• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "ROM"에 대한 통합 검색 내용이 1,470개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
어도비, 파이어플라이 AI를 적용한 어도비 익스프레스 모바일 앱 출시
어도비가 어도비 익스프레스(Adobe Express) 모바일 애플리케이션을 공식 출시했다.  어도비 익스프레스는 쉽고 빠르게 소셜 미디어 콘텐츠, 동영상, 전단지, 로고 등을 구상 및 디자인하며 공유할 수 있는 올인원 AI 콘텐츠 제작 앱이다. 어도비는 “어도비 익스프레스로 제작된 콘텐츠 수가 지난해에만 두 배 이상 증가하는 등 전 세계 수백만 명의 사용자가 콘텐츠 제작을 위해 어도비 익스프레스를 사용하고 있다”고 설명했다.  새로운 어도비 익스프레스 모바일 앱은 무료로 사용 가능하며 다양한 언어와 대부분의 안드로이드 및 iOS 기기를 지원한다. 사진, 디자인, 동영상 및 생성형 AI 역량 등을 올인원 콘텐츠 편집기에 통합해 마케터, 중소기업, 학생, 크리에이터 전문가 등 누구나 웹과 모바일에서 고품질의 콘텐츠를 제작할 수 있도록 돕는 것이 특징이다. 또한, 어도비 익스프레스는 모든 스킬 수준의 사용자가 어도비 파이어플라이 생성형 AI 구동 기능을 통해 빠르고 간편하게 복잡한 작업을 해결할 수 있도록 지원한다. 크리에이터는 텍스트를 이미지로(Text to Image), 텍스트 효과(Text Effects), 생성형 채우기(Generative Fill), 텍스트를 템플릿으로(Text to Template) 등의 기능을 사용해 간단한 텍스트 프롬프트로 뛰어난 이미지와 디자인을 즉시 생성하고, 인물이나 개체를 삽입, 제거 및 교체하며 시선을 사로잡는 헤드라인을 만들 수 있다. 또한 오디오에서 애니메이션(Animate fROM Audio)과 비디오 자막(Caption Videos) 등 AI 기능을 통해 복잡한 작업을 클릭 한 번으로 자동화할 수 있다.     새로운 어도비 익스프레스 모바일 앱은 어디서나 쉽고 빠르게 아이디어를 구상하고, 콘텐츠를 생성 및 게시할 수 있도록 다양한 기능을 제공한다. 템플릿에 동영상 클립과 이미지, 음악을 결합할 수 있으며, 애니메이션을 추가하고 정확한 맞춤형 자막을 100개 이상의 언어로 실시간 생성 및 편집할 수 있다. 동영상 타임라인, 레이어 타이밍 및 4K 동영상 기능도 지원한다. 클릭 한 번으로 이미지 및 동영상 배경을 편집, 제거하거나 크기를 조정하고, QR 코드를 생성하거나 동영상을 자를 수 있다. 텍스트를 이미지로 생성할 수 있고, 간단한 텍스트 프롬프트로 인물, 개체 등을 삽입, 제거 및 교체할 수도 있다. 생성형 AI를 활용해 헤드라인, 카피 및 메세지를 만들거나 소셜 미디어 콘텐츠, 전단지, 포스터용 템플릿을 제작할 수도 있다. 사용자는 수천 개의 동영상 및 템플릿과 2만 8000개 이상의 어도비 글꼴, 수십만 개의 어도비 스톡 동영상, 음악 및 디자인 애셋을 이용할 수 있다.
작성일 : 2024-05-03
오픈AI CLIP 모델의 이해/코드 분석/개발/사용
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 생성형 AI의 멀티모달 딥러닝 기술 확산의 계기가 된 오픈AI(OpenAI)의 CLIP(Contrastive Language-Image Pre-Training, 2021) 코드 개발 과정을 분석하고, 사용하는 방법을 정리한다.    ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 이메일 | laputa99999@gmail.com 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast CLIP은 구글이 개발한 자연어 번역 목적의 트랜스포머 모델, 비전 데이터 변환에 사용되는 VAE(Variational Autoencoder) 개념을 사용하여 멀티모달 학습 방식을 구현하였다. 이번 호에서는 그 과정을 설명하고 파이토치로 직접 구현하는 과정을 보여준다. CLIP을 이용하면 유튜브, 넷플릭스와 같은 영상에서 자연어로 질의해 해당 장면을 효과적으로 검색할 수 있다. 참고로, CLIP에서는 트랜스포머가 핵심 컴포넌트로 사용되었다. CLIP과 같이 트랜스포머가 자연어 번역 이외에 멀티모달의 핵심 기술이 된 이유는 비정형 데이터를 연산 가능한 차원으로 수치화할 수 있는 임베딩 기술의 발전과 트랜스포머의 Key, Query, Value 입력을 통한 여러 학습 데이터 조합이 가능한 특징이 크게 작용했다.    그림 1. 멀티모달 시작을 알린 오픈AI의 CLIP 모델(Learning Transferable Visual Models FROM Natural Language Supervision, 2021)   트랜스포머와 VAE를 이용한 멀티모달 CLIP 네트워크를 좀 더 깊게 파헤쳐 보도록 한다. 앞서 설명된 트랜스포머, 임베딩과 관련된 개념에 익숙하다면, CLIP을 이해하고 구현하는 것이 그리 어렵지는 않을 것이다.    CLIP에 대한 이해 오픈AI에서 개발한 CLIP 모델은 공유 임베딩 공간 내에서 이미지 및 텍스트 형식을 통합하는 것을 목표로 했다. 이 개념은 기술과 함께 이미지와 텍스트를 넘어 다른 양식을 수용한다.(멀티모달) 예를 들어, 유튜브 등 비디오 애플리케이션 내에서 텍스트 검색 성능을 개선하기 위해 공통 임베딩 공간에서 비디오 및 텍스트 형식을 결합하여 모델을 학습시켰다. 사실, 임베딩 텐서를 잠재 공간(Latent Space)으로 이기종 데이터를 변환, 계산, 역변환할 수 있다는 아이디어는 VAE 기술, 구글의 트랜스포머 논문(2017)을 통해 개발자들 사이에 암시되어 있었다. 이를 실제로 시도해본 연구가 CLIP이다.  참고로, CLAP(Contrastive Language-Audio Pretraining)은 동일한 임베딩 공간 내에서 텍스트와 오디오 형식을 통합하는 또 다른 모델로, 오디오 애플리케이션 내에서 검색 기능을 개선하는 데 유용하다. CLIP은 다음과 같은 응용에 유용하다. 이미지 분류 및 검색 : CLIP은 이미지를 자연어 설명과 연결하여 이미지 분류 작업에 사용할 수 있다. 사용자가 텍스트 쿼리를 사용하여 이미지를 검색할 수 있는 보다 다양하고 유연한 이미지 검색 시스템을 허용한다. 콘텐츠 조정 : CLIP은 부적절하거나 유해한 콘텐츠를 식별하고 필터링하기 위해 이미지와 함께 제공되는 텍스트를 분석하여, 온라인 플랫폼의 콘텐츠를 조정하는 데 사용할 수 있다. 참고로, 메타 AI(Meta AI)는 최근 이미지, 텍스트, 오디오, 깊이, 열, IMU 데이터 등 6가지 양식에 걸쳐 공동 임베딩을 학습하는 이미지바인드(ImageBind)를 출시했다. 두 가지 모달리티를 수용하는 최초의 대규모 AI 모델인 CLIP은 이미지바인드 및 기타 다중 모달리티 AI 시스템을 이해하기 위한 전제 조건이다. CLIP은 배치 내에서 어떤 N×N(이미지, 텍스트) 쌍이 실제 일치하는지 예측하도록 설계되었다. CLIP은 이미지 인코더와 텍스트 인코더의 공동 학습을 통해 멀티모달 임베딩 공간을 만든다. CLIP 손실은 트랜스포머의 어텐션 모델을 사용하여, 학습 데이터 배치에서 N개 쌍에 대한 이미지와 텍스트 임베딩 간의 코사인 유사성을 최대화하는 것을 목표로 한다.  다음은 이를 설명하는 의사코드이다. 1. img_en = image_encoder(I)   # [n, d_i] 이미지 임베딩 인코딩을 통한 특징 추출  2. txtxt_emdn = textxt_emdncoder(T)    # [n, d_t] 텍스트 임베딩 인코딩을 통한 특징 추출 3. img_emd = l2_normalize(np.dot(img_en, W_i), axis=1)    # I×W 결합(조인트) 멀티모달 임베딩 텐서 계산 4. txt_emd = l2_normalize(np.dot(txtxt_emdn, W_t), axis=1)  # T×W 결합(조인트) 멀티모달 임베딩 텐서 계산 5. logits = np.dot(img_emd, txt_emd.T) * np.exp(t)   # I×T * E^t 함수를 이용한 [n, n]코사인 유사도 계산 6. labels = np.arange(n) 7. loss_i = cross_entropy_loss(logits, labels, axis=0)  # 이미지 참값 logits과 예측된 label간 손실 8. loss_t = cross_entropy_loss(logits, labels, axis=1)  # 텍스트 참값 logits과 예측된 label간 손실 9. loss = (loss_i + loss_t)/2   # 이미지, 텍스트 손실 평균값   실제 오픈AI 논문에는 <그림 2>와 같이 기술되어 있다.(동일하다.)   그림 2     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
[피플 & 컴퍼니] 한국알테어 이승훈 기술 총괄 본부장
더욱 빠르고 효율적인 제품 개발을 위한 AI 기술 본격화 추진   제조산업에서도 AI(인공지능)에 대한 관심이 높아지고 있다. 한편으로 실질적인 AI 도입과 활용에 대한 제조업계의 고민도 커졌다. 알테어는 시뮬레이션, HPC, 클라우드, 데이터 애널리틱스 등 자사의 기술 역량을 바탕으로 제조산업을 위한 AI 기술 개발을 가속화하고 있으며, 향후 본격적으로 제조시장에 확산시킨다는 전략을 내세웠다. ■ 정수진 편집장   ▲ 한국알테어 이승훈 기술 총괄 본부장은 제품 개발에서 AI의 활용이 구체화되고 있다고 짚었다.   제조산업에서 AI에 대한 관심이 높아지고, 도입과 활용이 확산되는 배경은 무엇이라고 보는지 제품의 생산 방식이 다품종 소량 생산 방식이 확대되면서 제품의 개발 주기가 꾸준히 짧아지고 있다. 이에 따라 제품 개발과 관련한 예측과 의사결정은 더욱 빨라져야 한다는 요구도 높다. 이를 위해 프로토타입을 만들어 실험하는 방식에서 컴퓨터와 CAE 소프트웨어를 사용하는 시뮬레이션으로 변화해 왔는데, 시뮬레이션 역시 해결해야 하는 과제가 있다. 시뮬레이션을 활용하려면 전문적인 엔지니어링 지식이 필요하고, 시뮬레이션에 걸리는 시간이 더욱 빨라지는 제품 개발 주기에 맞추기 어려워졌다. 시뮬레이션이 제품의 초기 개발에서 생산까지 더욱 폭넓게 쓰이는 상황이 시뮬레이션 기반의 의사결정에 걸리는 시간을 늘리게 된 측면도 있다. AI는 이에 대한 해결책으로 관심을 모으고 있다. 제조업체에서 실험 데이터와 해석 데이터가 상당히 쌓여 있는 상황인데, 이를 AI 학습에 활용해서 빠르게 인사이트를 얻고 제품 개발에 반영할 수 있겠다는 아이디어가 이제 구체화되고 있는 시점이라고 볼 수 있겠다.   최근 AI와 관련한 제조산업의 동향이나 이슈가 있다면 제조업체에서 해석 데이터와 실험 데이터가 쌓여 있기는 한데, 이 데이터가 각 엔지니어의 PC에 흩어져 있는 것이 현실이다. 이에 따라 여러 곳에 저장된 데이터를 통합 관리하는 시스템에 대한 요구가 있다. 또한, 이 데이터를 AI에 활용하기 위한 추가 가공의 자동화에 대한 목소리도 있다. 엔지니어링 데이터를 AI에 활용하기 위해서는 AI에 맞는 데이터의 전처리(pre-processing)가 중요하다. 전처리란, 아무렇게나 쌓여 있는 데이터를 분류하고 AI에 적용하기 위해 적절한 포맷의 데이터로 변환하는 작업을 가리킨다. 이 부분에서 많은 제조기업 고객사들이 데이터를 어떻게 가공해야 할 지에 대한 고민을 갖고 있기도 하다. 이전에는 파이썬(Python)과 같은 프로그래밍 언어를 배워서 데이터 변환 코드를 만들어야 했는데, 알테어는 데이터를 자동으로 변환할 수 있는 솔루션을 제공해 쌓여 있는 데이터의 분류와 정제 과정을 더 쉽게 할 수 있도록 돕는다. 이런 부분에서 LG전자의 사레를 소개할 만하다. LG전자는 알테어와 협업해서 해석 엔지니어가 퇴근한 후에 해석 데이터를 취합하고 변환과 AI 학습까지 수행하는 자동화 시스템을 구축했다. 학습된 AI는 웹 환경에서 설계 엔지니어에게 필요한 데이터를 제공하고, 설계 엔지니어는 제품에 대한 치수나 조건을 입력하면 시뮬레이션을 거치지 않고 빠르게 가상 시험 결과를 확인할 수 있게 됐다. AI는 제품의 초기 개발 단계뿐 아니라 전체 개발 과정에 적용할 수 있다. 초기 단계에서는 실험에서 나온 데이터가 존재한다면 이를 기반으로 어떤 결과가 나올지 쉽게 확인할 수 있다. 이후 단계에서도 다양한 데이터를 학습해 추가적인 예측을 할 수 있고, 대시보드 등을 통해 누구나 데이터 및 예측 결과를 확인하거나, 몇 가지 조건을 입력해 새로운 예측을 할 수 있는 단계로 나아갈 수도 있다. 최종 단계의 데이터는 후속 제품이나 다른 제품을 개발할 때 활용하는 것도 가능하다.   제품 개발 사이클의 단축이라는 점에서는 시뮬레이션이 가져다 줄 수 있는 이점과 비슷한 부분이 있어 보인다. AI의 역할은 시뮬레이션을 보완하는 것인가, 아니면 시뮬레이션을 대신할 수 있는 것인가 지금은 AI가 기존의 시뮬레이션을 완전히 대체할 수 있는 단계는 아니다. 하지만 AI를 통해 제품의 초기 개발 단계에서 데이터 기반의 예측 결과를 빠르게 얻을 수 있고, 향후 설계를 위한 인사이트를 얻을 수 있다는 점에서 의미가 있다. AI를 학습시키기 위한 데이터는 필요하기 때문에 시뮬레이션은 여전히 중요하다. 지금의 상황은 실험이나 해석 데이터를 기반으로 AI를 통해 인사이트를 얻는 단계라고 볼 수 있다. 시뮬레이션이 자리잡기까지의 과정을 살펴보면, 초기에는 실험과 시뮬레이션을 함께 사용하다가 시뮬레이션 부분이 강화되면서 실험의 비중을 줄여 왔다. 앞으로 AI 기술이 더욱 발전하고 데이터가 더 많이 쌓인다면 AI가 확대되고 시뮬레이션이 줄어들 수도 있을 것 같다. 이런 흐름은 단계적으로 일어날 수도 있고, 제품별로 변화의 속도가 달라질 수도 있다고 본다.   ▲ 알테어는 시뮬레이션과 연계해 제조 분야에서 활용할 수 있는 AI 솔루션을 내세운다.   제조산업의 AI 활용을 위한 알테어의 기술 차별점은 무엇인지 알테어는 멀티피직스 시뮬레이션뿐 아니라 복잡한 시뮬레이션을 활용하기 위한 고성능 컴퓨팅(HPC)과 클라우드, 데이터 애널리틱스와 AI 등 폭넓은 기술 역량을 갖추었다는 점에서 차별점이 있다고 본다. 이는 온프레미스와 클라우드, CPU 컴퓨팅과 GPU 컴퓨팅을 모두 지원해 시뮬레이션 및 AI를 유연하게 활용하도록 도울 수 있다는 뜻이다.  알테어는 지난 2022년 데이터 기반 AI를 위한 머신러닝 분석 플랫폼인 래피드마이너(RapidMiner)를 인수하면서 AI 분야 진출을 시작했다. 래피드마이너는 제조뿐 아니라 BFSI(은행.금융.서비스.보험) 등 다양한 산업에서 활용할 수 있는 솔루션이다. 예를 들어, 고객 지원이나 불만사항에 대한 다응, 주가 예측 등에도 래피드마이너가 유용하다. 또한, 2023년부터는 래피드마이너 등 기존 제품군으로 AI 시장에 대응하는 것 외에 제조산업을 타깃으로 하는 특화 기술을 개발했고, 올해는 이 부분을 본격적으로 선보이고자 한다. 제조산업을 위한 알테어의 AI 기술로는 설계 탐색과 최적화를 위한 디자인AI(DesignAI), 비슷한 형상을 자동 인식하고 분류하는 셰이프AI(shapeAI), 해석 결과를 학습해 물리현상을 빠르게 예측하는 피직스AI(physicsAI), 시스템 레벨에서 빠른 3D → 1D 변환을 위한 롬AI(ROMAI)가 있다.  이런 AI 기술은 적은 수의 데이터로도 학습이 가능하며, 알테어의 기존 시뮬레이션 솔루션 제품군에 들어가는 형태로 제공되어 익숙한 인터페이스로 사용할 수 있다. 하이퍼메시(HyperMesh)에는 이미 피직스AI와 셰이프AI가 포함되어 있고 향후 심랩(SimLab)과 인스파이어(Inspire)를 비롯해 다양한 솔루션에 AI가 추가될 예정이다. 알테어는 래피드마이너를 활용한 데이터 기반의 AI와 시뮬레이션 기반의 AI를 모두 지원한다. 그리고 타사 솔루션의 데이터를 활용할 수 있는 개방성과 유연한 라이선스 사용도 장점으로 내세우고 있다.    향후 제조 분야의 AI 전망과 알테어의 전략을 소개한다면 AI에 대한 고객들의 기대치가 높다고 느낀다. 알테어는 지난 4월 4일 ‘AI 워크숍’을 진행했는데, 기업의 의사결정권자부터 현업 엔지니어까지 예상보다 많은 분들이 참여해 높은 관심을 보였다. 관심이 높은 만큼 실제 활용 방향에 대한 고민이 많다는 것을 알 수 있었다. 사용자의 기대치와 실제로 할 수 있는 것 사이의 거리, 알테어와 같은 솔루션 기업과 사용자인 제조기업의 시각차도 어느 정도 확인할 수 있었다. 이런 부분은 고객들을 많이 만나고 의견을 나누면서 간극을 좁혀야 할 것 같다. 당장 AI가 시뮬레이션을 완벽하게 대체하기는 어렵겠지만, 클라우드 기반의 통합 환경에서 시뮬레이션과 AI를 통합해 사용할 수 있도록 하는 것을 목표로 삼고 있다. 클라우드는 데이터의 통합 관리와 공유 측면에서도 이점이 있다고 본다. 시뮬레이션과 AI를 위해 대규모 데이터를 관리하기 어려운 소규모 기업은 클라우드의 장점에 주목할 만하다고 본다. 한편으로 보안 등의 우려를 가진 기업에게는 프라이빗 클라우드 환경을 제공해 데이터 보안을 유지하면서 알테어 원 클라우드와 동일한 환경에서 작업할 수도 있다. 알테어는 AI 솔루션 제품군을 빠르게 업데이트하면서 사용자의 피드백을 반영하고 있다. 고객들이 AI에 대해 갖고 있는 기대치 또는 눈높이가 상당히 높은 것으로 보여서, 이에 대응해 경쟁 우위를 확보하고자 노력 중이다. 제조 분야에서도 AI에 대한 관심이 높지만, 어떻게 활용할지에 대한 고민이 큰 상황으로 보인다. 알테어는 이런 부분에서 도움을 줄 수 있도록 AI 기술 개발과 함께 커스터마이징과 컨설팅 등을 폭넓게 제공하고자 한다. 본사의 개발팀과도 활발히 소통하면서 사용성이나 적용 범위 등에 대한 고객의 어려움을 덜고, 최대한 빠르게 고객이 원하는 AI를 구현할 수 있도록 할 계획이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-05-02
[칼럼] 디지털 엔지니어링의 프레임워크와 네 가지 스피어
디지털 지식전문가 조형식의 지식마당   지난 호 칼럼에서 디지털 수명 주기 프레임워크에 대해서 설명하였다. 일반적으로 프레임워크(framework)는 복잡한 문제를 해결하거나 복잡한 구조를 구축할 때 기반으로 쓰이는 기본 구조를 말한다. 디지털 엔지니어링은 매우 복잡한 문제를 해결해야 한다. 특히 제품 개발과 동시에 제품의 디지털 트윈(digital twin)도 개발해야 한다.  이것은 제품 개발에서 두 가지 트윈인 물리적 트윈과 디지털 트윈을 동시해 개발해야 하는 것을 의미하며, 이것을 모두 충족할 수 있는 디지털 스레드(digital thread) 환경을 구축해야 한다. 또한 최근에 화두로 부상하고 있는 소프트웨어 정의 x 또는 소프트웨어 중심 x(software-defined x)의 프로세스를 포함해야 한다.    그림 1. 디지털 제품/시스템 수명주기 프레임워크    <그림 1>의 프레임워크에서는 지식과 기술의 영역으로 정의한 네 가지 스피어(sphere)로 크게 분류하였다.  각 스피어는 고유의 특성이 있어서 그 분야의 전문 특성과 지식이 있다. 또한 각 스피어 사이에는 보이지 않는 경험과 지식과 패러다임의 벽이 존재한다. 스피어를 사용한 이유는 보이지 않는 장벽을 가지고 있기 때문이다. 첫 번째 영역은 제품 또는 시스템으로 대표되는 물리적 스피어(physical sphere)이며, 제품 부품으로 구성되어 있다. 이것을 가상 스피어와 비교한다면 디지털 트윈이 되는 것으로 공장에서 직접 생산되는 물리적 실체(physical entity)이다. 두 번째는 가상 스피어(virtual sphere)이다. 디지털 트윈은 가상 스피어로 가상세계(virtual world)이며 현실세계(real world)의 제품이나 시스템과 연동된다. 이것은 물리적 스피어의 경험과 지식 그리고 감각과 패러다임이 존재한다. 단지 소프트웨어 코딩 지식이나 제품의 물리적 지식이나 경험이 있다고 자동적으로 가상 스피어의 디지털 트윈을 만들 수 있는 것이 아니다. 세 번째는 정보 스피어(information sphere)로 현재까지 제품 개발에 핵심적 역할을 하고 있는 산업용 소프트웨어(industrial software) 영역이다. 이곳에는 다양한 컴퓨터 지원 개발 기술(CAx : Computer-Aided Everything)이 있으며, 대표적으로 컴퓨터 지원 설계 시스템(CAD), 컴퓨터 지원 제조(CAM), 컴퓨터 지원 해석 시스템(CAE) 등으로 제품의 데이터와 정보를 생성한다. 생성된 데이터는 제품 수명주기 관리(PLM) 시스템 안에서 자동화되고 저장된다.  네 번째는 사이버 스피어(cyber sphere)로 소프트웨어 중심 x의 영역이다. 주로 코딩의 영역으로 물리적 기능을 가상화(virtualization)하는 영역이다.    그림 2. 네 가지 스피어   가상 스피어와 사이버 스피어는 디지털 영역(digital domain)이지만, 정보 스피어는 물리적 영역(physical domain)과 디지털 영역으로 구분된다. 왜냐면 디지털 목업(digital mockup)이나 시뮬레이션(simulation)도 있지만 아직도 이 영역에서 물리적 시험(physical test) 등이 많이 필요하며, 미래에도 완전히 디지털화(digitalization)하기에는 갈 길이 멀다. 앞으로 가장 발전할 분야는 사이버 스피어 분야이다. 현재는 소프트웨어 정의 x로 발전 중이지만, 가까운 미래에는 소프트웨어 플랫폼(software platfom)으로 발전할 가능성이 높다.  그러나 새로운 기술과 접근 방법에는 리스크가 많다. 이런 리스크 관리를 하지 않으면 제품 개발이나 엔지니어링 분야에서 크게 낭패를 볼 수 있다. 다른 비즈니스 분야의 디지털 전환이나 인공지능 분야와 다르게 산업 분야는 리스크(risk)가 소비자나 사용자에게 엄청난 파급효과가 있다.   최근 보잉의 사례에서 보는 것과 같이 과도한 디지털 전환으로 아날로그 지식 엔지니어를 해고하는 바람에 엄청난 위기를 가져오고 있다. 지난 1월 보잉 737 맥스 항공기의 문짝이 비행 중 뜯어져 나가는 사고가 발생했다. 알고 보니 조립 과정에서 아예 나사를 빼먹었기 때문이라는 사실이 드러나 충격을 줬다. 보잉이 지난 20년 동안 비용 절감을 위해 아웃소싱을 대폭 확대하면서 숙련된 엔지니어들이 떠났고, 결국 심각한 항공기 품질 저하로 이어졌다.   지난 4차 산업혁명의 초기에 제너럴 일렉트릭(GE)은 디지털 트윈 사업을 제일 먼저 시작했다. 야심차게 시작한 프레딕스(Predix) 플랫폼은 실패하였고, GE 디지털 회사는 다른 회사에게 팔려갔다. 2000년대 초에도 지엠(GM) 자동차가 CAD와 PLM에 지나치게 의존하다가 기업이 어려워진 적이 있다. 기술은 어디까지 기술적 역량이지, 인간의 다양한 역량을 대체할 수 없다. 이런 사례는 현재 진행 중인 디지털 전환과 인공지능 전환(AI transformation)에 대해서 많은 교훈을 준다. 대부분 실제 경험보다는 연구만 하는 학자나 미디어에서 아직 리스크가 많은 기술에 대해 지나치게 낙관적으로 접근한다. 기술 낙관론이라는 낙관주의 편향(optimism bias)이다. 실제 산업계에서는 이런 것이 커다란 위험요소가 된다.    결론적으로 이런 접근방법에서 가장 중요한 것은 속도보다는 방향성이다.  네 가지 스피어에서 접근방법은 각 스피어의 지식과 경험과 패러다임이 어떻게 연결 및 연동할 것인가에 대한 구체적인 방법과 도구를 발굴해야 한다. 그리고 이에 대한 디지털 전략과 디지털 리스크를 만들어야 한다. 그러므로 이런 프레임워크를 사용해서 구체적인 실행 목록을 만드는데 사용할 수 있다. “완벽한 형태는 공이며, 모든 것은 구체에서 시작한다.(The perfect form is the sphere, and everything originates fROM the sphere.)” - 플라톤   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’,  ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-05-02
CAD&Graphics 2024년 5월호 목차
  INFOWORLD   Focus 17 디지털 제조 & 뿌리산업 컨퍼런스, 디지털 기술 기반의 제조산업 혁신 및 성장 전략 소개 22 빌드스마트포럼 2024, Al와 메타버스의 시너지로 변화하는 AEC 탐구 24 마이다스아이티, 제조산업을 위한 CAE 기술과 솔루션 로드맵 제시 26 로크웰 오토메이션, AI·클라우드 접목한 디지털 제조 기술 소개 28 한국산업지능화협회, ‘2024 스마트공장엑스포와 산업지능화 콘퍼런스’ 개최 51 오라클, 모던 데이터 플랫폼 및 데이터베이스 혁신 전략 발표 54 델 테크놀로지스, AI 시대 겨냥한 기업용 PC 제품군 소개 56 레노버, “더 많은 CPU 코어로 워크스테이션 성능 높인다”   People&Company 30 한국알테어 이승훈 기술 총괄 본부장 더욱 빠르고 효율적인 제품 개발을 위한 AI 기술 본격화 추진 33 데이터킷 필리프 블라슈 CEO CAD 데이터 변환과 상호운영성 기술로 한국 시장 공략 강화   Case Study 36 책임감 있는 AI 활용 및 향상된 모델 훈련 유니티 뮤즈의 텍스처/스프라이트 생성 및 파운데이션 모델 New Products 40 리브랜딩과 함께 건축 설계의 생산성 강화 캐드마스터 2025 44 AI로 생산성 높이는 기업용 PC 프로세서 라이젠 프로 8040/8000 시리즈 46 AI 기반 워크플로 강화하는 전문가용 GPU RTX A400/A1000 48 콘텐츠 생성의 퍼포먼스와 효율 강화 언리얼 엔진 5.4 프리뷰 58 이달의 신제품   Column 62 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 엔지니어링의 프레임워크와 네 가지 스피어 64 책에서 얻은 것 No. 19 / 류용효 기업 성장 맵 – 엔비디아 편   On Air 73 캐드앤그래픽스 CNG TV 지식방송 지상중계 배터리 산업 동향과 배터리 최적화를 위한 설계/시뮬레이션 기술 60 New Books 68 News   Directory 123 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 74 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈AI CLIP 모델의 이해/코드 분석/개발/사용 82 복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (2) / 이소연 포인트 클라우드 기능 85 새로워진 캐디안 2024 살펴보기 (5) / 최영석 캐디안 2024의 스크립트 기능 88 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (1) / 천벼리 아레스 캐드 2025의 새로운 기능   Reverse Engineering 94 문화유산 분야의 이미지 데이터베이스와 활용 사례 (5) / 유우식 고지도 데이터베이스   Analysis 103 시뮤텐스 소프트웨어를 활용한 복합소재 해석 (2) / 씨투이에스코리아 시뮤필의 복합재 수지 해석 기능 소개 106 앤시스 워크벤치를 활용한 해석 성공사례 / 노은솔 PyMAPDL의 기초부터 활용까지 110 산업 디지털 전환을 위한 버추얼 트윈 (1) / 안치우 1D 시뮬레이션을 위한 카티아 다이몰라 120 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (9) / 나인플러스IT 미래 자동차 설계를 위한 DNS, LES, RANS 시뮬레이션   Mechanical 114 제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (12) / 김주현 사용자 정의 피처의 생성 및 활용   캐드앤그래픽스 2024년 5월호 목차 fROM 캐드앤그래픽스  
작성일 : 2024-04-30
고레로보틱스, 건설자재 자율 운반 로봇 개발 위해 데니스홍 교수와 MOU 체결
로봇 개발 스타트업 고레로보틱스가 UCLA ROMeLa의 데니스 홍 교수와 건설로봇 분야 업무 협약을 위해 MOU를 체결했다고 밝혔다. 고레로보틱스는 ‘자율주행로봇을 활용한 건설현장 건설자재 새벽배송 서비스’를 개발하고 있는  스타트업으로, 2023년 9월에는 미국 실리콘벨리 VC로부터 투자금을 유치하는 등 건설과 로봇 필드에서 주목받고 있다. 이번 MOU를 통해 고레로보틱스는 세계 최고 수준의 로봇 연구소인 UCLA ROMeLa와 인적, 기술적 네트워크를 강화하여 보다 강건한 로봇을 개발한다는 비전을 내세웠다. 두 기관은 공동 개발 및 2024년 국책 R&D 과제를 수주하는 것을 목표로 상호 협력할 예정이다. 특히 건설 현장에 범용적으로 적용할 수 있는 건설자재 운반용 자율주행 로봇에 집중해 미국을 타깃으로 한 플랜트형 모델과 국내를 타깃으로 한 인프라형 모델을 개발할 계획이다. 플랜트형은 반도체 공장, 2차전지 공장, 자동차 공장 등 국내 주요 대기업이 북미에 지어야 하는 공장 건설에 최적화된 모델이며, 인프라 모델은 철도 지하화나 GTX같은 지하 도로 및 철도에 최적화된 모델이라는 것이 고레로보틱스의 설명이다. 한편, 고레로보틱스는 “올해 최소 2개 이상의 북미 지역 건설 현장에서 필드테스트를 진행한다는 목표를 가지고 미국에 법인을 설립했으며, 건설 근로자가 50만명 이상 부족한 북미 건설 시장에서 게임체인저가 되겠다는 목표를 가지고 있다”고 전했다.
작성일 : 2024-04-23
마이크로소프트, 국내 기업의 혁신 돕는 AI 트랜스포메이션 사례 공개
마이크로소프트가 생성형 AI 기술로 다양한 국내 산업의 고객 서비스 혁신과 비즈니스 성장을 지원하며 AI 트랜스포메이션 혁신 사례를 구축하고 있다고 소개했다. 마이크로소프트는 AI 기술이 조직 경쟁력 유지를 위한 필수적인 비즈니스 요소가 될 것으로 전망하고 있다. 마이크로소프트가 의뢰한 글로벌 시장 조사기관 IDC의 연구 결과에 따르면 조사에 참여한 응답자 71%가 이미 회사에서 AI를 사용하고 있으며, 이들은 평균적으로 1년 2개월 만에 AI 투자에 대한 수익을 실현하고 있는 것으로 나타났다. 이 연구는 전 세계 2100명 이상의 비즈니스 리더와 의사 결정권자를 대상으로 실시됐다. 마이크로소프트는 애저 오픈AI 서비스(Azure OpenAI Service)를 통해 향상된 컴플라이언스, 데이터 보안 강화, 확장성, 책임 있는 AI 등 차별화된 서비스를 제공하고 있다. 이 서비스는 전 세계 1만 8000개 이상의 조직과 포춘 500대 기업 중 절반 이상이 사용하며 전 세계 조직의 AI 트랜스포메이션 속도를 가속화하고 있다. 마이크로소프트는 국내에서도 자사의 AI 기술을 도입해 업무 프로세스를 혁신하고 새로운 비즈니스 모델 개발에 나서는 기업들이 늘고 있다고 전했다. LG전자의 H&A본부는 생성형 AI 기반 빅데이터 분석 솔루션인 찾다(CHATDA)를 도입해 고객 요구 사항을 효과적으로 파악하고 사용자 경험을 개선했다. 이 시스템은 마이크로소프트 애저 환경과 애저 오픈AI 서비스를 활용해 데이터 보안과 안정성을 강화한다. 또한, 자연어 처리 기능으로 현업의 분석 요구사항에 부합하는 데이터를 정밀하게 선별하고, 이를 기반으로 분석 코드를 자동 생성 및 실행한다. 이를 통해 법무검토, 데이터 탐색, 가공 분석에 소요되던 시간이 평균 5일에서 30분으로 단축돼 업무 효율성이 향상됐다.     AI 서비스 플랫폼 기업 뤼튼테크놀로지스는 애저 오픈AI 서비스와 프로비전드 스루풋(Provisioned Throughput : PTU)를 도입해 이전보다 두 배 이상 증가한 사용자 트래픽을 안정적으로 처리하고 있다. 이러한 운영 안정성과 지속적인 서비스 개선을 바탕으로, 뤼튼 서비스의 고객 만족도를 나타내는 NPS(Net PROMoter Score) 점수가 30% 이상 향상됐다. 크래프톤의 AI 전문 스튜디오인 렐루게임즈도 애저 오픈AI 서비스를 도입해 새로운 게임 개발에 나서고 있다.  특히 오는 6월 출시를 앞둔 '언커버 더 스모킹 건'은 플레이어가 용의자와 대화하며 사건을 해결하는 추리 게임으로, 플레이어의 자유도를 높여 실제와 유사한 현실감 있는 게임 환경을 제공한다. 렐루 게임즈는 이를 구현하기 위해 대형언어모델(LLM)의 애플리케이션 프로그래밍 인터페이스(API)를 70% 이상 사용하고 있다.  배달 플랫폼 ‘배달의 민족’을 운영하는 우아한형제들은 애저 오픈AI 서비스를 활용해 고객 상황에 맞는 메뉴를 제안하는 ‘메뉴뚝딱AI’ 서비스를 선보여 고객 편의성을 높였다. 이 서비스는 고객이 작성한 리뷰를 분석해 음식 특성과 주문 성향을 파악하는 키워드를 추출하고, 시간대·식사 동반자·상황·맛 등을 고려해 안전성 검증을 거친 120종의 컨텍스트를 통해 사용자에게 맞춤형 메뉴를 추천한다. 융합 사고력 기업 크레버스는 마이크로소프트 AI 솔루션을 도입해 자동으로 과제를 평가하고 개인 맞춤형 피드백을 제공하는 시스템을 구축, 학생들의 만족도를 크게 높였다. 이 과정에서 평균 3.5일이 걸렸던 과제 채점 시간이 7초로 단축돼 실시간 피드백을 제공하고 있으며, 운영 비용도 약 85% 절감될 것으로 기대하고 있다. 반려로봇 개발기업 효돌은 AI 기반 대화형 AI 돌봄 로봇 ‘효돌 2.0’에 애저 오픈AI 및 애저 코그니티브 서비스(Azure Cognitive Services)를 도입해 음성 엔진을 개선하고 대화 기능을 고도화했다. 이를 통해 사용자와의 친밀감이 기존 대비 10% 이상 증가됐으며, 맞춤형 신경망(Custom Neural) 기반 STT/TTS 엔진을 활용해 시니어층의 우울증이나 치매 징후를 조기에 발견하고 정신 건강 상태를 진단할 수 있게 됐다. 한국마이크로소프트의 조원우 대표는 “AI 기술은 한국의 산업 전반에 긍정적인 변화를 가져오고 있다”며, “앞으로도 마이크로소프트는 가장 신뢰할 수 있는 AI 트랜스포메이션 파트너로서 국내 기업들이 AI를 통해 업무 프로세스를 혁신하고, 더 나은 고객 경험을 제공할 수 있도록 적극 지원할 것”이라고 전했다.
작성일 : 2024-04-22