로 구축된 라이브러리였지만, RTX AI PC를 위해 새롭게 설계됐다. RTX용 텐서RT는 텐서RT 엔진을 사전 생성해 앱과 함께 패키징하는 대신, 적시에 온디바이스 엔진을 구축해 사용자의 특정 RTX GPU에 최적화된 AI 모델 실행을 수 초 내에 처리할 수 있다. 또한 라이브러리 패키징 방식이 간소화돼 파일 크기가 기존 대비 8배까지 줄었다. RTX용 텐서RT는 현재 윈도우 ML 프리뷰를 통해 제공되고 있으며, 6월부터는 엔비디아 개발자(NVIDIA Developer) 포털에서 독립형 SDK로 제공될 예정이다. 한편, AI 기능을 추가하거나 앱 성능을 향상시키려는 개발자는 광범위한 엔비디아 SDK를 활용할 수 있다. 여기에는 GPU 가속화를 위한 엔비디아 쿠다(CUDA)와 텐서RT, 3D 그래픽을 위한 엔비디아 DLSS와 옵틱스(Optix), 멀티미디어를 위한 엔비디아 RTX 비디오와 맥신(Maxine), 생성형 AI를 위한 엔비디아 리바(Riva)와 ACE가 포함된다. 엔비디아는 윈도우 ML과 텐서RT 통합을 통해 마이크로소프트와 주요 AI 앱 개발자들과의 협력을 지속하며 RTX 기반 시스템에서 AI 기능을 가속화하도록 지원할 예정이다.
작성일 : 2025-05-21
마이크로소프트, “비즈니스 전반에서 AI 에이전트가 활약하는 시대가 온다”
마이크로소프트가 ‘마이크로소프트 빌드 2025(Microsoft Build 2025)’를 개최하고 AI 에이전트, 개발자 도구, 오픈 플랫폼 등 신규 기능과 주요 업데이트를 발표했다.   AI는 추론 능력과 메모리 기술의 고도화로 인해 스스로 학습하고 결정을 내리는 에이전트로 진화하고 있다. 이번 행사에서 마이크로소프트는 이러한 AI 에이전트가 개인, 조직, 팀은 물론 전체 비즈니스 전반에 작동하는 인터넷 환경을 ‘오픈 에이전틱 웹(Open Agentic Web)’으로 정의하며, AI가 사용자나 조직을 대신해 결정을 내리고 작업을 수행하는 시대가 도래했다고 강조했다.  전 세계 수십만 조직이 마이크로소프트 365 코파일럿(Microsoft 365 Copilot)을 활용해 리서치, 아이디어 브레인스토밍 등 다양한 업무에 특화된 AI 에이전트를 구축하고 있다. 이 중 포춘 500대 기업 90%를 포함한 23만 개 이상 조직은 코파일럿 스튜디오(Copilot Studio)를 통해 AI 에이전트와 자동화 앱을 개발하고 있다. 또한, 전 세계 약 1500만 명의 개발자가 깃허브 코파일럿(GitHub Copilot)을 통해 코드 작성, 검토, 배포, 디버깅 등 개발 전 과정을 효율화하고 있다.     이번 빌드 2025에서는 AI 에이전트 개발을 돕는 플랫폼과 도구가 집중 소개됐다. 먼저 깃허브(GitHub), 애저 AI 파운드리(Azure AI Foundry), 윈도우(Windows) 등 주요 개발 플랫폼에서 활용할 수 있는 다양한 기능과 업데이트가 발표됐다. 이번 업데이트는 개발 생애 주기의 변화에 따라 개발자가 보다 효율적으로 작업하고, 대규모 개발 환경에서도 유연하게 대응할 수 있도록 설계됐다.  깃허브 코파일럿에는 비동기화(asynchronous) 방식의 코딩 에이전트 기능이 새롭게 도입됐다. 또한, 깃허브 모델(GitHub Models)에는 프롬프트 관리, 경량평가(LightEval), 엔터프라이즈 제어 기능이 추가돼, 개발자는 깃허브 내에서 다양한 AI 모델을 실험할 수 있게 됐다. 이와 함께 깃허브 코파일럿 챗(GitHub Copilot Chat) 또한 비주얼 스튜디오 코드(Visual Studio Code)에서 오픈소스로 공개됐다. 깃허브 코파일럿 확장 기능의 AI 기능은 이제 개발 도구를 구동하는 오픈소스 저장소의 일부가 됐다.  윈도우 AI 파운드리(Windows AI Foundry)도 새롭게 공개됐다. 개발자에게 개방적이고 널리 사용되는 플랫폼 중 하나로서 윈도우가 확장성, 유연성, 그리고 성장 기회를 제공함에 따라, 윈도우 AI 파운드리는 학습부터 추론까지 AI 개발자 라이프사이클을 지원하는 통합되고 신뢰할 수 있는 플랫폼을 제공한다. 이를 통해 개발자는 시각 및 언어 작업에 특화된 간단한 모델 API를 활용해 오픈소스 대규모 언어 모델(LLM)을 파운드리 로컬(Foundry Local) 환경에서 실행하거나, 자체 개발한 모델을 가져와 변환·미세조정한 뒤 클라이언트 또는 클라우드 환경에 배포할 수 있다.  애저 AI 파운드리도 주요 업데이트를 진행했다. 애저 AI 파운드리는 개발자가 AI 애플리케이션과 에이전트를 설계·맞춤화·관리할 수 있도록 지원하는 통합 플랫폼으로, 이번 애저 파운드리 모델(Azure Foundry Models) 업데이트를 통해 AI 기업 xAI의 그록3(Grok 3) 및 그록3 미니(Grok 3 Mini) 모델이 마이크로소프트 생태계에 추가됐다. 두 모델은 마이크로소프트가 직접 제공하며 과금한다. 이로써 개발자가 선택할 수 있는 AI 모델의 범위는 파트너사 및 마이크로소프트 제공 모델을 포함해 1900개 이상으로 확대됐다. 이와 함께, 안전한 데이터 통합, 모델 맞춤화, 엔터프라이즈급 관리 기능도 제공돼 보다 정밀한 AI 운영이 가능해졌다.   AI 모델을 항목별로 비교해 순위를 보여주는 모델 리더보드(Model Leaderboard)와 특정 쿼리나 작업에 따라 최적의 모델을 실시간으로 선택할 수 있도록 설계된 모델 라우터(Model Router) 등 신규 도구도 함께 공개됐다.   AI 에이전트 개발과 배포를 보다 안전하고 효율적으로 수행하도록 지원하는 기능도 선보였다. 사전 구축된 에이전트(pre-built agents), 맞춤형 에이전트 설계 도구, 멀티 에이전트 기능, 새로운 모델 등으로 구성된 이번 업데이트는 개발자와 조직이 보다 유연하게 AI 에이전트를 구축하고 생산성을 높이는 데 활용할 수 있도록 지원한다.  애저 AI 파운드리 에이전트 서비스(Azure AI Foundry Agent Service)는 여러 전문 에이전트를 조율해 복잡한 작업을 처리할 수 있도록 지원한다. 이번 업데이트에서는 시맨틱 커널(Semantic Kernel)과 오토젠(AutoGen)을 통합 제공하는 단일 SDK와, 에이전트 간 상호작용을 가능하게 하는 A2A(Agent-to-Agent) 기능 및 모델 컨텍스트 프로토콜(Model Context Protocol, 이하 MCP) 지원 기능도 포함한다.  애저 AI 파운드리 옵저버빌리티(Azure AI Foundry Observability)에는 AI 에이전트의 신뢰도를 높일 수 있도록 성능, 품질, 비용, 안전성 등의 지표들을 모니터링할 수 있는 기능이 탑재됐다. 모든 지표는 통합 대시보드를 통해 시각적으로 추적할 수 있어, 운영 현황을 직관적으로 파악할 수 있다.  보안과 거버넌스 측면에서도 기능이 강화됐다. 프리뷰로 제공되는 엔트라 에이전트 ID(Microsoft Entra Agent ID)를 활용하면, 애저 AI 파운드리나 코파일럿 스튜디오에서 생성한 에이전트에 고유 ID가 자동으로 부여된다. 이를 통해 에이전트를 초기 단계부터 안전하게 관리하고, 무분별한 생성을 방지해 보안 사각지대를 방지할 수 있다. 또한, 애저 AI 파운드리로 구축된 애플리케이션과 에이전트는 퍼뷰(Microsoft Purview)의 데이터 보안 및 컴플라이언스 제어 기능과 통합된다. 여기에 위험 파라미터 설정, 자동 평가 수행, 상세 보고서 제공 등 고도화된 거버넌스 도구도 함께 제공돼 정밀한 보안 및 운영 관리가 가능해졌다.  마이크로소프트 365 코파일럿 튜닝(Microsoft 365 Copilot Tuning)은 기업 고유의 데이터, 워크플로, 업무 프로세스를 기반으로 로코드 방식의 AI 모델 학습과 에이전트 생성을 돕는다. 생성된 에이전트는 마이크로소프트 365 환경 내에서 안전하게 실행되며, 조직별 업무에 특화된 작업을 높은 정확도로 수행할 수 있다. 예를 들어, 로펌은 자사의 전문성과 양식에 맞춰 문서를 작성하는 에이전트를 구축할 수 있다.  멀티 에이전트 오케스트레이션 기능도 코파일럿 스튜디오(Copilot Studio)에 새롭게 도입됐다. 이를 통해 다양한 에이전트를 상호 연결하고 기능을 결합함으로써 복잡하고 광범위한 업무를 처리할 수 있다.  이와 함께 마이크로소프트는 AI 에이전트의 미래를 위해 개방형 표준과 공유 인프라를 발전시키는 MCP 생태계 지원 업데이트와 새로운 개방형 프로젝트인 ‘NLWeb’을 발표했다. 마이크로소프트는 깃허브, 코파일럿 스튜디오, 다이나믹스 365(Dynamics 365), 애저 AI 파운드리, 시맨틱 커널, 윈도우 11 등 자사가 보유한 주요 에이전트 및 프레임워크 전반에서 MCP를 지원한다. 마이크로소프트와 깃허브는 MCP 운영 위원회(MCP Steering Committee)에 새롭게 합류해, 개방형 프로토콜의 보안성과 확장성을 높이기 위한 공동 노력을 이어갈 예정이다.  또한 MCP 생태계 확장을 위한 두 가지 업데이트도 공개했다. 첫 번째는 사용자가 기존 로그인 방식을 그대로 활용해 에이전트 및 LLM 기반 애플리케이션에게 개인 저장소나 구독 서비스와 같은 다양한 데이터에 대한 안전한 접근 권한을 부여할 수 있도록 인증 체계를 개선했다. 두 번째는 MCP 서버 항목을 누구나 최신 공용 또는 사설 저장소에서 중앙화해 관리할 수 있도록 지원하는 MCP 서버 등록 서비스를 설계했다.   NLWeb은 에이전틱 웹 환경을 위한 개방형 프로젝트로, 마이크로소프트는 NLWeb이 에이전틱 웹에서 HTML과 유사한 역할을 할 수 있을 것으로 기대한다. NLWeb은 웹사이트 운영자가 원하는 AI 모델과 자체 데이터를 연결해 대화형 인터페이스를 구축함으로써 사용자가 웹 콘텐츠와 직접 상호작용하며 풍부하고 의미 있는 정보를 얻도록 돕는다. 또한 모든 NLWeb 엔드포인트는 MCP 서버이기도 하기 때문에 웹사이트 운영자는 필요시 AI 에이전트들이 해당 사이트의 콘텐츠를 쉽게 검색하고 접근하도록 설정할 수 있다.  한편, 마이크로소프트는 과학 연구를 가속화하기 위한 AI 에이전트 기반 플랫폼 마이크로소프트 디스커버리(Microsoft Discovery)도 선보였다. 이 플랫폼은 연구자가 AI 에이전트를 활용해 과학적 발견 과정 전반을 혁신할 수 있도록 지원한다. 마이크로소프트는 이를 통해 제약, 환경 등 다양한 산업 분야의 연구개발 부서가 신제품 출시 기간을 단축하고, 연구 전반의 속도와 범위를 확장할 수 있을 것으로 기대하고 있다. 
작성일 : 2025-05-20
IBM, “한·미·일 대학에서 지난 1년간 2400여 명에 양자 컴퓨팅 교육 제공”
IBM은 연세대학교, 서울대학교, 게이오대학교, 도쿄대학교, 시카고대학교와 함께 지난 2023년 말 발표한 글로벌 양자 교육 사업 계획에 대한 1년 간의 결과를 최근 발표했다.    2023년 12월, IBM은 한·미·일의 5개 대학과 함께 향후 10년간 4만 명의 학생을 양자 인력으로 육성하겠다는 계획을 발표했다. 이 국제 양자 교육 사업에 참여하고 있는 대학들은 2024년에만 2400명 이상의 학생들에게 양자 교육을 제공했으며, 2025년에도 진전을 이어가며 양자 컴퓨팅 교육의 규모와 발전을 확대하고 있다. IBM과 대학 파트너들은 양자 컴퓨팅을 배우는 학생들에게 고품질의 교육 자원을 제공함으로써 양자 기술의 확산을 촉진하고, 늘어나는 양자 관련 일자리와 여기에 필요한 역량을 갖춘 인재 사이의 수급 불일치를 해소하기 위해 함께 노력하고 있다. 국제 양자 교육 사업은 학생과 교육자 모두를 위해 마련된 다양한 전략에 의해 추진된다. 여기에는 교수들이 기존 과정에 쉽게 통합할 수 있도록 만들어진 강좌 모듈의 양자 컴퓨터용 오픈소스 소프트웨어 개발 키트(SDK) 키스킷(Qiskit)과 광범위한 과학 및 기술 분야에서 교수들이 사용할 수 있도록 마련된 새로운 유용성 단계의 양자 교육 커리큘럼이 있다. 또한 지역 생태계에서 젊은 연구자를 양성하는 커뮤니티 주도 교육 행사, 공동 여름 프로그램, 양자 리더십 프로그램 등도 포함된다. 교육자들은 100 큐비트 이상의 유용성 단계의 양자 프로세서로 구동되는 양자 컴퓨터를 이용할 수 있다. 이를 활용해 대학 강의에서도 학기 동안 대학원 수준의 교육을 진행하고, 차세대 양자 계산 과학자를 양성하는 데 새로운 방식을 시도할 수 있다. 예를 들어, 도쿄대 학생들은 킥드 아이징 모델(kicked Ising model)에 대한 유용성 단계의 연산을 수행함으로써 2023년 네이처지 표지에 게재된 IBM 퀀텀 유용성 실험을 재현할 수 있었다. 양자 컴퓨팅 교육이 진화하는 양상은 처음에는 엘리트 교육 기관으로만 접근이 제한되다가 기술과 접근성의 발전으로 진입 장벽이 크게 낮아진 기존 컴퓨팅의 경우와 비슷하다. 다만, 기존 컴퓨팅은 이 과정에 수십 년이 걸렸지만 양자 컴퓨팅은 몇 년이 걸렸다는 점이 다를 뿐이다. 오늘날 대학은 개방형 교육 원칙, 키스킷 SDK와 같은 오픈 소스 도구, 커뮤니티 주도 프로그램을 활용하여 전 세계 수백만 명의 학습자가 양자 컴퓨팅에 접근할 수 있도록 지원하고 있다. 대학생이 아니어도 양자 컴퓨터 사용법을 배우기 시작할 수 있다. 양자 정보 과학에 대한 초보자 친화적인 강좌와 특정 사용 사례에 대한 실습 튜토리얼 등 필요한 모든 것을 IBM 퀀텀 러닝(IBM Quantum Learning)에서 무료로 이용할 수 있다. 일례로, 일반인들도 IBM 퀀텀이 도쿄 대학과 협력하여 개발한 14개의 강의와 실습이 포함된 유용성 단계 양자 컴퓨팅 과정을 통해 양자 컴퓨팅을 공부할 수 있다. 최근까지 이 콘텐츠는 IBM 퀀텀 네트워크 회원에게만 제공되었지만, 이제 일반인에게도 공개되었다. 따라서 관심 있는 학생, 교육자, 개발자, 연구자라면 누구나 이 강좌를 통해 오늘날의 양자 하드웨어에서 그들의 계산을 효과적으로 확장하는 방법을 배울 수 있다.
작성일 : 2025-04-09
인텔, “시스템부터 플랫폼까지 개방형 생태계 통해 에지 AI 가속화”
인텔은 새로운 인텔 AI 에지 시스템(Intel AI Edge Systems), 에지 AI 스위트(Edge AI Suites) 및 오픈 에지 플랫폼(Open Edge Platform) 이니셔티브에 대한 내용을 발표했다. 이 제품들은 기존 인프라와 통합을 단순화함으로써 소매, 제조, 스마트 시티, 미디어 및 엔터테인먼트와 같은 산업 분야에서 에지에서의 AI 사용을 간소화 및 가속화하도록 지원한다. 에지 AI는 기업 혁신의 핵심 요소로 떠오르고 있다. 가트너는 올해 말까지 기업에서 관리하는 데이터의 50%가 기존 데이터 센터나 클라우드 외부, 즉 리테일, 제조 공장, 의료 시설 등에서 처리될 것이며, 2026년까지 에지 컴퓨팅 배포의 절반 이상이 머신 러닝을 포함할 것으로 예측하고 있다.  인텔은 “에지에서 수십 년의 경험을 가지고 있을 뿐만 아니라 파트너와 함께 10만 건 이상의 실제 에지 구현을 통해 이러한 고유한 과제를 잘 이해하고 있다”고 밝혔다. 에지 AI 사용 사례는 산업별로 매우 다양하며, 각기 다른 성능 및 전력 요구 사항이 있다. 클라우드 제공 기업에 적합한 방식은 AI를 통합하면서 기존 플랫폼과 소프트웨어를 유지해야 하고, 최적의 TCO와 적절한 전력 수준을 확보해야 하는 에지용으로는 적절하지 않다. 전용 AI 인프라를 갖춘 대규모 데이터 센터와 달리 에지 AI 배포는 기존 IT 시스템에 원활하게 통합되어야 하며 종종 전력 제한, 공간 제약, 비용에 민감한 환경인 경우가 많다.     인텔 AI 에지 시스템과 에지 AI 스위트 소프트웨어 및 오픈 에지 플랫폼은 이미 에지에 널리 도입된 인텔의 기술을 기반으로 구축되어, 이러한 문제를 해결하고 생태계가 에지 AI를 더 빠르고 효율적으로 시장에 출시할 수 있도록 지원한다. 인텔은 개방형 에지 접근 방식을 통해 다양한 주요 산업 분야에서 더 나은 엔드 투 엔드 성능과 전반적인 TCO를 일관되게 제공할 수 있다는 점을 내세운다. 에지 AI 영상 분석 사용 사례의 경우, 초당 테라연산(TOPs)만으로는 실제 성능 요구 사항을 충족하기 어렵다. 인텔은 “주요 AI 경쟁 제품과 인텔 코어 울트라 프로세서를 비교하면, 경쟁 제품이 TOP에서 앞설 수 있으나 인텔이 엔드 투 엔드 파이프라인 성능에서 최대 2.3배, 달러 당 성능은 최대 5배 더 우수하다”고 주장했다. 현재 많은 에지 환경에서 기존 머신러닝과 컴퓨터 비전을 활용하여 AI를 도입하고 있는데, 인텔 AI 에지 시스템, 에지 AI 스위트, 오픈 에지 플랫폼은 고급 AI 애플리케이션의 배포를 가속화하도록 설계되었다. 인텔은 신뢰할 수 있는 파트너들로 구성된 생태계를 통해 기업이 산업 별로 다양한 과제를 해결하고, 에지 AI 배포에서 혁신을 촉진할 수 있도록 지원한다고 밝혔다. 인텔의 에지 시스템은 에지에서 AI 배포 속도를 높인다. OEM(주문자 상표 부착 생산) 및 ODM(제조자 개발 생산)를 포함한 제조업체는 에지 AI 활용 사례에 최적화된 표준화된 청사진, 벤치마크, 검증 툴을 활용할 수 있다. 이러한 리소스를 통해 고객과 설루션 제공업체는 비전 또는 생성형 AI 성능 요구사항을 충족하는 시스템을 쉽게 구성할 수 있다. 또한, 다양한 전력 수준, 크기 및 성능 옵션을 갖춘 이러한 설루션은 하드웨어와 소프트웨어의 최적의 통합을 보장한다. 에지 AI 스위트는 독립 소프트웨어 벤더(ISV), 시스템 통합업체(SI), 설루션 개발자를 위해 설계된 개방형 산업별 AI 소프트웨어 개발 키트(SDK)이다. 이 스위트는 레퍼런스 애플리케이션, 샘플 코드, 벤치마크를 제공하여 AI 애플리케이션 개발을 신속하게 시작할 수 있도록 지원하며, 다양한 산업을 위한 맞춤형 AI 설루션을 쉽게 만들 수 있도록 한다. 인텔은 현재 유통, 제조, 스마트 시티, 미디어 및 엔터테인먼트 분야에 최적화된 네 개 스위트를 제공하고 있다. 오픈 에지 플랫폼은 모듈형 오픈소스 플랫폼으로, 클라우드처럼 간편하게 에지 및 AI 애플리케이션을 대규모로 개발, 배포 및 관리할 수 있도록 지원한다. 이 플랫폼을 통해 ISV, 설루션 빌더, 운영체제 공급업체는 소프트웨어 구성 요소를 더욱 효율적으로 통합하고, 인텔의 최신 소프트웨어 최적화를 통해 성능을 극대화할 수 있다. 또한, 파트너는 현장을 방문할 필요 없이 원격 에지 디바이스에서 컨테이너화 된 워크로드를 쉽게 배포할 수 있으고, 인텔 vPro/인텔 액티브 관리 기술과 같은 툴로 배포된 시스템을 관리할 수 있으며, 소프트웨어 생태계 전반적으로 협업을 강화하고 혁신을 가속화한다. 인텔의 에지 컴퓨팅 그룹을 총괄하는 댄 로드리게즈(Dan Rodriguez) 부사장은 “고객은 TCO(총소유비용), 전력 및 성능 목표를 달성할 수 있는 방식으로 기존 인프라와 에지 워크플로에서 AI 사용을 확대하고 싶어 한다”면서, “에지 컴퓨팅 분야에서 쌓은 수십 년의 경험을 바탕으로 인텔은 인텔 AI 에지 시스템, AI 스위트 및 오픈 에지 소프트웨어를 통해 에지 AI 제품 및 지원을 한 단계 더 발전시켜, 광범위한 에코시스템이 AI 지원 설루션을 더 빠르게 제공할 수 있도록 지원하고 있다”고 밝혔다.
작성일 : 2025-03-20