• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "RPA"에 대한 통합 검색 내용이 316개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
유아이패스, “국내 기업 90% 이상이 1년 내 AI 에이전트 도입 예정”
에이전틱 자동화 기업 유아이패스는 IDC에 의뢰해 조사한 ‘에이전틱 자동화 : 오늘날 기업을 위한 유기적 오케스트레이션 구현(Agentic Automation : Unlocking Seamless Orchestration for the Modern Enterprise)’ 보고서를 인용해, 국내 기업의 약 24%가 이미 에이전틱 AI를 도입했으며 약 67%는 향후 12개월 내 에이전틱 AI를 도입할 계획이라고 전했다. 유아이패스는 AI 에이전트 도입이 초기 실험 단계를 지나 본격 확산 국면에 접어들고 있으며, 2025년은 국내 기업의 AI 도입 과정에서 중요한 전환점이 될 것이라고 전망했다. 기업들이 제품과 서비스 품질을 높이고, 경쟁 우위를 확보하며, 직원 생산성을 개선하려는 수요에 힘입어 대규모 AI 도입도 속도를 내고 있다. 국내 기업의 67%는 에이전틱 AI가 복잡한 업무 처리에 도움이 된다고 답했으며, 54%는 생산성 향상 효과를 실감하고 있다고 응답했다. 디지털 전환 확산과 함께 자율적이고 효율적인 시스템에 대한 수요도 늘어나며, 에이전틱 AI 도입 역시 가속화되고 있다. 특히 금융, 운송, 교육 분야에서의 도입이 활발하며, 2025년 주목받는 활용 분야로는 고객 지원(63%), 생산성 향상(54%), 리스크 관리 및 이상 거래 탐지(50%)가 꼽혔다. 국내 기업들은 AI 도입에 다양한 접근 방식을 취해왔지만, 본격적인 확산 단계에서는 여전히 여러 난관에 부딪히고 있다. 특히 양질의 학습 데이터 부족(26%), 전문 인력 부족(22%), 기업 규제로 인한 데이터 접근 제한(22%) 등이 AI 확산을 가로막는 주요 요인으로 꼽혔다. 에이전틱 AI 도입과 관련해서는 자율적 행동에 따른 보안 취약성(46%), 비즈니스 적용 사례 부족(44%), 개인정보 침해 우려(43%)가 주요 리스크로 꼽혔다. 실제 구현 과정에서도 데이터 보안 문제(69%), 사내 IT 전문 인력 부족(54%), 기존 시스템과의 통합 문제(47%)가 주요 과제로 나타났다. 여러 제약에도 불구하고 에이전틱 AI는 국내에서 빠르게 확산되는 추세다. 전체 기업의 약 82%가 아직 본격적인 투자를 진행하진 않았지만, 다양한 활용 방안을 적극적으로 모색하고 있다. AI 기반 비즈니스 전환을 이끄는 중심에는 ‘에이전틱 자동화’가 있다. 에이전틱 자동화는 에이전틱 AI와 로보틱 프로세스 자동화(RPA)를 통합해 엔터프라이즈 워크플로에 적용하고, 자율형 AI 에이전트를 통해 복잡한 과제를 수행함으로써 효율성, 확장성, 혁신 역량을 높인다. 기업은 에이전틱 오케스트레이션(agentic orchestration)을 활용해 개별 AI 작업을 유기적으로 연결하고, 워크플로우를 유연하게 관리하며 조직 전반에 걸쳐 에이전틱 자동화를 확장하고 있다. 유아이패스는 기업과 정부의 추진 과제에 대해서도 짚었다. 에이전틱 AI 도입이 확산되면서 기업들은 인간과 AI 에이전트가 유기적으로 협력할 수 있는 투명한 생태계를 구축하고, 데이터 보안과 개인정보 보호를 철저히 준수하면서도 강력한 거버넌스와 명확한 의사결정 체계를 갖춘 자동화 설루션 도입에 우선순위를 둬야 한다. 기술 책임자들은 자사에 가장 적합한 에이전틱 도구를 검토하고, 기존 시스템과 애플리케이션에 유연하게 통합되면서도 확장 가능한 플랫폼을 우선적으로 선택해야 한다. 정부 역시 윤리적 AI 활용을 위한 정책과 기준 및 규제 지침을 명확히 제시해 거버넌스 체계를 강화해야 한다. 데이터 보안, 윤리적 이슈, 규제 대응을 위해서는 투명한 리스크 관리와 보안 강화, 인재 양성을 위한 교육, 그리고 인프라 비용 절감을 위한 공공·민간 협력이 병행돼야 한다. 유아이패스 코리아 조의웅 지사장은 “에이전틱 자동화는 한국 기업의 비즈니스 운영 방식을 빠르게 재편하고 있다. 기업은 경쟁력 확보와 복잡한 비즈니스 프로세스 자동화를 위해 AI 에이전트의 잠재력을 적극 활용하고 있지만, 신뢰와 보안에 대한 우려는 여전히 AI 도입 확산의 걸림돌로 작용하고 있다”면서, “유아이패스의 에이전틱 자동화 플랫폼은 보안과 컴플라이언스를 강화하고, AI 에이전트가 생성한 결과의 정확성과 신뢰성을 높임으로써 기업의 AI 도입 장벽을 낮춘다”고 전했다. IDC 디피카 기리(Deepika Giri) 아시아태평양 AI 리서치 총괄 부사장은 “오늘날처럼 예측하기 어려운 경영 환경 속에서 AI 기반 기업으로의 전환은 더 이상 선택이 아닌 필수”라며, “많은 조직들이 에이전틱 AI와 자동화를 전사적으로 도입하고 있으며, 이를 통해 전례 없는 수준의 생산성과 성장을 실현하고 혁신을 가속화할 수 있는 가능성에 주목하고 있다. 이러한 기술은 향후 불확실성에 유연하게 대응할 수 있는 조직 기반을 마련하는 데에도 핵심적인 역할을 할 것”이라고 밝혔다.
작성일 : 2025-08-06
한국후지필름BI, ‘K-PRINT 2025’에서 고성능 디지털 인쇄기 및 DX 설루션 전시
한국후지필름비즈니스이노베이션(한국후지필름BI)이 8월 20일~23일까지 일산 킨텍스에서 열리는 ‘K-PRINT 2025’에 참가한다고 밝혔다. ‘K-PRINT 2025’는 디지털 인쇄, 라벨, 패키지, 텍스타일, 사인(Sign) 산업까지 다양한 인쇄 분야를 아우르는 전시회로, 인쇄 산업의 최신 기술과 미래 비전을 한눈에 조망할 수 있는 행사다. 한국후지필름BI는 이번 전시에서 ‘스포트라이트 온 스팟 컬러즈(Spotlight on Spot Colours)'와 ‘스마트 DX 설루션(Smart DX Solution)'을 주제로, 차별화된 별색 인쇄 기술과 업무 자동화를 위한 DX 전략을 선보인다. 부스를 방문하는 참관객은 창의적인 컬러 표현이 가능한 인쇄 장비부터, 실질적인 생산성 향상을 이끄는 비즈니스 설루션까지 다양한 기술을 체험할 수 있다. 전시 부스에서는 생동감 있는 별색 인쇄를 구현하는 6컬러 디지털 인쇄기 ‘레보리아 프레스(Revoria Press) PC1120’, 공간 효율성과 별색 인쇄 기능을 갖춘 5컬러 인쇄기 ‘레보리아 프레스 SC285S’, 프리프레스(Prepress) 워크플로 자동화 설루션 ‘레보리아 XMF 프레스레디(Revoria XMF PressReady)’, 그리고 가변 데이터 편집이 가능한 비즈니스 문서 자동화 설루션 ‘OL 커넥트 데스크톱’ 등 다양한 장비와 소프트웨어가 소개된다. 이외에도 한국후지필름BI는 RPA(로봇 프로세스 자동화), AI, 클라우드 기반의 다양한 비즈니스 설루션을 통해, 인쇄를 넘어 기업 전반의 생산성과 운영 효율을 극대화하는 디지털 전환 전략을 함께 제시할 예정이다.     전시 기간 동안 부스 내에서는 하루 3회에 걸쳐 장비 및 설루션 데모 프로그램이 진행된다. 시연 내용은 ▲가변 데이터 처리 및 프리프레스 자동화 ▲디지털 인쇄기 제품 소개 ▲생산 공정 효율화 설루션 등으로 구성되어, 현장에서 제품과 기술을 직접 확인할 수 있는 기회를 제공한다. 한편, 전시 첫날인 8월 20일 킨텍스 제2전시장 컨퍼런스룸에서는 ‘디지털 인쇄, 새로운 지평을 열다’를 주제로 특별 세미나가 열린다. 세미나는 ▲‘젯프레스(Jet Press) 1160CF’ 제품 소개 ▲RPA 기반 스마트 인쇄 공정 자동화 전략 ▲AI·클라우드 기반 지능형 인쇄 설루션 접근법 ▲IT 인프라 및 사이버 보안 전략 등 총 4개의 주제로 구성된다. 한국후지필름BI의 하토가이 준 대표는 “이번 ‘K-PRINT 2025’에서는 별색 인쇄 기술이 구현하는 차별화된 출력 품질과 업무 전반의 생산성을 높여줄 다양한 비즈니스 설루션을 선보일 예정”이라며, “앞으로도 인쇄 산업의 디지털 전환을 선도하며, 고객의 비즈니스 성장과 혁신을 지원하는 든든한 파트너가 되겠다”고 밝혔다.
작성일 : 2025-08-06
프로세스 자동화Ⅰ - 구조 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (6)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 토크 암(torque arm)의 설계 최적화를 위해 히즈에서 심센터 3D(Simcenter 3D) 솔버를 연계하여 시뮬레이션 자동화 워크플로를 구성하고 최적화를 진행하는 예제를 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■  이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   그림 1   <그림 1>은 실제 토크 암 제품 이미지와 적용된 위치 및 구조적 특성을 보여주는 예시로, 이 최적화 사례에서 다룬 실제 제품 및 설계 환경을 이해하는 데 참고하길 바란다. 이번 예제에서는 질량 최소화 및 구조적 제약 조건 만족이라는 실제 공학 설계 과제를 효율적으로 수행하는 데 히즈의 성능과 활용성을 살펴 볼 것이다. 이 사례에서 설계 최적화의 목표는 토크 암의 질량을 최소화하는 것이다. 단, 구조적 제약 조건을 반드시 만족해야 하는데, 이 때 구조적 무결성(structural integrity)을 유지하기 위해 응력 수준이 재료의 항복 응력(yield stress)을 넘지 않아야 하는 조건을 만족해야 한다. 이를 위해 설계 상에서 사전에 선정한 치수 변수를 범위 내에서 조정하게 된다. 최적화 설계 프로세스는 심센터 3D와 히즈 MDO를 활용하여 자동화된 워크플로 방식으로 진행된다. 즉, 심센터 3D에서 나스트란(Nastran) 솔버를 이용한 구조 해석 결과를 히즈가 자동으로 처리하고, 해당 결과를 평가하여 최적의 설계안을 찾는 방식이다.   프로세스 자동화(Process Automation) 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시, 설계 및 분석 프로세스는 여러 소프트웨어 환경에서 이루어진다. 이런 환경에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 직접 인터페이스 포털(Direct Interface Portal)이 필요하다. 히즈에서는 여러 공학 분야에서 흔히 사용하는 CAD 및 CAE 툴(아바쿠스, 앤시스, 카티아, 솔리드웍스, 매트랩, LS-다이나, 심센터, 파이썬 등)을 모두 지원하므로, 사용자는 기존에 보유한 다양한 소프트웨어를 그대로 활용하면서 히즈를 이용하여 최적화 작업을 자동화할 수 있다. 히즈가 제공하는 직접 인터페이스 포털 중 일부를 <그림 2>에 나타내었다. 포털을 사용하여 <그림 3>과 같이 구성하면 사용자가 수동으로 결과를 처리하고 데이터를 전환하는 번거로운 작업을 하지 않아도 된다. 이는 시간 소모 및 인적 오류 가능성을 줄이고, 작업 흐름을 더 효율적이고 빠르게 만든다. 워크플로의 자동화가 가능하기 때문에, 결과적으로 여러 분야의 시뮬레이션 모델이나 분석을 보다 빠르고 신뢰도 높게 수행하여 더 나은 설계 및 최적화 결과를 도출할 수 있다.   그림 2   그림 3   최적화 문제 정의   그림 4   설계 목적은 <그림 4>에 나타낸 토크 암의 질량을 최소화하는 것이다. 주어진 하중 조건은 25kN이며, 이 때 구조물이 교차 방향에서 받는 최대 응력이 항복 강도를 초과하지 않아야 한다.(최대 700MPa) 또한 최대 변형량이 4mm를 초과하지 않는다는 제약 조건도 함께 고려한다. 최적화에 적용할 주요 치수 변수는 <그림 5>와 같으며, 특히 두께(Thickness of Extrude)를 변수(T1)로 설정하여 최적화 문제를 규정했다.   그림 5     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (5)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 심센터 히즈에서 해석 모델의 정확도를 높이기 위한 캘리브레이션(calibration) 분석에 대해 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   지난 호까지 연재 내용에서는 스칼라 값을 최대화하거나 최소화하는 데에 최적화의 중점을 두었다. 그러나 목표 성능 곡선을 시뮬레이션 데이터와 실험 데이터의 일치 또는 규정된 제품 사양의 일치와 같이 목표 성능 곡선을 일치시키는 것이 목표인 경우가 많다. 그리고 제품 설계에서 시뮬레이션은 시간과 비용을 절약하며 성능 예측을 가능하게 하지만 시뮬레이션 결과는 종종 실험 측정 데이터와의 오차를 보인다.  이러한 오차는 여러 가지 원인에 기인한다. 첫째, 모델링 과정에서의 가정 및 이상화로 인해 실제 물리적 현상을 완벽하게 반영하지 못할 수 있다. 둘째, 재료 물성치나 경계 조건과 같은 입력 데이터의 불확실성 또는 부정확성이 결과에 영향을 미친다. 마지막으로, 해석 소프트웨어의 수치 해석 한계로 인해 미세한 차이가 발생할 수 있다. 이러한 오차를 줄이지 않고서는 시뮬레이션 결과에 대한 신뢰성을 확보하기 어렵다. <그림 1>에서는 변형 속도에 민감한 폴리머 거동을 시뮬레이션으로 구현하기 위해 four-term Prony series의 Neo-Hookean 재료 모델에서 사용되는 5개의 재료 상수를 최적화하여, 재료의 실제 거동과 가장 잘 일치하는 계수를 식별하는 사례를 나타낸다.   그림 1   이러한 오차를 줄이기 위해 캘리브레이션(calibration) 분석이 필요하며, 이를 통해 모델의 정확도를 향상시킬 수 있다. 심센터 히즈의 ‘Curve Fit’ 기능을 활용하면 효율적인 최적화를 통해 캘리브레이션 과정을 자동화할 수 있다. 이번 호에서는 1차원 스프링-댐퍼 모델의 진폭 감쇄 곡선을 참조 곡선과 일치시키기 위해 심센터 히즈를 사용한 최적화 방법을 소개한다.   예제 - 1차원 스프링-댐퍼 모델 <그림 2>는 예제로 사용된 1차원 스프링-댐퍼 모델을 나타낸다.   그림 2   예제는 다음과 같은 변수를 가진다. 여기서 스프링 상수 k와 감쇠 계수 c는 시스템의 동적 특성을 결정하는 중요한 변수로 작용한다.  m = 1.0 # mass(kg)  k = 10.0 # spring constant(N/m)  c = 0.5 # damping coefficient(Ns/m)  F = 10.0 # external force(N) 파이썬(Python)을 사용하여 변위(x), 속도(v)를 (dx/dt = v), (dv/dt = (-c v - k x + F)/m) 관계로 10초 시간에 대해 진폭을 계산하며 결과를 <그림 3>과 같이 확인할 수 있다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-07-01
[에디토리얼] AI로 국가를 다시 짜는 시대
2025년, AI는 단순한 기술을 넘어 국가 시스템의 설계 도구로 진화하고 있다. ‘AI가 인간을 대체할 것인가’라는 질문은 더 이상 중요하지 않다. 이제는 ‘AI를 국가가 어떻게 작동하게 만들고, 체제를 어떻게 다시 쓰는가’가 핵심 의제가 되었다. 중국과 미국은 이미 이 싸움에 돌입했고, 한국도 새 정부가 들어서면서 ‘AI 세계 3대 강국’을 1호 공약으로 내세우며 AI를 국가 전략으로 삼겠다는 의지를 보이고 있다. 그러나 지금의 준비와 방향이 충분한지는 냉정히 따져봐야 한다.   AI 통치 실험을 가속하는 중국과 미국 중국은 2025년 1월 말, 자국 스타트업 딥시크(DeepSeek)가 공개한 추론 모델 R1을 통해 세계적으로 주목을 받았다. 고성능 GPU 없이 오픈AI의 챗GPT 대비 95% 낮은 비용으로 구현된 이 모델은 기술력보다 시스템 설계 전략의 힘을 입증한 사례다. 중국은 이미 ‘차세대 AI 발전계획’과 ‘중국제조 2025’를 통해 AI를 중심으로 한 통치 구조를 설계해왔다. 초·중등 AI 교육 의무화, 칭화대·베이징대 AI 인재 트랙, 4700개 기업의 테스트베드 구조는 그 일환이다. AI는 기술이 아닌 국가의 신경망으로 작동하고 있다. 미국은 이와 다른 방식으로 움직이고 있다. 민간이 기술 혁신을 주도하고 정부는 방향을 잡는다. 챗GPT, 클로드, 제미나이, 소라 등 세계 최고 AI는 모두 미국 기업의 손에서 나왔다. 정부는 AI 규제와 윤리 가이드라인을 빠르게 마련하며, AI를 국가 안보의 핵심 요소로 인식하고 있다. DARPA를 통한 국방 R&D, 스탠퍼드 AI 인덱스 같은 연구 생태계, 그리고 엔비디아 중심의 반도체 인프라까지, 미국은 민간·정부·산업이 유기적으로 연결된 AI 생태계를 보유하고 있다.   한국, 산업 중심을 넘어 체제 설계로 갈 수 있을까? 이재명 대통령은 100조원 규모의 민관 공동 투자를 통한 AI 산업 육성을 주요 어젠다로 삼고 있다. ‘AI 인프라와 R&D 투자 확대’, ‘법·제도 정비를 통한 규제 기반 마련’, ‘산업 현장 중심의 AI 인재 양성’이라는 세 축의 균형 있는 추진을 강조하고 있다. 그러나 지금까지 공개된 전략은 산업 성장을 중심으로 한 기술·시장 중심 접근에 머물러 있다. 문제는 이 방향으로는 중국이나 미국을 따라잡기 어렵다는 데 있다. 중국은 국가 전체를 실험실 삼아 정책-교육-산업이 정렬되어 있고, 미국은 민간의 창의성과 국가 전략이 분리 없이 흘러간다. 반면 한국은 산업과 정부, 교육과 규제 간 연결 고리가 느슨하다. 정부는 정책을 던지고, 산업은 기술을 개발하며, 교육은 아직 뒤처져 있는 구조다. 또 AI 윤리, 노동시장 변화, 데이터 주권 등 민감한 사회적 이슈에 대한 국가적 프레임도 부재하다. 기술은 지금도 진화 중이다. 그러나 국가 전략은 선택이다. 한국이 AI 시대에 주도권을 가지려면 ‘기술’이 아니라 ‘방향’을 고민해야 한다. 이제는 ‘AI가 어디까지 갈 수 있을까’라는 물음 대신, 이렇게 물어야 한다. “우리는 AI로 어디까지 갈 준비가 되어 있는가?”   ■ 박경수 캐드앤그래픽스 기획사업부 이사로, 캐드앤그래픽스가 주최 또는 주관하는 행사의 진행자 겸 사회자를 맡고 있다. ‘플랜트 조선 컨퍼런스’, ‘PLM/DX 베스트 프랙티스 컨퍼런스’, ‘CAE 컨퍼런스’, ‘코리아 그래픽스’, ‘SIMTOS 컨퍼런스’ 등 다수의 콘퍼런스 기획에 참여했고,행사의 전반적인 진행을 담당해 왔다. CNG TV 웨비나의 진행자 겸 사회자로, IT 분야의 취재기자로도 활동 중이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-07-01
가트너, “에이전틱 AI의 도입 성공 위해서는 기반 워크플로를 재설계해야”
가트너가 에이전틱 AI(agentic AI) 프로젝트의 40% 이상이 2027년 말까지 비용 증가, 불분명한 비즈니스 가치, 부적절한 위험 관리를 이유로 중단될 것이라는 전망을 발표했다. 가트너가 2025년 1월 웨비나 참석자를 대상으로 실시한 설문조사에 따르면, 응답자의 19%는 에이전틱 AI에 상당한 투자를 했고, 42%는 보수적으로 접근하고 있는 것으로 나타났다. 반면, 8%는 투자를 전혀 하지 않았으며, 31%는 상황을 관망하거나 확신하지 못하는 것으로 나타났다. 가트너는 많은 공급업체가 ‘에이전트 워싱(Agent Washing)’을 통한 과대광고를 진행하고 있다고 지적했다. 에이전트 워싱은 AI 어시스턴트, 로봇 프로세스 자동화(RPA), 챗봇 등 실질적인 에이전트 기능을 갖추고 있지 않은 기술을 에이전틱 AI인 것처럼 과장하는 행위를 의미한다. 가트너는 수천 개의 에이전틱 AI 공급업체 중 실제로 해당 기술을 제공하는 업체는 약 130개에 불과할 것으로 분석했다. 이러한 초기 과제에도 불구하고, 가트너는 에이전틱 AI로 전환되는 추세는 AI 역량과 시장 기회 측면에서 비약적인 발전을 불러올 수 있다고 보고 있다. 가트너는 “에이전틱 AI는 스크립트 기반 자동화 봇과 가상 비서를 넘어 리소스 효율성 향상, 복잡한 작업 자동화, 새로운 비즈니스 혁신을 이끄는 새로운 수단을 제공할 것”이라고 전망했다. 가트너는 에이전틱 AI를 통해 자율적으로 수행되는 일상 업무 결정이 2024년 0%에서 2028년에는 최소 15%까지 증가할 것으로 전망했다. 또한 2028년까지 기업용 소프트웨어 애플리케이션의 33%가 에이전틱 AI 기능을 포함할 것으로 예상되며, 이는 2024년 1% 미만에서 크게 증가한 수치다. 가트너는 현재와 같은 초기 단계에서는 명확한 가치와 ROI가 입증된 경우에만 에이전틱 AI를 도입할 것을 권장했다. 기존 시스템에 AI 에이전트를 통합하는 것은 기술적으로 복잡하거나, 워크플로 중단이나 고비용의 수정 작업이 발생할 수 있기 때문이다. 가트너는 에이전틱 AI 기반으로 워크플로를 처음부터 재설계하는 것이 성공적인 구현을 위한 이상적인 접근방식이라고 강조했다. 아누쉬리 버마(Anushree Verma) 가트너 시니어 디렉터 애널리스트는 “현재 대부분의 에이전틱 AI 프로젝트는 초기 실험 단계거나 개념 증명 단계에 있으며, 과대광고에 의해 추진되거나 잘못 적용되는 경우가 많다. 대규모 AI 에이전트 도입에 드는 실제 비용과 복잡성을 간과할 경우, 실운영 단계로 넘어가지 못하고 정체될 수 있다”면서, “에이전틱 AI로부터 실질적인 가치를 얻으려면 개별 업무에 대한 보조보다는 기업 생산성 향상에 집중해야 한다. 기업은 의사결정을 위한 AI 에이전트, 반복적인 워크플로를 위한 자동화, 간단한 정보 검색을 위한 어시스턴트 활용부터 에이전틱 AI 도입을 시작할 수 있다. 핵심은 비용 절감, 품질 상승, 속도 향상, 규모 확대를 통한 비즈니스 가치 창출”이라고 조언했다.
작성일 : 2025-06-25
로크웰 오토메이션, ‘스마트 제조 현황 보고서’ 통해 AI/자동화를 통한 자동차 산업의 혁신 추세 짚어
로크웰 오토메이션이 제10차 스마트 제조 현황 보고서의 일환으로 ‘2025 스마트 제조 현황 보고서 : 자동차 산업 에디션’을 발표했다. 이번 보고서는 자동차 및 타이어 제조업체, 장비 제조업체(OEM), 엔지니어링 조달업체(EPC), 시스템 통합업체 등 15개국 130명의 업계 리더를 대상으로 실시되었으며, 급변하는 시장 환경 속 경쟁력을 유지하기 위한 자동차 산업 내 기술 도입과 인력 전략의 변화를 집중 조명했고 ▲장기 인력 과제와 전략 ▲기술 투자 지속 및 AI 도입 가속화 등의 이슈를 다뤘다.     이번 조사에서는 ‘인력 확보 및 유지’가 자동차 업계의 가장 시급한 과제로 떠올랐다. 지난 해와 비교해 인력 관련 도전 과제의 비중이 높아졌으며, 자동차 및 타이어 제조업체 응답자의 37%는 ‘조직이 새로운 기술과 프로세스를 효과적으로 수용할 수 있도록 돕는 변화 관리’를 향후 12개월간 가장 중요한 과제로 꼽았다. 이어서 숙련 인력 확보(31%), 유지(33%), 인건비 상승(36%) 등도 주요 이슈로 나타났다. 기술 투자는 여전히 강세를 보이고 있다. 자동차 및 타이어 제조업체들은 AI, 생산 모니터링, 사이버보안 분야에 꾸준히 투자하고 있으며, 응답자의 62%는 기술 투자의 가장 큰 이유로 ‘장기적인 비즈니스 영향’을 꼽았고, ‘생산 능력 확대(58%)’ 또한 중요한 투자 동기로 드러났다. 이는 전체 제조업계의 2025년 전망과도 일치한다. 특히, 자동차 제조업체들은 생성형 AI, 로봇 프로세스 자동화(RPA), 디지털 도구 등 신기술에 대한 투자도 선도하고 있다. 기술 도입의 주요 목적은 안전성 향상, 사이버보안 강화, 규정 준수 확보, 비용 절감과 리스크 최소화 등으로, 이러한 방향성은 변함없이 유지되고 있음을 보여줬다. AI 도입에 대한 인식도 긍정적으로 변화하고 있다. 품질 관리, 로보틱스, 공정 최적화는 AI 기술의 대표적인 활용 사례로 나타났으며, 자동차 업계는 생성형 AI, 로봇 프로세스 자동화(RPA), 디지털 툴 분야에서도 타 산업보다 높은 투자 계획을 보였다. 특히, AI를 ‘위험 요소’로 인식한 응답자 비율은 2023년 24%에서 올해 14%로 줄어들어, 기술 채택에 대한 거부감이 줄고 실질적인 활용에 대한 기대감은 높아진 것으로 보인다. 기술 도입의 핵심 목표는 여전히 일관되게 유지되고 있다. 안전, 사이버보안, 규정 준수에 기반한 품질 향상, 비용 절감, 리스크 감소가 기술 투자 목적의 상위를 차지했다. 한편, 2030년까지 약 790만 명의 제조 인력 부족이 예상되는 가운데, 제조업체들은 자동화 투자와 더불어 AI 이해도와 커뮤니케이션, 분석적 사고, 적응력 등 소프트 스킬을 갖춘 인재 확보에 박차를 가하고 있다. 로크웰 오토메이션의 제임스 글래슨(James Glasson) 글로벌 산업 담당 부사장은 “AI와 자동화가 공장 현장을 재편하는 시대에, 자동차 제조의 미래와 성공은 기술뿐만 아니라 인재 혁신과 사람에 대한 투자에 달려 있다”며, “기술 역량 강화와 혁신은 이제 성장을 이끄는 핵심 동력이 되었다”고 말했다.
작성일 : 2025-06-17
2024년 산업디지털전환실태조사 결과 (DX 리포트)
이 내용은 한국생산성본부(KPC)가 수행한 제조업 디지털전환(DX,  Digital Transformation) 및 AI 활용도 관련 공식 조사 결과이다.   주요 조사 결과 요약 AI 실제 도입률 제조업 응답 기업의 약 90%가 실제로 AI를 도입하지 않은 것으로 나타났습니다. 이는 제조업 내 AI 도입률이 3.9%에 그치는 등, 타 산업(정보통신 25.7%)에 비해 현저히 낮은 수치입니다. AI 도입 저해 요인 AI 도입이 저조한 주요 원인으로는 다음이 꼽혔습니다. 인프라 부족: 고성능 컴퓨팅 환경, 네트워크 등 AI 활용에 필요한 인프라가 미흡함. 산업 데이터 확보의 어려움: 제조 현장에서 발생하는 데이터의 품질 및 통합 문제, 데이터 자체의 부족이 큰 장벽으로 작용함. 전문 인력 부족, 초기 투자비용 부담, 기존 시스템과의 연계성 문제 등도 복합적으로 영향을 미침. 추가 참고 AI 활용률이 낮은 배경에는 산업 데이터의 관리 및 공유가 어렵고, AI 도입에 따른 실질적 변화(생산성, 비용 등)가 아직 제한적이라는 현장 평가도 반영되어 있습니다. 기업들은 AI 도입 필요성은 인식하고 있으나, 실제 활용률은 30% 미만, 제조업은 20% 내외로 조사되었습니다. 결론 한국생산성본부(KPC)가 발표한 제조업 디지털전환 및 AI 활용 실태조사 결과는 KPC 공식 홈페이지 공지사항에서 확인할 수 있습니다. 제조업의 AI 도입률은 매우 낮으며, 인프라와 데이터 확보의 어려움이 핵심 저해 요인임이 명확히 드러났습니다 ----------------------------------- 1.    조사 배경    인공지능, 빅데이터 등 디지털 기술의 등장은 과거 전통적 산업 간의 경계를 희미하게 만드는 동시에, 경제 성장의 새로운 원동력으로 각광받고 있음     이들 기술을 활용한 디지털 전환(DX; Digital Transformation)은 공정의 최적화는 물론, 제품 지능화, 서비스 고도화를 통해 산업에 당면한 과제를 해결하고 새로운 가치를 창출한다는 점에서 의미가 매우 크나, 현실적으로 중견, 중소기업에서는 인력, 자금 등의 문제로 산업 디지털 전환이 필요함에도 추진하기에 어려운 부분이 존재함     이처럼 기업의 애로사항과 불확실성이 존재하는 상황에서 정부에서 의결한 ‘산업 디지털 전환 촉진법’은 디지털 전환과 관련된 법적 사각지대를 해소하고 법률적 기반을 마련하는 계기가 될 것임     향후 산업 디지털 전환과 관련된 종합계획이 수립되고 각종 세부 정책들이 본격적으로 추진되기 위해서는 디지털 전환 역량이나 준비도 등의 산업계 실태를 면밀하게 파악하는 것이 선행되어야 함. 특히,  산업 디지털 데이터의 공유와 협업을  통한 수익 창출과 관련된 규범이 새롭게 마련된 만큼 이를 위한 정책적 근거자료 마련이 필수적임   조사 근거 : 산업디지털전환촉진법 2.    조사 목적     규모별 디지털 전환(DX) 인식 수준, 산업의 데이터 활용률, 디지털 전환 역량 및 애로사항, 요구사항 등을 종합적으로 조사함으로써 DX 역량진단 및 기업 수준을 분석, 평가할 수 있는 기초자료를 수립하고자 함     또한, 각종 데이터 수집 현황,  분석 및 활용 역량,  데이터 협력·거래  등 산업 데이터 역량과 니즈를 확인함으로써  실제  사업 수행 시 기업 간 매칭 및 맞춤형 지원사업을 가능토록 하고자 함   산업데이터 생성ㆍ활용의 활성화와 지능정보기술의 산업 적용을 통하여 산업의 디지털 전환을 촉진함으로써, 산업 경쟁력을 확보하고 국민의 삶의 질 향상과 국가 경제발전에 이바지하기 위해 필요한 ‘산업 디지털전환 종합 계획’ 수립 및 시행을 위한 관련 현황, 통계 및 실태 파악   목차 제 1장. 서론    1 01.    조사  배경 및 목적    3 1.    조사 배경    3 2.    조사 목적    3 01.    표본설계    4 1.    조사 대상    4 2.    모집단  분포 및 표본틀    5 3.    표본설계    6 4.    가중치와 추정    8 02.    조사 개요    11 1.    조사 개요    11 2.    조사 항목    11 03.    응답자 특성    13 제 2장. 조사결과    14 01.    디지털 전환 인식    16 (1)    DX에    대한 임직원의 인지도    16 (2)    디지털    비전과 리더십 단계    17 (3)    디지털    전략 단계    18 (4)    디지털    기술과 솔루션 이해도    19 02.    산업 데이터 역량    20 1.    데이터 수집    20 (1)    시장 및 고객 데이터 수집 방법, 비중    20 (2)    공정  데이터  수집 방법, 비중    21 (3)    제품 및 서비스 데이터 수집 방법, 비중    22   (4)    데이터 인프라    23 (5)    데이터  품질관리 성숙도 단계    24 (6)    데이터 수집시 애로사항    25 2.    데이터 분석·활용    26 (1)    ‘데이터    사용/관리’ 변화 정도    26 (2)    데이터    분석·활용 역량 수준    27 (3)    데이터    관련 전문인력 현황, 필요 규모    28 (4)    데이터    분석·활용 시 장애요인    29 3.    데이터 협력·거래    30     (1) 데이터 협력, 거래 활동 여부    30 (1-1) 데이터 협력, 거래 활동 목적    31 (1-2) 데이터 협력, 거래 활동이 없는 이유    32 (2)    데이터    협력,    거래를 위한 정보 획득 경로    33 (3)    데이터    협력,    거래의 애로사항    34 (4)    데이터    협력,    거래 과정에서 경험한 부당한 대우, 침해행위    35 4.    인공지능(AI) 활용    36 (1)    인공지능(AI) 기술의 업무 활용 여부    36 (2)    인공지능 기술을 업무에 활용하는 목적    37 (3)    인공지능 기술을 업무에 활용 시, 가장 어려웠던 점    38 (4)    인공지능 기술을 업무에 활용하지 않는 이유    39 03.    디지털 기반 프로세스 혁신    40 1.    디지털  프로세스 혁신 활동    40 (1)    업무 프로세스에 적용하고 있는  디지털 기술    40 (1-1) 디지털 기술별 적용  업무 프로세스_빅데이터    41 (1-2) 디지털 기술별 적용  업무 프로세스_인공지능    42 (1-3) 디지털 기술별 적용  업무 프로세스_IoT    43 (1-4) 디지털 기술별 적용  업무 프로세스_클라우드    44 (1-5) 디지털 기술별 적용  업무 프로세스_AR/VR    45 (1-6) 디지털  기술별 적용 업무  프로세스_지능형 협동 로봇    46 (1-7) 디지털  기술별 적용  업무 프로세스_RPA    47   (1-8) 디지털 기술별 적용 업무 프로세스_디지털마케팅솔루션    48 (1-9) 디지털 기술별 적용 업무 프로세스_3D 프린팅    49 (1-10) 디지털 기술별 적용 업무 프로세스_모바일 기술    50 (1-11) 디지털 기술별 적용 업무 프로세스_5G 기술    51 (1-12) 디지털 기술별 적용 업무 프로세스_보안    52 (2)    각 디지털 기술별로 과거부터 현재까지 예상되는 투자 비중    53 (3)    지난 1년간 디지털 기술 관련 투자액    54 (4)    빅데이터 부문 투자 금액(최근 1년)    55 (5)    인공지능 부문 투자 금액(최근 1년)    56 (6)    도입한 디지털 기술/도입하지는 않았으나 도입 효과가 좋을 것으로 예상되는 기술 · 57 (7) 디지털 기술 도입에 있어 자체 도입 & 아웃소싱 비중    59 (8) 디지털 기술 도입 후,  사후 관리    60 2.    (8-1) 사후 활동이 잘 되지 않는 이유    61 (9)    ‘정보화  준비도’ 변화 정도    62 (10)    ‘정보화  기술  수준’ 변화 정도    63 디지털  기반  프로세스 혁신 성과    64 (1)    ‘업무 프로세스 개선’ 변화 정도    64 (2)    자동화를    통한 업무시간 단축 여부 및 단축된 시간    65 (3)    프로세스    자동화율    66 (4)    프로세스    지능화율    67 (5)    프로세스    통합 연계율    68 04. 디지털 신기회    창출    69 1.    비즈니스 모델 혁신 활동    69   (1)    ‘비즈니스 모델’ 변화 정도    69 (2)    최근 3년간 디지털 기반 비즈니스 모델 혁신 및 변경 시도 여부    70 (2-1) 비즈니스 모델 혁신을 위한  시도의 목적    71 (2-2) 디지털 기반 비즈니스 모델  혁신의 유형    72 (3)    ‘고객 관련 업무’ 변화 정도    73 2.    디지털 제품 및 서비스 창출    74 (1)    최근 3년 디지털 연구 성과  창출 경험    74 (2)    ‘신제품/서비스 개발’ 변화 정도    75 (3)    최근 3년간 디지털 기술 적용을 통한 획기적 개선, 새롭게 출시된 제품 및 서비스 · 76 (3-1) 제품 및 서비스 개선, 출시를 위해 적용한 디지털 기술    77 (3-2) 제품 및 서비스 혁신을 위해 적용된 디지털 기술 획득 경로    78 (3-3) 전체 매출액에서 디지털 혁신 제품 및 서비스 매출이 차지하는 비중    79 (3-4) 디지털 혁신 제품 및 서비스가 개선, 출시되지 않은 이유    80 05.    디지털 전환 역량    81 (1)    ‘정보화 비전과 전략’ 변화 정도    81 (2)    ‘디지털 전환 인식’ 변화 정도    82 (3)    ‘혁신 문화 수준’ 변화 정도    83 (4)    디지털 전환 추진 여부    84 (4-1) 디지털  전환 추진 주도 부서    85 (5)    디지털 부문 연구개발 투자 금액(최근 1년)    86 (6)    디지털 부문 연구개발 인력 수    87 (7)    ‘정보화 인력 수준’ 변화 정도    88 (8)    디지털 전환 추진계획 보유 여부    89 (8-1) 디지털 전환 추진 시기    90 (8-2) 디지털 전환 추진을 위한  자금 조달 방식    91 (9)    디지털 전환 관심 분야    92 (10)    디지털 전환 관련 인력 양성을 위한 직원 교육 프로그램 실시 여부    93 (11)    디지털 전환 추진을 위한 인력 양성 및 외부 충원 계획 여부    94 (11-1) 디지털 전환 추진을 위해 필요한  인력 유형    95 (12)    디지털 전환 관련 협업 여부    96 (12-1) 디지털 전환 관련 외부 협업  유형별 수요    97 (13)    ‘지식 공유 수준’ 변화 정도    98 (14)    디지털 전환 관련 수출 애로사항    99 06.    디지털 전환 애로사항 및 정책 수요    100 (1)    디지털 전환 추진 애로사항    100 (2)    정부 및 지자체의 디지털 전환 정책지원 수요    101 (2-1) 정책지원을 받지 않은 이유    102 (3)    필요로 하는 디지털 전환 관련 정부  정책 분야    103   (4)    ‘정부    DX 지원 및 규제 환경’ 변화 정도    104 (5)    ‘시장    환경’ 변화 정도    105 (6)    ‘기술    환경’ 변화 정도    106 (7)    ‘경쟁    환경’ 변화 정도    107 부록. 설문지    108 상세내용 보러가기
작성일 : 2025-06-16
산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (4)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 심센터 히즈에서 산포 특성을 반영한 신뢰성 분석 방법에 대해 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   설계 최적화에서 산포의 의미 오늘날의 제품 개발 과정은 단순한 성능 극대화에서 벗어나, 변동성(variability)을 고려한 신뢰성 있는 설계(reliable design)로 진화하고 있다. 즉, 하나의 최적점(optimum)을 찾는 것만으로는 실제 양산 및 사용 환경에서의 품질을 보장하기 어렵다. 이는 부품 공차, 조립 오차, 환경 조건의 변화, 사용자 행동 등 다양한 요인이 제품 성능에 미치는 영향을 무시할 수 없기 때문이다.   그림 1   <그림 1>은 다양한 설계 및 제조 요인의 ‘산포(scattering)’가 시스템의 성능 분포에 어떻게 영향을 미치는지를 직관적으로 보여준다. 시스템 입력에는 ▲운용 조건(operating conditions) ▲형상 특성(geometric properties) ▲재료 물성(material properties) ▲제조 공차(manufacturing tolerances) 등이 포함되며, 이들은 실제 제품 사용 환경이나 제조 공정에서 일정한 값을 가지지 않고 확률적 분포를 따른다. 중앙에 위치한 시스템(system)은 이러한 입력 변수를 바탕으로 동작하며, 그 결과로 출력 성능 역시 하나의 고정된 값이 아닌 분포(distribution)로 표현된다. 이는 동일한 설계를 반복 생산하거나 다양한 조건에서 사용할 경우 성능 편차가 존재할 수 있음을 의미한다. <그림 1>의 오른쪽 그래프에서 보듯이, 출력 성능은 평균값(original performance)을 중심으로 정규 분포 형태를 가지며, 특정 기준(criteria)을 만족하지 못하는 영역은 고장 확률(probability of failure)로 해석된다. 이 고장 확률이 낮을 수록 설계가 더 신뢰할 수 있고 안정적이라는 것을 뜻한다. 따라서 단순한 평균 성능만을 추구하는 것이 아니라, 산포를 고려하여 설계의 신뢰성과 강건성을 동시에 확보하는 것이 현대 설계 최적화의 중요한 방향으로 자리 잡고 있다. 이러한 맥락에서 산포란 설계 변수 또는 외란 변수의 불확실성이 시스템 응답에 미치는 영향을 계량적으로 분석하고 이해하는 과정의 핵심 개념이다. 예를 들어, 동일한 설계 조건에서 반복 실험 또는 시뮬레이션을 수행했을 때 결과가 고르게 나오지 않고 분산이 크다면, 이는 해당 시스템이 외부 요인에 민감함을 의미한다.   그림 2   <그림 2>는 설계 변수 공간(x1, x2)에서 목표함수 f(x)를 최소화하는 과정에서 산포 특성이 설계 해에 미치는 영향을 시각화한 것이다. 이는 실무에서 흔히 발생하는 ‘좋은 성능을 갖지만 제조나 환경 요인으로 인해 성능이 불안정해지는 경우’를 잘 설명해준다. 결정론적 최적점(Deterministic Optimum) : 주황색 점은 일반적인 최적화에서 도출된 해로, 주어진 조건 하에서 목표함수 f(x)를 가장 작게 만드는 설계점이다. 그러나 이는 모든 입력값이 고정되어 있다고 가정한 이상적인 결과이며, 실제 제품에서 변수의 산포가 존재할 경우, 해당 해는 제한 조건(g(x)=0)을 위반할 수 있다. 이를 둘러싼 붉은 등고선은 입력값의 분산이 시스템 응답을 어떻게 퍼지게 하는지를 의미하며, 일부 샘플은 비실현 가능 영역(infeasible region)으로 넘어갈 위험이 있다. 강건 최적점(Robust Optimum) : 파란색 점은 변수의 변동성까지 고려한 최적 설계 해다. 목표함수는 결정론적 해보다 약간 더 높을 수 있으나, 산포된 샘플 대부분이 제한 조건을 위반하지 않도록 위치시킨 것이다. 즉, 신뢰성과 강건성(reliability & robustness)을 우선시한 설계 접근법이다. 하단의 분포 곡선은 x1축을 따라 설계 해의 산포를 묘사하며, 결정론적 해와 강건 해 각각에 대한 확률적 분포 중심이 어떻게 달라지는지를 보여준다. 강건 해는 더 많은 샘플이 안전 영역에 포함되도록 분포 중심이 조정된 반면, 결정론적 해는 평균적으로 좋은 성능을 가지지만 일부 샘플이 위험 영역에 위치하게 된다. 결국, 산포는 더 이상 ‘불확실성’이라는 불편한 요소가 아니라, 제품의 강건성을 확보하기 위한 핵심 데이터로 활용되어야 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-06-04