• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "RF"에 대한 통합 검색 내용이 3,024개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
세일즈포스, AI 주권 시대 위해 AI 에이전트 포함한 클라우드 인프라 지원 범위 확대
세일즈포스가 차세대 클라우드 인프라 아키텍처인 ‘하이퍼포스(HypeRForce)’의 지원 범위를 확대한다고 밝혔다. 이를 통해 국내 고객도 세일즈포스의 AI 에이전트 플랫폼인 에이전트포스를 포함, 데이터 클라우드, 태블로 넥스트, 마케팅 클라우드를 한국 내 퍼블릭 클라우드 환경에서 운영 및 활용할 수 있게 됐다. 세일즈포스는 2023년 국내 시장에 하이퍼포스를 처음 선보인 이후, AI 시대를 맞아 국내 기업들이 신뢰할 수 있는 환경에서 AI 혁신을 실현할 수 있도록 한국 시장에 대한 투자를 지속 강화해왔다. 특히 최근 발표한 ‘글로벌 AI 준비지수 보고서’를 통해 한국 시장은 AI 혁신을 위한 잠재력이 매우 높은 국가라고 설명하며, 이번 하이퍼포스 지원 범위 확대가 ▲데이터 기반 정립 ▲에이전틱 AI 활용 환경 구축 ▲AI 기반 데이터 분석 및 시각화 등 국내 기업의 AI 에이전트 혁신을 지원하기 위한 전략적 의사결정이라는 점을 강조했다. 이와 관련하여 세일즈포스는 그간 추구해 온 ‘완전히 통합된 단일 플랫폼(Deeply Unified Platform)’이 마침내 국내 데이터 레지던시 요건을 충족하며 온전하게 구현되었다는 점을 강조했다. 국내 기업들 또한 고객과 맞닿아 있는 모든 상호작용, 내부 프로세스, 기능별 업무를 한국 내에 데이터가 저장되는 단일 플랫폼 상에서 통합 관리하며 AI 에이전트를 접목 및 활용할 수 있다는 설명이다.     세일즈포스에 따르면 이번 하이퍼포스 지원 범위 확대는 신뢰할 수 있는 데이터 통합 및 활성화(데이터 클라우드)부터 AI 기반의 고객 여정 설계 및 초개인화 캠페인 실행(마케팅 클라우드), AI 에이전트 개발 및 배포(에이전트포스), AI 기반 데이터 분석 및 시각화(태블로 넥스트)로 이어지는 AI 혁신 전반에 대한 지원 역량을 갖추었다는 점을 시사한다. 또한 공공, 금융, 통신, 유통, 소비재 등 규제로 인해 디지털 기술 도입이 제한적이었던 산업군에서도 세일즈포스 활용이 한층 더 용이해지며 각 산업 특성을 반영한 ‘인더스트리 클라우드’와 ‘산업군별 에이전트포스’ 도입이 본격화될 전망이다. 이에 따라 사전 구축된 데이터 모델과 AI 에이전트를 바탕으로 산업별 특수 요구사항과 규제에 유연하게 대응할 수 있는 것은 물론, 보다 민첩한 비즈니스 가치 창출이 가능하다. 세일즈포스 코리아 박세진 대표는 “이번 하이퍼포스 국내 지원 확대는 한국 시장에 대한 세일즈포스의 확고한 의지를 보여주는 전략적 투자이자, 국내 기업들의 AI 혁신 여정을 본격적으로 지원하기 위한 신호탄”이라며, “세일즈포스는 완전히 통합된 단일 플랫폼을 기반으로 국내 기업의 에이전틱 AI 혁신을 가속화하고, 생산성 향상과 새로운 비즈니스 가치 창출이라는 실질적 성과를 달성하기까지의 전 여정을 지원하는 전략적 파트너 역할을 강화해 나갈 것”이라고 전했다.
작성일 : 2025-09-11
인텔, 아크 프로 B-시리즈 GPU 및 제온 6 프로세서의 AI 추론 벤치마크 결과 소개
인텔은 ML커먼스(MLCommons)가 발표한 최신 MLPeRF 추론 v5.1 벤치마크에서 P코어를 탑재한 인텔 제온(Intel Xeon) 및 인텔 아크 프로 B60(Intel Arc Pro B60) 그래픽으로 구성된 인텔 GPU 시스템(코드명 프로젝트 배틀매트릭스)의 추론용 워크스테이션이 달성한 결과를 공개했다. 6가지 주요 벤치마크 테스트 결과, 라마(Llama)4 80B 모델 추론 처리량에서 인텔 아크 프로 B60은 엔비디아 RTX 프로 6000 및 L40S에 비해 각각 최대 1.25배 및 최대 4배의 가격 대비 성능 우위를 보였다. 인텔은 “이는 하이엔드 워크스테이션 및 에지 애플리케이션 전반에 걸쳐 새로운 AI 추론 워크로드를 처리하는 인텔 기반 플랫폼의 성능과 접근 우수성을 보여주는 결과”라고 평가했다. 인텔의 리사 피어스(Lisa Pearce) 소프트웨어, GPU 및 NPU IP 그룹 총괄은 “MLPeRF v5.1 벤치마크 결과는 인텔의 GPU 및 AI 전략을 강력히 입증하고 있다. 새로운 추론 최적화 소프트웨어 스택을 탑재한 아크 프로 B-시리즈 GPU는 기업과 개발자가 강력하면서도 설정하기 쉽고, 합리적인 가격에 확장 가능한 추론 워크스테이션으로 AI 분야에서 경쟁력을 높여준다”고 밝혔다.     이전까지는 높은 추론 성능을 제공하면서 데이터 프라이버시 침해에서 자유로운 플랫폼을 우선시하는 전문가들이 독점적인 AI 모델에 의한 과도한 구독 비용 부담 없이 LLM(대형 언어 모델)을 배포하기에 필요한 역량을 갖추기 위한 선택지가 제한적이었다. 새로운 인텔 GPU 시스템은 최신 AI 추론 요구사항을 충족하도록 설계되었으며, 풀스택 하드웨어와 소프트웨어를 결합한 올인원(all-in-one) 추론 플랫폼을 제공한다. 인텔 GPU 시스템은 리눅스 환경을 위한 새로운 컨테이너 기반 설루션을 통해 간소화된 도입과 사용 편의성을 목표로 한다. 또한 멀티 GPU 스케일링 및 PCle P2P 데이터 전송으로 높은 추론 성능을 발휘하도록 최적화되었으며, ECC, SRIOV, 텔레메트리(telemetry) 및 원격 펌웨어 업데이트 등과 같은 엔터프라이즈급 안전성 및 관리 용이성을 갖추고 있다. CPU는 AI 시스템에서 계속해서 중요한 역할을 수행하고 있다. 오케스트레이션 허브로서 CPU는 데이터 전처리, 전송 및 전반적인 시스템 조율을 담당한다. 지난 4년간 인텔은 CPU 기반 AI 성능을 지속적으로 향상시켜왔다. P 코어를 탑재한 인텔 제온 6는 MLPeRF 추론 v5.1에서 이전 세대 대비 1.9배의 성능 향상을 달성했다.
작성일 : 2025-09-10
크레오 파라메트릭 12.0의 부품 모델링 개선 사항
제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (2)   PTC는 2025년 4월 크레오 파라메트릭(Creo Parametric) 12 버전을 새롭게 출시했다. 이번 버전은 현업 사용자들의 피드백을 반영하여 설계, 시뮬레이션, 제조, MBD(모델 기반 정의), 복합재 설계 등 다양한 영역에서 기능을 개선하여 생산성과 사용성이 향상되었다. 이번 호에서는 크레오 파라메트릭 12 버전에서 부품 모델링(part modeling) 부문의 주요 개선 사항을 살펴보자.   ■ 김성철 디지테크 기술지원팀의 이사로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   스케치 개선 크레오 파라메트릭 12에서는 스케치 선 중점 메뉴가 새롭게 추가되고 팔레트에 다양한 레이스트랙 형태가 포함되었다. 스케치에서 선 중점 기능으로 선택한 점을 중심으로 대칭 선을 쉽게 생성할 수 있다.스케치(Sketch) → 선(Line) → 선 중점(Line Mid-point)을 클릭하고 중심 점을 배치하며 점을 기준으로 대칭선을 빠르게 생성할 수 있다.     또한 스케치 팔레트에 다양한 치구 구조와 축 생성을 포함하는 추가 레이스트랙 형태를 지원하여, 필요한 단면을 더 빠르게 스케치할 수 있다.     스케처 투영 및 오프셋 기능 개선 스케치 투영 및 오프셋 도구의 복합 커브 작업 워크플로가 개선되어 보다 유연하게 스케치 작업을 진행할 수 있다. 생성된 복합 커브의 개별 세그먼트에 대한 선택과 편집 작업을 지원하며, 스케치 투영에서 다른 도구로 전환할 때 기존에 생성된 형상이 그대로 유지된 상태로 추가 작업을 진행할 수 있다.     스케처(Sketcher) → 투영(Project) 혹은 스케처(Sketcher) → 오프셋(Offset)을 클릭한다. 또한 복합 커브의 세그먼트 ID가 이전보다 더 안정적으로 관리된다. 체인 대체 및 재정의 작업 이후에도 해당 형상의 세그먼트가 그대로 유지되어 안정적으로 참조 편집을 진행할 수 있다.   서피스 근사화 크레오 파라메트릭 12 버전에는 다중 서피스를 하나의 근사화된 서피스로 통합하는 새로운 기능이 추가되었다.     이 기능을 활용하면 복수의 서피스 패치를 단일 서피스로 변환하여, 서피스 수를 줄이고 모델을 단순화할 수 있다. 특히 오프셋한 서피스와 같이 불규칙하거나 왜곡된 형상이나 모델링 과정에서 발생한 특이점을 효과적으로 보정하는 데 유용하다. 이를 통해 서피스 품질을 향상시키고 후속 모델링 작업의 안정성과 효율성을 높일 수 있다. 모델(Model) → 편집(Editing) → 서피스 근사화(Approximate SuRFaces)를 클릭한다.     근사화할 서피스 참조로 개별 서피스를 다중 선택하고 부착, 연결, 연결 처리 등의 옵션을 선택하여 근사 서피스로 생성할 수 있다.     부착 유형에 따라 다음 세 가지 첨부 옵션 중에서 선택할 수 있다. 대체(Replace) : 참조 서피스를 새로 생성된 서피스로 교체, 위의 사용 사례를 가장 잘 지원하는 기본 첨부 복사 및 트림(Copy and Trim) : 근사화된 서피스를 새 퀼트로 생성, 원본 서피스는 유지 트림되지 않은 서피스 복사(Copy Untrimmed) : 경계에서 트림되지 않은 새 퀼트로 근사화된 서피스를 생성, 원본 서피스는 유지     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
시뮬리아 웨이브6를 활용한 환경 소음 시뮬레이션
산업 디지털 전환을 가속화하는 버추얼 트윈 (6)   이번 호에서는 다쏘시스템의 소음·진동 설루션 웨이브6(Wave6)를 활용해 도심 항공 모빌리티와 수중 방사 소음에 적용한 사례를 살펴본다.   ■ 이현충 다쏘시스템코리아의 소음 진동 해석 담당 기술 컨설턴트이다. 자동차/항공/선박 산업을 포함한 다양한 산업군에 진동해석 설루션을 적용하여 고객에서 가치를 전달하는 역할을 담당하고 있다. 홈페이지 | www.3ds.com/ko   환경 소음 규제가 점차 강화됨에 따라 소음 저감 기술의 적용이 중요해지고 있다. 특히 차세대 교통 체계 산업인 도심 항공 모빌리티(UAM : Urban Air Mobility) 분야에서는 이착륙장 위치와 항로를 결정할 때 소음이 가장 중요한 고려 요소이다. 또한 해양 생태계 보호를 위해 국제해사기구(IMO)는 선박의 수중 방사 소음(URN : Underwater Radiated Noise) 저감을 위한 규제를 논의하고 있다. 이는 도심형 항공기와 선박 등 운송 수단의 설계 단계에서부터 시뮬레이션을 기반으로 한 정확한 예측을 요구한다. 웨이브6는 다쏘시스템의 소음·진동 설루션으로, 광대역 주파수에서 소음이 방사되는 현상을 시뮬레이션할 수 있다. 특히 환경 소음의 경우 넓은 영역으로 방사되는 소음을 예측해야 하는데, 이는 많은 해석 시간과 리소스를 필요로 한다. 효율적으로 환경 소음을 예측하기 위해 웨이브6의 공간 경사(Spatial Gradient) 통계 에너지 해석(SEA, Statistical Energy Analysis) 방법론을 적용할 수 있다. 이번 호에서는 항공기 프로펠러 소음 해석 예시와 수중 방사 소음 연구 사례를 통해 웨이브6의 활용법을 소개한다.   웨이브6 소음 해석 방법론 소음 해석 방법론을 설명하기 위해 차량 실내 소음을 예로 들어보자. <그림 1>과 같이 차량 실내 공간 내 다양한 위치에서 음압 레벨(SPL : Sound Pressure Level)을 예측하는 것이 목적이다. 투명한 흰색 표면은 내부 음장 공간의 경계이며, 회색 표면은 공간 내 음압 레벨을 시각화하기 위한 가시화용 표면이다. 마지막으로 파란색 표면은 공간 내 소리를 방사하는 사이드 글라스를 나타낸다. <그림 1-b>는 사이드 글라스가 진동에 의해 발생하는 실내 소음을 경계요소법(BEM : Boundary Element Method)과 공간 경사 통계 에너지 해석(SEA : Statistical Energy Analysis) 방법으로 예측한 결과이다. 가진원인 사이드 글라스 근처에서 높은 음압 레벨이 나타나는 것을 확인할 수 있다. 경계요소법의 경우 주파수가 높아짐에 따라 높은 자유도(DOF : Degree of Freedom)를 필요로 하므로 해석 시간과 메모리 사용량이 크게 증가한다. 반면, 웨이브6의 공간 경사 통계 에너지 해석 기법은 훨씬 적은 메모리를 요구하며, 더 빠르게 해석 결과를 얻을 수 있다. 특히 환경 소음처럼 넓은 영역을 경계 요소법이나 유한 요소법(FEM : Finite Element Method)으로 해석하기 어려운 경우, 공간 경사 통계 에너지 해석 기법을 활용해 예측할 수 있다.   (a) 자동차 내부 공간   (b) 경계요소 해석 결과   (c) 공간경사 통계 에너지 해석 결과 그림 1   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
앤시스 2025 R2 : AI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션
개발 및 공급 : 앤시스코리아 주요 특징 : 원클릭으로 전문 지식에 접근 가능한 AI 기반 어시스턴트 지원, AI+ 기능이 탑재된 7종 제품을 통한 시뮬레이션 효율 및 접근성 향상, 데이터 관리 및 워크플로 자동화 강화를 통한 AI 통합 효과 향상 등   앤시스는 자사 전 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션 속도와 접근성을 크게 향상시키는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높인다. 특히, 초기 설계 단계에서의 스마트한 의사결정을 가능하게 하여, 차세대 위성부터 데이터센터 설계에 이르기까지 다양한 산업 분야에서 실질적인 가치를 제공한다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다. 앤시스 2025 R2는 AI 기반 다양한 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원한다.   ▲ 앤시스 2025 R2는 시뮬레이션 워크플로 전반의 생산성, 정확성, 인사이트를 향상시키는 AI 기반 기술을 새롭게 선보인다.   물리 기반 AI로 직관적인 시뮬레이션 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 ‘앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)’을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 마이크로소프트 애저(Microsoft Azure)의 니디 체펠(Nidhi Chappell) AI 인프라 부문 부사장은 “마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합을 통해 엔지니어들은 핵심 정보에 신속하게 접근하고, 앤시스의 깊이 있는 엔지니어링 전문성을 활용함으로써 생산성을 높이고 혁신을 가속화할 수 있다”고 전했다. 2025 R2는 앤시스 포트폴리오 전반에 AI 기능을 추가했다. 이를 통해 충실도가 높은 시뮬레이션을 자동으로 생성, 검증 및 최적화하여 모델 생성 속도를 높이고, 수동 작업을 줄이며 인적 오류를 줄일 수 있다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근 가능 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도는 17배 향상, 위상 배열 안테나의 빔 조향 정확도 개선으로 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션 최적화 이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다.   데이터 처리 및 자동화를 통한 AI 활용 극대화 앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 40개 이상의 파이썬(Python) 라이브러리를 포함한 파이앤시스(PyAnsys) 컬렉션은 신규 도구인 파이에스티케이(PySTK) 및 파이켐킨(PyChemkin)을 통해 앤시스 설루션과의 자동화 연동을 강화 및 다양한 산업 애플리케이션 내 생산성·효율성 강화 웹 기반 협업 플랫폼인 앤시스 메디니 사이버 보안(Ansys medini Cybersecurity) SE는 위협 분석 및 취약점 관리 자동화 통해 사이버 보안 리스크 최소화 SysML v2 기반 웹 플랫폼 앤시스 시스템 아키텍처 모델러(Ansys System Architecture Modeler : SAM)를 통한 소프트웨어·안전·시뮬레이션 통합, 포괄적 MBSE 구현 지원 스마트 자동화와 고도화된 데이터 관리 기술은, 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 대표 사례로, 에너지 효율형 모터 제어 설루션 분야의 글로벌 선도 기업인 댄포스 드라이브(Danfoss Drives)는 앤시스의 시뮬레이션을 활용해 복잡한 시스템 설계를 검증하고, 성능 최적화, 에너지 절감, 운영 신뢰성 향상 등 산업 전반의 지속 가능한 혁신적인 드라이브 기술을 구현하고 있다. 댄포스 드라이브의 가상 설계·테스트·최적화 총괄 책임자인 마이클 라우르센(Michael Laursen)은 “파이앤시스는 사용자 맞춤형 자동화, 시스템 통합, 확장성을 구현하는 핵심 도구이다. 개방형 생태계를 기반으로 다양한 툴을 유기적으로 연결하고 AI 기능을 접목함으로써 설계부터 최적화까지의 워크플로를 가속화할 수 있다”고 밝혔다. 또한 “앤시스 기술은 디지털 설계 프로세스를 고도화하는 동시에 빠르게 변화하는 산업 환경에 유연하게 대응할 수 있는 기반을 마련해줄 뿐만 아니라, 비용 절감과 제품 개발 기간 단축에도 실질적으로 기여하고 있다”고 전했다.   현실을 모사하는 고성능 물리 시뮬레이션 정교한 물리 모델과 시뮬레이션 기술은 복잡한 설계 과제를 해결하는 데 필수이다. 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다. 앤시스 메카니컬(Ansys Mechanical)의 신규 혼합 솔버는 대형 과도 모델의 연산 속도 향상 및 시간에 따른 열 변화 분석 지원 복잡한 적층형 전자 시스템 메싱 작업의 자동화 및 속도·정확도·사용성 향상, 신규 메싱 플로 기능을 통한 수작업 간소화 앤시스 록키(Ansys Rocky) 및 프리플로우(Ansys FreeFlow)를 통한 고급 다물리(multiphysics) 연성 해석 기능 제공, 열·유체-구조·전자기 결합을 포함한 상세 시뮬레이션 및 성능 최적화 지원 앤시스 파워X(Ansys PowerX) 디버깅 툴을 통한 반도체 전력 소자의 설계 시간 단축, 기생 성분 이슈의 신속한 식별, 설정 간소화 및 효율적인 2D 메싱 작업 지원 RF 전력 분야의 기업인 앰플리온은 앤시스의 고급 시뮬레이션 기술을 활용해 4G LTE 및 5G NR 인프라는 물론 산업, 과학, 의료, 방송, 항법, 안전 무선통신용으로 사용되는 고신뢰·고성능 GaN 및 LDMOS 설루션을 설계하고 있다. 앰플리온의 모델링 및 특성화 그룹 팀장인 비토리오 쿠오코(Vittorio Cuoco, Ampleon) 박사는 “전자기, 열, 기계 간의 복잡한 상호작용을 효과적으로 제어하며 RF 전력 제품을 설계하는 일은 매우 까다로운 과제”라며, “앤시스의 설루션은 이러한 복잡성을 정면으로 해결할 수 있는 정밀한 시뮬레이션을 제공해 설계 리스크를 줄이고 제품 신뢰성을 높이는 데 도움이 되며, 그 결과는 성능 향상, 에너지 절감, 그리고 더 높은 효율성이라는 측면에서 크다”라고 전했다. 이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 온디맨드 방식의 기술을 적극 활용함으로써, 기업은 디지털 전환을 보다 수월하게 실현할 수 있다.   클라우드 기반 시뮬레이션 통한 디지털 전환 가속 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 극대화한다. 이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있으며, 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다. 앤시스 아이스팩(Ansys Icepak) 및 플루언트 GPU 솔버(Fluent GPU Solver)를 통한 전자 냉각 시뮬레이션 연산 속도 최대 2.5배 향상, 앤시스 플루언트(Ansys Fluent) 웹 인터페이스에서는 제한적 GPU 솔버 기반의 실시간 모니터링 기능 제공 앤시스 디스커버리(Ansys Discovery)의 메싱 기능 개선을 통한 시뮬레이션 신뢰도 및 품질 향상, GPU 기반의 셋업 속도 개선으로 더 빠르고 안정적인 해석 환경 구현 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute)의 온디맨드(on-demand) HPC 성능이 앤시스 스피오스(Speos) 및 루메리컬 FDTD(Lumerical FDTD) 포함한 6종 제품에 적용, 별도 설치나 IT 지원 없이 고성능 클라우드 환경 활용 가능     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[케이스 스터디] 가상 커미셔닝으로 산업 과제를 해결하는 스피라텍
개방형 커미셔닝과 협업 혁신으로 제조업을 재정의하다   스피라텍(SpiraTec) 그룹은 디지털 전환, 엔지니어링, 로봇 공학, 자동화 및 산업 IT를 전문으로 하는 공정 산업의 산업 공학 및 설루션 분야의 글로벌 플레이어이다. 스피라텍의 가상 커미셔닝 전문성은 제조사가 프로세스를 최적화하고 비용을 절감하며 전 세계적으로 디지털화를 가속화하는 데 도움을 준다. 이번 호에서는 스피라텍이 고객이 주요 산업 과제를 해결하도록 돕는 방법과 유니티(Unity)를 기반으로 가상 커미셔닝을 위한 협업적이고 접근 가능한 설루션을 목표로 하는 오픈 소스 이니셔티브인 ‘오픈 커미셔닝’의 배경과 여정을 소개한다. ■ 자료 제공 : 유니티 코리아   ▲ 생산 라인의 디지털 트윈 : PLC 및 로봇 컨트롤러 통합으로 물질 흐름 시뮬레이션   산업이 디지털 전환을 가속화함에 따라 제조사는 제품을 더 빠르게 시장에 출시하고 비용을 줄이며 지속 가능성 목표를 달성해야 한다는 압박을 받고 있다. 이 모든 과정에서 단편화된 데이터, 구식 방법론 및 제한된 표준화로 어려움을 겪고 있다. 이러한 도전 과제는 더 스마트하고 통합된 설루션을 요구한다. 그리고 여기서 디지털 트윈과 가상 커미셔닝이 등장한다. 글로벌 디지털 트윈 시장은 수요가 급증하고 있다. 2024년에는 177억 3000만 달러로 평가되며, 2025년에는 244억 8000만 달러에서 2032년에는 2593억 2000만 달러로 성장할 것으로 예상된다. 캡제미니 리서치 인스티튜트(Capgemini Research Institute)의 디지털 트윈 리포트에 따르면, 57%의 조직이 지속 가능성을 디지털 트윈 투자에 대한 주요 동력으로 언급하며, 51%는 이러한 기술이 환경 목표 달성에 도움이 될 것으로 기대하고 있다. 디지털 트윈 기술의 주요 응용 프로그램인 가상 커미셔닝은 디지털화의 게임 체인저로, 제조사가 실제 배포 전에 프로세스를 시뮬레이션하고 최적화할 수 있게 하여 자원 소비를 줄이고 비용을 절감한다.   가상 커미셔닝 이해하기 전통적으로 자동화에서 커미셔닝은 새로운 시스템(장치, 기계, 공장 등)을 완전 작동 가능한 생산 준비 상태로 만드는 과정을 의미한다. 과거에는 대부분의 PLC(프로그래머블 로직 컨트롤러) 프로그래밍 및 시스템 테스트가 물리적 하드웨어가 제자리에 있어야 했으며, 이는 종종 비용이 많이 드는 지연과 막판 문제 해결을 초래했다. 가상 커미셔닝은 이 패러다임을 뒤집고 전체 커미셔닝 프로세스를 디지털 환경에서 복제한다. 실제 장치, 센서 및 액추에이터와 통신하는 대신, PLC는 디지털 트윈과 통신한다. 이는 실제 시스템의 동작을 정확하게 반영하는 에뮬레이션 모델이다. 중요하게도, 동일한 PLC 프로그램 코드는 가상 및 물리적 단계 모두에 사용되어, 물리적 하드웨어가 준비되면 코드 수정이나 막판 재작성 없이 원활한 인계를 보장한다.   ▲ 가상 커미셔닝 : 물리적 배포 전에 디지털 프로세스 시뮬레이션 및 최적화   가상 커미셔닝이 실제 가치를 제공하는 방법 효율성 향상 가상 커미셔닝은 현장 테스트와 물리적 프로토타입의 필요성을 줄여 시간과 비용을 절감한다. 또한 디지털 환경에서 팀이 신속하게 반복할 수 있도록 하여 개발 주기를 가속화하고 시장 출시 시간을 단축한다.   위험 감소 시뮬레이션을 통해 오류를 조기에 발견함으로써, 가상 커미셔닝은 비용이 많이 드는 실수의 위험을 줄인다. 더욱이, 팀이 위험한 작업을 디지털로 시뮬레이션할 수 있도록 하여 물리적 구현 전에 잠재적 위험을 제거함으로써 더 안전한 배포를 지원한다.   협업 및 혁신 현실적인 시뮬레이션은 교차 기능 팀 간의 더 나은 정렬을 촉진한다. 가상 공간에서 시스템을 시각화하고 상호작용함으로써 이해관계자는 더 깊은 통찰력을 얻고, 전반적인 커뮤니케이션을 향상시켜 창의성과 혁신을 촉진한다.   제약에서 능력으로 : 유니티로의 전환 스피라텍은 고객이 가상 커미셔닝을 운영에 원활하게 통합하도록 돕는 단일 목표를 추진해 왔다. 스피라텍은 제한된 확장성을 가진 폐쇄 시스템, 작은 사용자 커뮤니티 및 최소한의 응용 프로그래밍 인터페이스(API)에 직면했다. 이러한 조건은 공급업체 종속을 촉진하고 프로젝트 위험을 증가시켰다. 이러한 제한은 종종 시간 지연을 일으키고, 고객이 필요로 하는 접근 가능하고 확장 가능한 설루션의 가능성을 없앴다. 유니티는 스피라텍의 큰 장애물을 극복하는 열쇠가 된 실시간 3D 엔진이다. 유니티의 편집기의 힘을 활용함으로써 스피라텍은 최첨단 물리학 및 렌더링 기능을 얻었을 뿐만 아니라, 디지털 트윈 모델 개발에 대한 전체 접근 방식을 근본적으로 변화시켰다. 유니티의 다양한 기술 및 기능은 여러 문제를 해결하고 스피라텍의 디지털 트윈 개발 프로세스를 형성하는 데 도움이 되었다. 프리팹 시스템 : 객체 지향적 접근 방식을 통해 재사용 가능한 구성 요소 라이브러리를 활용하여 디지털 트윈을 생성할 수 있다. 이는 다양한 프로젝트에서 일관된 품질을 유지하면서 개발 속도를 크게 가속화한다. 픽시즈(Pixyz) : CAD 데이터를 원활하게 가져오고 특정 메타데이터 및 고객 기준에 따라 디지털 트윈을 생성하기 위한 규칙 기반 워크플로를 설정할 수 있다. 사용자 인터페이스(UI) 툴킷 : 편집기 및 런타임을 위한 UI 콘텐츠의 생성 및 향상을 가능하게 하여, 사용자 정의 도구 및 인터페이스에 대해 더 매끄러운 사용자 경험을 제공한다. 작업 시스템 : 복잡한 프로세스(예 : 유체 흐름, 대량 물질 이동 및 스트레스 모델링) 및 대규모 디지털 트윈 프로젝트의 효율적인 다중 스레드 시뮬레이션을 가능하게 한다. 분석기 및 저장 프로파일러 : 성능 병목 현상에 대한 자세한 통찰력을 제공하여 배포 전에 프로젝트 품질을 최적화하고 개선할 수 있게 하며, 궁극적으로 고객에게 더 신뢰할 수 있는 설루션을 제공한다.   대규모 디지털 트윈 내부 : 창고 커미셔닝의 재구상 물류 회사의 창고 시뮬레이션을 특징으로 하는 성공 사례에서 스피라텍은 12개의 가상 PLC를 완전한 디지털 환경에 통합했다. 모델은 필드버스 에뮬레이션과 드라이브, 안전 모듈 및 RFID 리더와 같은 산업 구성 요소의 시뮬레이션을 특징으로 했다. 사용성을 높이기 위해 대규모 시뮬레이션에 최적화된 경량의 강력한 독립 실행형 *.exe 애플리케이션을 제공하는 맞춤형 사용자 인터페이스가 개발되었다. 또한 시스템은 창고 관리 시스템(WMS)과 원활하게 통합되어, 안전한 가상 환경에서 실시간 제품 데이터 관리를 위한 네이티브 텔레그램 통신을 가능하게 했다. 이는 물리적 기계가 존재하기도 전에 포괄적인 소프트웨어 검증을 보장하여 품질을 크게 향상시키고 배포 위험을 줄였다. 이 이니셔티브는 커미셔닝 시간을 30% 줄였다, 프로젝트 일정을 가속화하면서 비용과 위험을 줄였다. 효율성 향상을 넘어, 이는 부서 간 협업을 강화하여 비용 효율적인 반복 개발과 더 빠른 개념 증명 검증을 가능하게 했다.   ▲ 개방형 커미셔닝으로 구축된 창고 운영 시뮬레이션   효율을 넘어 : 시뮬레이션을 통한 지속 가능성 추진 가상 커미셔닝에 대한 대화는 종종 단축된 커미셔닝 시간과 개선된 협업에 초점을 맞추지만, 이러한 이점은 지속 가능성과 관련하여 특히 실질적인 비즈니스 가치로 직접 전환된다. 스피라텍은 고객과 협력하여 후속 제품 수명주기 전반에 걸쳐 디지털 트윈의 사용을 확장하기 시작했으며, 지속 가능성과 비용 절감의 잠재력은 크다. 프로세스를 간소화하고 고충실도 시뮬레이션을 활용함으로써 기업은 다음과 같은 효과를 얻을 수 있다. 장비 수명의 연장 : 시뮬레이션 데이터로 훈련된 예측 유지보수 알고리즘을 사용하여 조직은 마모를 최소화하고 비용이 많이 드는 교체 및 수리를 연기한다. 고장 감소는 유지보수 비용을 직접 낮추고 계획되지 않은 다운타임을 줄인다. 자원 소비의 절감 : 가상 환경에서 제어 논리와 워크플로를 검증함으로써, 팀은 에너지 사용을 줄이고 자재 낭비를 최소화하는 효율성 격차를 식별할 수 있다. 이러한 개선은 환경 목표를 달성하는 데 도움이 될 뿐만 아니라 운영 비용을 줄인다. 시장 출시 시간의 가속화 : 가상 커미셔닝은 물리적 프로토타입과 긴 현장 테스트의 필요성을 최소화한다. 결과적으로 기업은 제품을 더 빠르게 출시하고, 시장 점유율을 더 빨리 확보하며, R&D 투자에 대한 더 빠른 수익을 실현할 수 있다. 현장 면적의 축소 : 더 적은 문제 해결 방문과 짧은 설치 시간은 여행 관련 배출가스와 비용을 줄인다. 이 혜택은 여러 글로벌 시설을 가진 조직에 대해 크게 확장된다.   미래를 함께 형성하기 : 커뮤니티 주도 이니셔티브 협업과 개방성이 가상 커미셔닝의 가장 큰 혁신을 이끌어낼 것이며, 이는 계속 발전할 것이다. 개방형 커미셔닝(open commissioning)을 통해 스피라텍은 단순히 도구를 공유하는 것이 아니라, 혁신적인 아이디어가 다듬어지고 테스트되며 실제 문제를 해결하는 데 적용될 수 있는 커뮤니티 주도 생태계를 구축하고 있다. 가장 흥미로운 발전은 아직 오지 않았다. 스피라텍의 다음 진화는 생성형 AI와 실시간 클라우드 시뮬레이션을 통합하고, 데이터 표준을 설정하며, 산업 연결성을 확장하는 것이다. 제조의 미래는 협업적이고, 데이터 기반이며, 친환경적으로 더 스마트하고 지속 가능한 산업 환경을 만들어 나가는 데 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[ Physical AI × 세계 최초 기술(RCRA) ] AI·로봇 융합 제조·물류 'Next Standard'
■ AX & Robotics-Driven Manufacturing R&D  · Safety Congress with LG Leaders and Global Experts  ■   ● 장소 : LG사이언스파크 E9동 B1층 프런티어홀 (마곡중앙 8로 71) - 발산역 도보 5분, 마곡나루역 도보 7분, 김포공항역 택시 15분   ● 일시 : 9월 18일 (목) 12시  30분 참석등록 시작 (1:00세션 시작 ~ 4:30 종료)   ● 참가료 : 600 명 한정 무료   ● 참가 신청 링크 :  [참가 신청하기]   ● 참가 신청 URL : https://forms.gle/3ywdEZeSJa7sRM4G9   ● 아젠다 상세 :   ① [ Track Keynote ] 고장·충돌·사고를 넘어: System Thinking과 Digital Thread로 보는 로봇 공정의 숨은 리스크   -  경희대학교 임성수 교수   · 세션 상세:  많은 기업이 로봇·AI를 도입해 스마트팩토리의 생산성과 품질 향상을 기대하지만, 실제 운영에서는 고장·충돌·안전사고가 잦습니다. 이는 설계–생산–운영 전 과정의 데이터 단절과 의사결정 구조 분절에서 비롯됩니다. 본 세션에서는 System Thinking 과 Digital Thread를 통해 전사 차원의 리스크를 사전에 식별하고, 설계–생산–운영 데이터를 유기적으로 연결해 문제를 예방하는 구체적 접근법을 제시합니다.   · 연사 소개:  임성수 교수는 경희대 기계공학과 교수이자 대한기계학회 부회장으로, 로봇 안전 분야 권위자다. 산업용 로봇 ISO 국제표준 한국 대표 전문가이자 ISO 15066-3 프로젝트 리더를 맡아왔으며, 대통령 표창 (2024)과 산업부 장관 표창 등 다수의 수상 경력이 있다. 학계·산업계·정부를 아우르는 국제 표준화와 산업 발전의 가교 역할을 수행하고 있다.   ②  Collision-Free Human-Robot Collaboration – AI Safety Simulation and Global Compliance Cases   - 세이프틱스 김휘연 CSO   · 세션 상세: 로봇은 이제 일부 업종의 선택이 아니라 모든 제조 현장의 기본 인프라이며,  그 핵심은 안전성입니다. 안전 없는 자동화는 생산성·품질 모두를 보장할 수 없습니다. 본 세션에서는 Biomechanical Injury Threshold Model과 Digital Twin Safety Simulation을 활용해 자동화 설비의 실제 공정 안전성을 데이터로 분석하고 잠재 위험을 정량화하는 방법을 소개합니다. ISO 10218, ISO/TS 15066  등 국제 안전 규격 대응 사례를 통해 사고 예방을 넘어 리드타임 단축, 품질 보증, 글로벌 납품 승인 및 파트너십 강화로 이어지는 실제 경험을 공유하며, 로봇 안전성이 스마트팩토리의 Next Standard임을 제시합니다.   · 연사 소개 : 김휘연 CSO는 Safetics 전략총괄로, 공학 시뮬레이션 분야의 전문가다. 두산·한화·뉴로메카 등 국내 및 UR ·FANUC·KUKA 등 글로벌 기업과 협력해 왔고, 삼성·현대·GM·P&G 등 세계 유수 기업에 안전 솔루션을 적용한 경험이 있다. 인간-로봇 협업 (HRC) 분야에서 차세대 안전 기술을 선도하는 글로벌 전략가로 알려져 있다.   ③ 위험성 평가는 이제 ‘공정 설계 도구’다 – Front Loading Engineering과  MBSD로 여는 로봇 스마트 팩토리 품질/안전 혁신 - 세이프틱스 임정호 박사   · 세션 상세 : 기존 스마트팩토리 안전 평가는 설비 설치 후 뒤늦게 이뤄져 설계 변경·추가 비용, 일정 지연, 품질 저하로 이어지는 구조적 한계가 있었습니다. 본 세션에서는 이를 극복하기 위해 Front Loading Engineering 과 Model-Based Safety Design(MBSD)을 적용한 사례를 소개합니다. 설계 단계에서 선제적으로 위험성을 평가하고 안전 대책을 반영해 안전을 사후 점검이 아닌 설계의 일부로 통합한 접근법입니다. 이를 통해 설비 변경 비용 절감, 리드타임 단축, 안전·품질 동시 향상이라는 성과를 달성하며 , 위험성 평가가 스마트팩토리 경쟁력의 필수 설계 도구임을 보여드립니다.   · 연사 소개: 임정호 박사는 경희대 기계공학과 연구교수, 산업 자동화·물류 설비 기업과  KOTITI 시험연구원 경력을 바탕으로 수백 개 기업에 로봇 안전 컨설팅을 수행해 온 전문가이다. ISO 10218-2, ISO 13482 국제 표준 전문가로 산업 현장 요구를 깊이 이해하며, 한국로봇산업협회 전문위원과 산업부 소재부품기술개발사업 기획위원으로도 활동하고 있다.   ④ 지능형 로봇 기술혁신과 스마트물류의 확산 - LG CNS  손명운 팀장   · 세션 상세: 지능형 로봇 기술은 AI 수준에 따라  1세대 고정형 로봇에서 센서 기반 2세대, 학습형 3세대를 거쳐, 물리 환경과 상호작용하며 스스로 판단·학습하는 4세대 Physical AI 로봇으로 진화하고 있습니다 . 특히 휴머노이드 로봇은 범용지능을 갖추어 물류·제조 현장의 복잡한 부가가치 작업까지 수행할 수 있는 잠재력을 보여주고 있으며, Amazon과 BMW 등은 이미 현장 실증을 진행 중입니다. 이러한 변화의 핵심은 Robot Foundation Model(RFM)로,  방대한 시뮬레이션·원격제어 데이터 학습과 현장 파인튜닝을 통해 정교한 자율 동작을 구현합니다. Teleoperation 기반 원격작업으로 실시간 대응과 학습데이터 축적이 가능해 지속적 성능 향상이 이루어지며, 이는 단순 자동화를 넘어 완전 무인화 스마트물류센터로의 전환을 가속화합니다. 본 세션에서는 Physical AI와 휴머노이드가 제공하는 혁신과 이를 활용한 물류·제조 경쟁력 강화 방안을 제시합니다.   · 연사 소개: 손명운 팀장은 LG CNS에서 20년 이상 근무하며 북미 의료솔루션 개발과 C 사 자동유도차량 자동화 등 다수의 글로벌·국내 프로젝트를 수행해 온 디지털 혁신 전문가이다. 사용자 편의성 제고를 위한 여러 DX 과제부터 미국 유수의 회사들의 솔루션 사업, 자동화 설비 구축까지 폭넓은 현장 경험을 보유하고 있으며, AX, RX 기술을 활용한 물류자동화를 구현하고 차별화된 고객 가치를 개발하고 있다.    ● 참가 신청 링크 :  [참가 신청하기]   ● 참가 신청 URL :  https://forms.gle/3ywdEZeSJa7sRM4G9   ● 참가 신청 QR코드:    ● 장소 : LG사이언스파크  E9동 B1층 프런티어홀 (마곡중앙8로 71) - 발산역 도보 5분, 마곡나루역 도보 7분, 김포공항역 택시  15분   ● 일시 : 9월  18일 (목) 12시 30분 참석등록 시작 (1:00세션 시작 ~ 4:30 종료)   ● 참가료 : 600명 한정 무료   ● 문의  : Safetics   dblee0803@safetics.io 
작성일 : 2025-08-29
바닥 충격음과 층간 소음 문제 해결을 위한 예측 모델 및 실험 분석
앤시스 워크벤치를 활용한 해석 성공 사례   오늘날 도시화와 인구 증가에 따라 공동주택의 필요성이 증가함에 따라, 공동주택 건설은 지속적으로 연구되며 다양한 방식으로 발전해왔다. 그러나 벽, 바닥, 천장 등 구조물을 공유하는 특성상 층간 소음 문제는 여전히 해결되지 않고 있다. 층간 소음을 최소화하기 위한 다양한 차단 방법이 고안 및 시공되고 있지만, 충격음 저감 대책에 따른 소음 예측은 주택별로 구조물 형태나 저감 대책 등 다양한 변수를 고려해야 하기 때문에 해석만으로는 거의 진행되지 않고 실험 위주 혹은 병행하며 이뤄지고 있다. 이번 호에서는 기존 실험조건의 문헌에 맞춘 해석 모델을 생성하고, 충격음에 대해 예측하는 방법에 대해 소개하고자 한다.    ■ 이효행 태성에스엔이 MBU-F4 팀의 수석 매니저로 원자력, 엔지니어링, 건설, 시험기관 업체를 담당하고 있다. 담당 업무로는 구조해석의 기술지원 및 사내/사외 교육, 세미나, 용역 업무가 있다. 특화된 해석 분야는 구조해석 중 dynamics와 acoustic, geomechanic이며, 20년 넘게 앤시스를 사용하여 구조해석을 수행하고 있다. 홈페이지 | www.tsne.co.kr   바닥 충격음의 제도 변화 바닥 충격음을 최소화하고 건물 내부의 소음 환경을 개선하기 위해 다양한 기술과 방법이 도입되고 있다. 또한 건축물의 품질과 주민의 생활 편의성을 향상시키기 위해 제도 또한 시간이 흐름에 따라 변화하고 발전해왔다. 시기별로 바닥 충격음 제도는 다음과 같이 변화했다. 2003년 4월 22일 개정 정성적인 문구에서 정량적인 기준으로 변경 경량충격음은 58데시벨 이하, 중량충격음은 50데시벨 이하로 제한 표준바닥구조와 바닥 충격음 차단성능등급이 도입 2013년 5월 6일 개정 표준바닥구조의 슬래브 두께가 규정에 포함 중량충격음은 표준 중량충격력 특성-1(뱅머신)로 측정, 평가는 역A-가중 최대 바닥 충격음레벨로 진행 2022년 8월 4일 개정 경량충격음 기준은 58dB 이하에서 49dB 이하로, 중량충격음 기준은 50dB 이하에서 49dB 이하로 강화 중량충격음은 표준 중량충격력 특성-2(임팩트볼)로 측정, 평가는 A-가중 최대 바닥 충격음레벨로 진행 이와 같이 해석만으로 인증을 진행하는 경우는 없으며, 골조 완공 후 건축물의 내부에서 측정하여 인증을 진행한다.   해석 개요 대부분의 예측이 그렇지만, 특히나 바닥 충격음을 예측하기 위해서는 해석만으로는 어렵다. 따라서 실험과 병행해야 하며 해석에 대한 오차를 줄여야 한다. 이에 따라 다음과 같은 순서로 진행하는 것을 권장한다.   ① 바닥 충격음 실험 ② 실험과 유사한 해석 모델 구현 및 해석 ③ 고유진동수와 FRF를 비교 분석(필요에 따라 ②에서 다시 시작) ④ 발생 소음 상대 비교   구조물(구조 평면)이 달라질 경우 전달되는 충격에 따른 소음의 특성이 변화하며, 저감 대책에 변화가 필요할 수도 있다. 직접 실험을 진행하기 어렵기 때문에 참고자료 1)을 바탕으로 해석을 진행하였다. 해석 모델이 실험의 동특성을 유사하게 구현(<표 1>의 Test No. 1 & 2)되었음을 확인하였으며, <표 1>과 같이 해석 설정에 따라 어떠한 변화가 있는지 확인하고자 한다. 비교 대상은 다음과 같다. 구조물의 고유진동수와 FRF는 참고자료 1)과 유사하게 발생하도록 설정 단위하중을 가하여 참고자료 1)의 가속도 FRF와 유사하게 발생하는지 비교 단위하중을 가한 부분에 한하여 MSUP 방식과 FULL method와 소음 해석 결과를 비교 음향 해석을 위해 velocity mapping과 coupled-field FSI 방식의 소음 차이 확인 중량 충격(1500N)에 따른 소음 변화 확인 하중 면적에 따른 소음 변화 확인 뜬바닥 구조(바닥 마감 구조 시공)는 비교하지 않음   표 1. Hyper parameters design to train BIM-based LLM   해석 모델 참고자료 1)을 참고하여 다음과 같이 해석 모델을 생성하였다.    (a) Full   (b) Section  그림 1. 해석 모델   Room 내부 크기 : 4.5m×5.1m×2.7m(Slab 두께가 변경되더라도 receive room inner size는 동일) 벽체 두께 : 150mm     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04