• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "RAG"에 대한 통합 검색 내용이 1,431개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[신간] 돈 되는 AI 어디서부터 무엇을 어떻게 해야 할까
장동인 지음 / 2만 5000원 / 리코멘드 AI 도입, CEO의 기술 이해가 성공을 좌우한다 - 오라클·딜로이트 출신 전문가의 실전 AI 도입 전략서 출간 “기업의 AI 수준은 CEO의 AI 이해 수준을 넘을 수 없다.” ChatGPT부터 AI 에이전트까지 인공지능(AI)이 기업 경영의 핵심으로 부상했다. 기업들은 앞다투어 AI 도입에 나서고 있지만, 실질적인 성과를 내지 못하고 프로젝트가 좌초되는 사례가 속출하고 있다. 이는 시스템 구축에만 집중하고 현장과의 연동에 실패했거나, 경영진의 기술 이해 부족으로 전략을 세우지 못했기 때문이다. 국내 최고의 AI·빅데이터 전문가로 꼽히는 장동인 AIBB LAB 대표가 AI 도입의 성공 전략을 담은 책을 펴냈다. 오라클 본사, 딜로이트, 언스트앤영 등에서 30년간 글로벌 기업 컨설팅을 담당해 온 저자는 『돈 되는 AI, 어디서부터 무엇을 어떻게 해야 할까』를 통해 AI 도입을 고민하는 모든 기업인에게 실전 가이드라인을 제시한다. AI 프로젝트, 첫 문제 정의부터 실패한다 저자는 AI 프로젝트의 90%가 '첫 문제 정의 단계'에서부터 실패한다고 단언했다. 많은 기업이 AI를 도입하면 자동으로 성과가 나올 것이라 착각하지만, 명확한 문제 정의와 전략 없이는 실패를 피할 수 없다는 것이다. 이 책은 이론이 아닌 실전에 초점을 맞춰, 기업 현장에 바로 적용 가능한 구체적인 방법론을 제공한다. 특히 '돈 되는 AI' 문제 정의를 위한 4단계 필터링(문제 정의의 예리성, 데이터 연관성, AI 해결 가능 유형, ROI 산출)을 제시하고, ABCD 방법론(Analysis, Blueprint, Create, Develop)을 통해 AI 도입의 전 과정을 체계화했다. 경영진의 기술 이해가 기업의 생존을 결정한다 엔지니어 출신인 저자는 KAIST AI대학원 CAIO 과정 책임교수이자 6년간 <CEO를 위한 AI 코딩 강의>를 진행하며 경영진의 기술 이해를 강조해 왔다. 이 책에서도 경영진의 기술 이해가 AI 도입 성패를 좌우한다고 거듭 강조했다. 실무자를 위해서는 RAG(검색 증강 생성) 기술을 활용한 사내 지식 관리, AI 에이전트를 통한 업무 자동화, 기존 시스템과의 통합 방법 등 구체적인 실전 사례를 제시했다. 또한 보안이 중요한 기업 환경에 최적화된 오픈 소스 LLM, 클로즈드 소스 LLM, 하이브리드 등 다양한 AI 아키텍처를 비교 분석했다. 랭체인, 코파일럿 스튜디오 등 최신 AI 에이전트 개발 도구까지 실무 관점에서 총정리했다. 이 외에도 젠슨 황의 엔비디아 성공 비결, 딥시크(DeepSeek), 테스트 타임 스케일링, MCP(Model Context Protocol) 등 2025년 최신 AI 트렌드를 총망라해 AI 시대 비즈니스 방향을 고민하는 CEO, 임원, 기획자, 실무자 모두에게 필독서가 될 것으로 기대된다.
작성일 : 2025-10-23
[칼럼] 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기
현장에서 얻은 것 No. 23   “거인의 어깨 위에 올라서서 더 넓은 세상을 바라보라.” – 아이작 뉴턴 AI라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있었다. 이는 단순히 새로운 기술의 등장이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이었다. 필자는 지난 8개월 동안 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어갔다. 이 시간 동안 AI를 단순한 도구로만 보지 않게 되었는데, 그것은 업무, 창작, 학습, 그리고 삶 전반을 통해 스스로를 끊임없이 자극하는 동반자였다. AI를 맹목적으로 신뢰하기보다는 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다. 필자의 학습법은 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%로 다소 독특했다. 이러한 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이었다. ‘바이브 코딩(vibe coding)’을 통해 비개발자도 개발을 할 수 있다고 광고했지만, 실제로는 한계가 있음을 이해했다. 커서 AI(Cursor AI)로 회사 홈페이지를 만들고, 리플릿(Replit) 프로그램으로 MBTI 판별 프로그램을 바이브 코딩으로 시도하며, 만들고 수정하는 것도 가능했다. 하지만 PLM을 기업에 구축하는 PM으로서 경험한 바로는, 비개발자가 프로그램을 만드는 데에는 한계가 있었다. 취미로 만드는 것은 환영하지만 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험하며, 개발자와의 협업이 더 효율적이라는 자신만의 학습 공식을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순한 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 잘 따라갔지만 둘째 날 노트북 배터리가 나가 낭패를 본 기억도 생생했는데, 이러한 경험조차도 학습 과정의 일부가 되었다. AI 학습은 지식을 머리에 담는 것뿐만 아니라 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨달았다. 실패와 해프닝도 자산이 되어 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 것은 속도가 아니라, 끊임 없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것이었다.  “미래는 예측하는 것이 아니라 상상하는 것이다.” – 앨런 케이   ▲ 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문(Map by 류용효) (클릭하시면 큰 이미지로 볼수 있습니다.)   비개발자가 코드를 배우려 했던 이유 필자가 비개발자로서 코드를 배우기 시작한 동기는 개인적인 필요에서 비롯되었다. PLM 구축 PM으로서 개발자와 같은 언어로 소통하고 싶었고, 프로세스 컨설팅을 수행하며 시스템/프로세스 흐름을 실제 코드 레벨에서 검증하고 싶었다. 또한 콘셉트맵과 AI를 접목하여 아이디어를 프로토타입 코드로 구현하고, 데이터 및 AI 기반으로 확장하고자 했다. 바이브 코딩을 통해 손쉽게 프로토타입을 직접 만들어 아이디어를 빠르게 실험하고 싶었던 것도 큰 동기였다. 일반적인 경우에도 비개발자가 코드를 배우는 다양한 이유가 있었다. 반복적이고 단순한 작업을 효율화하여 업무를 자동화하고, 데이터 구조를 직접 다루어 인사이트를 도출하며 데이터 이해력을 강화하는 것이었다. 개발자와의 협업 과정에서 기술적 언어를 이해하여 소통을 원활하게 하고, 아이디어를 직접 테스트하고 시각화하여 창의적 문제 해결 능력을 키우는 데에도 코딩이 필요했다. 또한 디지털 리터러시와 융합 역량을 확보하여 커리어를 확장하고, AI 툴 활용의 전제 조건인 코드 이해를 통해 AI 시대에 적응하고자 했다. 결론적으로, 비개발자가 코드를 배우는 이유는 개발자가 되기 위해서가 아니라 아이디어를 직접 다루고, 빠르게 실험하며, 더 나은 협업자이자 창의적 문제 해결자가 되기 위함이었다. 개발자와 비개발자의 시선 차이는 명확했는데, 개발자는 ‘코드와 로직을 어떻게 짤까’에 집중하고 성능, 안정성, 기술적 가능성에 관심을 두는 반면, 비개발자는 ‘왜 이게 필요한 걸까’에 집중하며 사용성, 효율, 비즈니스 가치를 중요하게 생각했다. 예를 들어, 같은 CSV 데이터를 보더라도 개발자는 데이터의 구조와 처리 방법을, 비개발자는 그 데이터가 무엇을 말해주고 경영 의사결정에 어떻게 쓰일지에 대한 의미와 활용 방법을 보았다. “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   나만의 바이브 코딩 조합 : 작은 성공에서 배운 것들 AI와 바이브 코딩 시대에 기획자의 새로운 역할이 중요하게 부각되었다. 바이브 코딩은 2025년 2월 안드레이 카르파티가 처음 언급한 개념으로, 코드 작성보다는 ‘원하는 결과물의 느낌(바이브)’을 AI에게 자연어로 설명하여 프로그래밍하는 방식이었다. 이는 코드 작성 능력이 창의력과 기획 능력으로 전환되는 트렌드를 반영했다. 비개발자를 위한 AI 개발 방법론은 문제 정의, PRD(제품 요구 문서) 작성, AI 프롬프팅, 그리고 결과 검증의 단계로 이루어졌다. 기획자는 문제 정의와 사용자 경험에 집중하고, AI와 대화하며 요구사항을 구체화하고 결과물을 정제하며, 빠른 프로토타입으로 아이디어를 시각화하고 개선점을 파악하는 데 주력했다. 필자는 8개월간의 여정 속에서 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 이는 단순히 나열된 여러 갈래의 길이 아니라, 하나의 지도 위에 유기적으로 연결되어 있었다. AI는 단순히 도구가 아니라 이 지도를 함께 그려가는 협력자가 되었다. 필자의 AI 필살기는 다음과 같았다. 커서 AI : 비개발자의 ‘첫 코치’ 역할을 했다. 코딩의 벽을 낮춰주는 동반자로, 복잡한 문법, 오류, 환경 설정의 두려움을 덜어주었다. 커서 AI는 단순한 코드 자동 생성이 아니라 필자의 의도를 코드로 번역하여 작은 실험과 반복을 가능하게 했고, 바이브 코딩 학습을 지원했다. GPT-4 기반의 AI 코드 에디터로 비주얼 스튜디오 코드(VS Code)와 호환되며, 자연어로 코딩하고, 즉각적인 에러 수정, 단계별 설명, 코드 리팩토링 기능을 제공했다. 구글 CLI(Google CLI) : 데이터와 시스템을 다루는 새로운 무기였다. 클릭 대신 명령어로 반복 작업을 자동화하여 속도와 효율성을 극대화했다. 가상머신(VM), 스토리지(StoRAGe), 데이터베이스(DB) 등 클라우드 리소스를 제어하고, 데이터를 핸들링하며, API를 직접 호출하여 서비스 통합을 용이하게 했다. 이는 GUI의 한계를 넘어서는 전문가의 무기가 되었다. 파이썬(Python) : 실전에서 가장 유용한 최소 단위였다. 쉽고 직관적인 문법, 방대한 라이브러리, 빠른 프로토타이핑이 강점이었다. 데이터 읽기/쓰기 한 줄, 간단한 자동화 스크립트 등 작은 코드로도 큰 효과를 낼 수 있었고, CSV 분석 및 시각화, 업무 자동화, AI·ML 모델 실험 등에 활용되었다. 커서 AI와 제미나이(Gemini)가 내장되어 더 쉽게 사용할 수 있었다. 이러한 도구들을 조합하여 데이터 분석 자동화 시나리오와 업무 자동화 봇 구축 시나리오를 구현할 수 있었다. 예를 들어, 커서 AI로 데이터 수집 스크립트를 작성하고, 파이썬으로 데이터 정제 및 시각화를 하며, 구글 CLI로 정기적 실행을 스케줄링했다. 무엇보다 데이터 이해는 코드보다 중요한 사고 프레임이었다. 코딩은 기술 습득이 아니라 사고방식의 확장임을 깨달았다. 데이터 구조를 이해하면 문제 정의력이 달라지고, 기획자로서 문제를 바라보는 시각이 새로워졌다. CSV 한 줄이 어떤 의미를 담고 있는지, 칼럼이 단순한 값이 아니라 업무의 맥락임을 이해하게 되면서, 데이터를 읽는 순간 업무 프로세스가 보이기 시작했다. 이러한 변화된 시각은 단순 결과물이 아닌 흐름과 원인을 질문하게 했고, 개발자와 같은 언어로 협업 및 설계를 가능하게 하며, 데이터 기반의 빠른 실험과 검증으로 이어졌다. 필자는 매일 새로운 프로그램에 도전하는 ‘하루 한 프로그램 도전기’를 통해 작은 성공을 쌓아갔다. 완벽함보다는 경험과 시행착오를 통한 학습을 강조했고, 개발의 본질이 사고의 연습임을 깨달았다. 즉, 코드는 도구일 뿐 핵심은 문제를 정확히 이해하고 구조화하는 능력이며, 실패는 학습이고 작은 성공이 쌓여 성장 곡선을 만든다는 것이었다. 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것을 체감했다. 그러나 바이브 코딩에는 현실적인 문제점도 있었다. 새로운 기능을 추가할 때 기존 기능이 손상되는 회귀 테스트 부재 문제, AI가 전체 맥락을 충분히 기억하지 못해 발생하는 기능 안정성 문제가 있었다. 무한루프나 잘못된 로직 생성, 에러 메시지 오해 등으로 인한 오류 및 디버깅 한계, 그리고 수정 과정에서 토큰/리소스를 과다하게 소비하는 문제도 발생했다. 세션이 바뀌거나 컨텍스트가 길어지면 AI가 이전 코드의 세부 흐름을 잊어버리는 지속성 부족 문제와, AI에 의해 산발적으로 작성된 코드가 구조화가 부족하여 협업 및 유지보수가 어렵다는 한계도 있었다. 이러한 문제를 경험하며 코드를 이해하거나 개발자와 협업하는 것이 필수라는 결론에 도달했다. “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   미래를 향한 다리 : 기획자의 새로운 역할 AI 시대에 기획자의 역할은 크게 확장될 수 있었다. 비개발자의 강점은 데이터 맥락 해석력, 비즈니스 중심 사고, 그리고 맥락적 설명 능력에 있었고, 이는 CSV 데이터 컬럼의 의미와 관계를 명확하게 설명하고, 로직보다 비즈니스 가치와 목적에 집중하며, 기술적 디테일보다 전체적인 흐름과 맥락을 설명하는 커뮤니케이션 역량을 제공했다. 프로세스 컨설턴트에서 프로그램 기획자로의 역량 확장이 필요했다. 컨설팅 경험을 시스템 아키텍처 설계에 적용하고, 업무 분석 능력을 시스템 요구사항으로 전환하며, 사용자 관점과 시스템 관점의 통합을 통해 더 나은 UX(사용자 경험)를 설계하는 것이었다. 현업 부서와 IT 부서 간의 가교 역할을 수행하고, 업무 프로세스 최적화를 통해 비효율 지점을 발견하고, 시스템 병목 현상을 데이터 흐름 관점에서 해결하는 역량이 중요했다. 컨설팅 산출물을 소프트웨어 명세서로 변환하고 워크플로 시뮬레이션으로 최적화를 검증하는 방법이 요구되었다. 기획자는 기술 이해도를 바탕으로 개발팀과의 협상력을 강화하고, 데이터 기반의 의사결정 모델을 구축하며, 비즈니스와 기술을 잇는 통합적 관점을 제시하고, 프로토타입으로 아이디어를 구체화하는 능력을 확보해야 했다. 이를 위한 역량 개발로는 시스템 사고, 기술 리터러시(API, DB 구조, 클라우드 서비스 기본 개념), 애자일 방법론, 그리고 지라(Jira), 피그마(Figma), 미로(Miro)와 같은 협업 도구 활용 능력이 있었다. 기획자와 개발자의 경계를 허물고 함께 문제를 정의하고 해결하는 통합적 협업 체계를 구축하는 것이 중요했다. “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인 AI의 본질은 ‘주체’가 아니라 ‘도움’이었다. AI는 망설임 없이 실행하지만, 그것이 옳은 방향인지 판단하는 것은 인간의 몫이었다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하는 것은 아니며, 잘못된 의존은 인간의 중요한 능력을 잃게 만들 수 있었다. 그래서 필자는 AI의 답변을 최소 세 번 이상 검증했는데, 빠른 실행보다 올바른 방향 설정이 중요했기 때문이었다. AI가 주는 답은 끝이 아니라 출발점이었다. 필자가 AI와 함께한 여정은 자신을 끊임없이 질문하게 했다. AI는 인간을 대체하는 기계가 아니라, 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자였다. 필자가 찾은 필살기는 바로 이것이었다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것이었다. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있었다. AI는 더 이상 선택이 아닌 필수 도구이자 협력자였다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이었다. AI는 재능은 있지만 한계에 부딪힌 사람에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어주었다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 했다. 미래를 향한 첫걸음은 지금 바로 도전하는 것이었다. 바이브 코딩은 기획 의도와 개발 실행 사이의 간극을 해소하고, AI 시대 기획자의 역할 확장과 가능성을 발견하게 해주었다. 업무 자동화로 반복 작업에서 벗어나 창의적 업무에 시간을 활용하고, 데이터 기반의 의사결정과 인사이트 도출 능력을 강화할 수 있었다. 하루 30분, 한 프로그램 만들기로 시작하는 것이 중요했고, 완벽함보다는 시작하는 용기가 중요했다. 하지만 잊지 말아야 할 것은, 바이브 코딩의 장단점을 잘 파악하여 적용해야 한다. 특히 개인적인 사용의 간단한 프로그램은 괜찮으나, 대외적인 서비스를 하는 프로그램 개발의 경우, 반드시 고급 개발자의 코드리뷰를 거쳐서 보안상의 문제, 데이터 유출 등이 없도록 해야 한다. AI는 명확하게 정의된 문제를 푸는 데 능숙하지만, 복잡하고 모호한 비즈니스 요구사항을 해석하여 견고한 시스템을 설계하는 것은 못하는 것을 명심해야 한다. “코딩은 기술이 아닌 사고 프레임의 확장이다.”    ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
텐센트, 산업 효율 가속화 위한 시나리오 기반 AI 기능 발표
텐센트는 기업의 산업 효율 향상 및 국제 성장 가속화를 지원하는 새로운 시나리오 기반 AI 기능을 글로벌 출시한다고 밝혔다. 텐센트는 중국 선전시에서 열린 ‘2025 텐센트 글로벌 디지털 에코시스템 서밋(GDES)’에서 지능형 에이전트 애플리케이션, ‘SaaS + AI’ 설루션, 대규모 모델 기술 업그레이드 등을 공개했다. 텐센트는 기업이 고객 서비스, 마케팅, 재고 관리, 리서치 등 다양한 시나리오에 지능형 자율 AI 에이전트를 생성 및 통합할 수 있게 하는 ‘에이전트 개발 플랫폼 3.0(Agent Development Platform : ADP)’의 글로벌 출시를 발표했다. 이는 대규모 언어 모델(LLM) + 검색 증강 생성(RAG), 워크플로, 멀티 에이전트 등 다양한 지능형 에이전트 개발 프레임워크를 지속적으로 고도화해, 기업들이 자사 데이터를 활용하여 안정적이고 안전하며 비즈니스에 부합하는 에이전트를 효율적으로 구축할 수 있도록 지원한다. 또한, 에이전트의 구축·배포·운영을 위한 견고한 인프라 기반을 제공하는 AI 인프라 ‘에이전트 런 타임’도 함께 선보였다. 업무 협업을 강화하는 업그레이드된 SaaS+AI 툴킷도 공개됐다. 텐센트에 따르면, 텐센트 미팅(Tencent Meetings)의 AI 미닛(AI Minutes)은 지난 1년간 전년 대비 150% 성장률을 기록했으며, 텐센트 런쉐어(Tencent LearnShare)도 92% 응답 정확도로 30만 개 이상의 기업에서 활용되고 있다. 개발자용 AI 코딩 도구 ‘코드버디(CodeBuddy)’도 코딩 시간을 40% 단축하고 R&D 효율을 16% 향상시켰다. 텐센트의 독자적인 대규모 언어 모델 훈위안(Hunyuan) 기반의 신규 모델도 발표됐다. 훈위안 3D 3.0, 훈위안 3D AI, 훈위안 3D 스튜디오는 미디어·게임 산업 등에 종사하는 창작자와 개발자를 위한 첨단 3D 생성 기능을 제공한다. 훈위안 3D 시리즈는 허깅페이스(Hugging Face)에서 260만 회 이상 다운로드되며 인기 있는 오픈소스 3D 모델로 자리매김했다. 한편, 훈위안 라지 모델은 지난 1년간 30개 이상의 신규 모델을 공개하고 오픈소스 개발을 전면 수용해 왔다. 하이브리드 훈위안-A13B와 30개 이상 언어를 지원하는 번역 모델, 그리고 이미지·비디오·3D 콘텐츠를 위한 포괄적 멀티모달 생성 기능 및 툴 등을 오픈소스로 지속 제공했다. 한편, 텐센트는 글로벌 확장 이정표를 강조하며 자사의 해외 고객 기반이 전년 대비 2배로 증가했다고 밝혔다. 텐센트 클라우드 인터내셔널은 최근 3년간 아시아(홍콩, 동남아, 일본 등)를 포함한 글로벌 전역에서 두 자릿수의 연간 성장률을 달성했다. 현재 중국 선도 인터넷 기업의 90% 이상, 중국 선도 게임 기업의 95%가 글로벌 확장을 지원하기 위해 텐센트 클라우드를 활용하고 있다. 특히, 텐센트 클라우드 인터내셔널 서밋에서는 컨버지 ICT 솔루션즈, 다나, 이앤 UAE, 홍콩 경마협회, 퓨전뱅크, 고투 그룹, 인도삿 우레두 허치슨, 미니클립, MUFC 은행 중국 법인, 프로서스, 트루 IDC 등 글로벌 파트너들이 참여해, 차세대 성장과 국제화 목표 달성을 위한 첨단 클라우드와 AI 설루션 도입의 필요성에 대해 논의했다. 한편, 이번 서밋에서는 아시아 태평양 지역의 데이타컴, IOH, 가르디 매니지먼트, 고투 그룹, 마하카X, MUFG 은행 중국 법인, 라이드 테크놀로지스, 스톤링크, 트루 IDC, 99 그룹, 중동의 쿠프 뱅크 오로미아, 네이티벡스, 유럽의 이마그, 북미의 인클라우드 등 글로벌 기업과의 파트너십 협약 체결도 이뤄졌다. 앞으로 텐센트는 ▲인프라 ▲기술 제품 ▲서비스 역량 세 영역에서 국제화 전략을 고도화하여, 다양한 산업의 더 많은 기업의 디지털 전환 달성을 지원할 계획이다. 현재 ‘슈퍼앱-애즈-어-서비스(Superapp-as-a-Service)’과 ‘팜AI(PalmAI)’ 등 텐센트 클라우드 제품은 아시아 태평양, 중동, 미주 지역의 해외 기업들에 채택되고 있다. 또한, 텐센트 클라우드 에이전트 개발 플랫폼(TCADP), 코드버디, 클라우드 몰(Cloud Mall) 등의 글로벌 버전을 도입해 각 지역 요구에 부합하고 전 세계 대규모 동시 접속 환경에서 안정적으로 운영될 수 있도록 지원하고 있다. 텐센트 클라우드는 현재 21개 시장 및 지역에서 55개 데이터센터를 운영 중이다. 향후 사우디아라비아에 중동 첫 데이터센터 구축을 위해 1억 5000만 달러를 투자할 계획이며, 일본 오사카에도 세 번째 데이터센터와 신규 오피스를 설립할 예정이다. 또한, 자카르타, 마닐라, 쿠알라룸푸르, 싱가포르, 방콕, 도쿄, 서울, 팔로알토, 프랑크푸르트에 9개의 글로벌 기술지원센터를 운영하고 있다. 텐센트의 다우슨 통(Dowson Tong) 수석부사장 및 클라우드·스마트산업 그룹 CEO는 “AI가 실질적 효용을 발휘할 때 산업은 효율성을 얻음과 동시에, 국제화는 기업의 새로운 성장 동력이 된다”면서, “이번에 선보인 신규 및 업그레이드 설루션을 통해 기업의 디지털 고도화 및 글로벌 확장을 지원해 지속가능한 성장을 지원하겠다”고 전했다. 
작성일 : 2025-09-17
레노버-솔트룩스, 차세대 AI 인프라 전략 및 LLM 기반 AI 설루션 소개
레노버 글로벌 테크놀로지 코리아(ISG)는 9월 11일 AI 전문기업 솔트룩스와 함께 ‘Lenovo Tech Day - Smarter HPC for All’ 세미나를 개최했다. 이번 행사에서는 레노버의 차세대 인프라스트럭처 전략과 솔트룩스의 대규모 언어 모델(LLM) 기반 AI 설루션인 루시아 GPT(Luxia GPT)가 소개되어, 고성능 AI 인프라 설루션을 통해 첨단 AI 기술이 효율적이고 안전하게 구현될 수 있음을 보여주었다.  AI에 기반한 혁신이 가속화되는 가운데, 초거대 AI와 이를 뒷받침하는 고성능 인프라의 중요성은 더욱 커지고 있다. 혁신적인 AI 설루션의 성능을 극대화하기 위해서는 고도화된 연산 능력과 안정적인 인프라 환경이 필수이기 때문이다. 레노버는 “AI와 HPC 워크로드에 최적화된 강력한 인프라를 제공함으로써, 솔트룩스와 같은 다양한 AI 기업의 첨단 설루션이 고객 환경에서 성공적으로 구현될 수 있도록 지원하고 있다”고 전했다. 솔트룩스는 AI 서비스 기업으로 AI 에이전트, AI 검색, 생성형 AI 챗봇까지, 기업을 위한 최첨단 AI 설루션을 제공하고 있다. 솔트룩스의 루시아 GPT는 고객 데이터를 학습해 도메인 특화형 생성형 AI 서비스를 제공하고, RAG(검색 증강 생성)와 지식 그래프를 연계해 근거에 기반한 정확한 답변을 제시할 수 있다. 또한 정교한 권한 관리 기능을 통해 고객의 내부 데이터 보안을 강화함으로써 기업 환경에서 안전하고 효율적인 AI 활용을 가능하게 한다.   이날 행사에서는 솔트룩스의 이경일 대표가 AI가 투자 분야에 가져온 혁신적 변화에 대해 발표했다. 이어서 레노버 이상욱 이사가 레노버의 AI 인프라 전략을 공유했고, 솔트룩스 이승민 본부장이 실질적인 AI 도입과 지원 방안에 대해 설명했다. 레노버 글로벌 테크놀로지 코리아(ISG) 윤석준 부사장은 “AI 서비스가 점차 고도화되면서 고성능 AI 인프라에 대한 관심도 증대되는 가운데, 이에 대한 최신 인사이트와 전략을 공유하고자 이번 행사를 준비했다”면서, “레노버의 고성능 AI 인프라와 솔트룩스의 첨단 AI 서비스를 결합해, 고객의 니즈에 최적화된 AI 설루션을 제공해나갈 것”이라고 말했다. 솔트룩스 이경일 대표는 "레노버와의 파트너십을 통해 도메인 특화 LLM ‘루시아’를 기본 탑재한 하드웨어 일체형 생성형 AI 어플라이언스 루시아 온(LUXIA-ON)의 전국 단위 유통망을 확보하고, 이를 바탕으로 지역별 고객사와 다양한 산업군으로 루시아 온의 시장 확산을 가속할 것”이라고 말했다.
작성일 : 2025-09-12
한국레노버, 스냅드래곤 X 탑재한 80만원대 AI PC ‘아이디어패드 슬림 3x’ 출시
한국레노버가 AI 기능을 강화하면서 실용성, 이동성, 보안성을 갖춘 차세대 인공지능(AI) PC ‘아이디어패드 슬림 3x(IdeaPad Slim 3x)’를 국내 공식 출시했다. 아이디어패드 슬림 3x는 퀄컴 스냅드래곤 X(SnapdRAGon X) 프로세서와 코파일럿(Copilot) 기능을 탑재한 AI PC다. 최대 45 TOPS의 NPU(신경망 처리 장치)를 기반으로 멀티태스킹, 화상 회의, 콘텐츠 실시간 최적화 등 다양한 AI 기능을 빠르고 스마트하게 수행한다. 기본 운영체제는 윈도우 11 홈이다. 한국레노버는 “대학생과 직장인 등 일상 속 다양한 작업을 실행하고, 실용성을 갖춘 AI PC를 찾는 사용자층을 고려해 시작가 80만원대의 합리적인 가격대로 선보인다”고 소개했다.      기본 디스플레이는 15.3인치 WUXGA(1920×1200) 해상도의 IPS 패널로 NTSC 45% 색 재현율과 300니트 밝기, 눈부심을 줄여주는 안티글레어(Anti-Glare) 기능을 기본 탑재했다. OLED 패널 선택도 가능하며 최대 2.5K 해상도까지 지원한다. TUV 라인란드 로우 블루라이트 인증을 획득해 장시간 사용에도 눈의 피로를 최소화한다. 아이디어패드 슬림 3x는 AI PC의 보편화를 위해 일상 작업에 최적화된 휴대성과 내구성을 갖췄다. 최대 60Wh 용량의 배터리는 한 번 충전으로 최대 22시간(로컬 FHD 영상 재생 기준)까지 사용할 수 있으며, 급속 충전 기능을 통해 15분 충전으로 최대 2시간까지 사용할 수 있다. 여기에 슬림한 디자인과 약 1.5kg의 무게로 이동의 부담을 줄였다. 프리미엄 메탈 섀시를 적용한 제품 외관은 미국 국방부의 밀리터리 등급(MIL-STD-810H)을 통과하는 등 안정적인 사용 환경을 제공한다. 보안 기능도 강화했다. 상단에는 웹캠을 사용하지 않을 때 렌즈를 가릴 수 있는 프라이버시 셔터를 탑재해 사생활을 보호한다. 지문 인식 기능을 통해 빠르고 안전한 로그인이 가능하며, 향상된 보안 시스템이 개인 데이터와 PC를 보호한다. 노트북의 좌우 측면에는 디스플레이 연결을 위한 USB Type-C 단자, USB Type-A 단자, HDMI 1.4, 콤보 오디오 잭, SD카드 리더기 등을 배치해 연결성을 높였다. 와이파이(Wi-Fi) 7과 블루투스 5.4는 안정적인 무선 연결을 지원해 화상 회의, 스트리밍, 파일 전송 등 다양한 작업을 끊김 없이 지원한다. 전문가 도움 없이 추가 SSD 설치도 쉬워 여유로운 저장공간을 확보할 수 있다. 레노버는 고객 과실로 인한 파손에도 무상 수리를 지원하는 ‘우발적 손상 보장(ADP) 서비스’와 문제 발생 시 엔지니어가 직접 방문해 수리하는 온사이트(On-site) 서비스를 포함한 ‘프리미엄 케어’ 서비스를 각 1년간 지원한다. 한편, 한국레노버는 8월 5일부터 네이버 브랜드스토어에서 사전 예약을 실시하고, 신제품 출시를 기념한 프로모션을 진행한다고 밝혔다. 네이버 브랜드스토어에서 단독 출시하는 이번 제품을 구매하는 고객에게는 마우스와 마이크로소프트 M365 오피스 프로그램을 선착순으로 증정한다. 구매자 후기 이벤트도 진행한다. 1등에게는 레노버 태블릿을, 2등과 3등에게는 각각 레노버 모니터와 상품권 등 사은품을 제공한다. 한국레노버 신규식 대표는 “아이디어패드 슬림 3x는 AI 시대에 최적화된 코파일럿+ PC로, 학습, 업무, 창작 등 다양한 분야에서 더 많은 사용자가 보다 스마트하고 효율적으로 컴퓨팅 환경을 누릴 수 있도록 설계된 제품”이라며, “일상 속 AI PC 활용의 진입 장벽을 낮춘 이번 신제품 출시를 통해 단순한 작업 속도 향상을 넘어 사용자의 창의성과 몰입도까지 높이는 AI PC의 새로운 가치를 직접 체감하길 바란다”고 밝혔다.
작성일 : 2025-08-05
[포커스] AWS, “다양한 기술로 국내 기업의 생성형 AI 활용 고도화 돕는다”
아마존웹서비스(AWS)는 최근 진행한 설문조사를 통해 국내 기업들의 AI 활용 현황과 과제를 짚었다. 또한, 신뢰할 수 있는 고성능의 인공지능 에이전트(AI agent)를 구축하고 배포할 수 있는 환경을 제공하면서 한국 시장에 지원을 강화하고 있다고 밝혔다. AWS는 AI의 도입과 활용 과정에서 기업이 겪는 기술적 어려움을 줄이고, 더 많은 기업이 쉽고 안전하게 생성형 AI를 도입하여 비즈니스 가치를 창출할 수 있도록 돕는 데 집중하고 있다. ■ 정수진 편집장    기업의 AI 도입률 높지만…고도화 위한 과제는?  AWS와 스트랜드 파트너스(Strand Partners)는 2025년 4월 한국 기업 1000곳과 일반인 1000명을 대상으로 AI에 대한 행동과 인식에 대한 설문조사를 진행하고, 그 결과를 바탕으로 한국 기업의 AI 활용 현황을 평가했다. 이 조사는 유럽에서는 3년째 진행되어 왔는데, 이번에 글로벌로 확장해 동일한 방법론을 적용했다. 스트랜드 파트너스의 닉 본스토우(Nick Bonstow) 디렉터는 설문조사 보고서의 내용을 소개하면서, 한국 기업의 AI 도입 현황과 주요 과제를 분석했다. 조사에서는 한국 기업의 48%가 AI를 도입 및 활용하고 있는 것으로 나타났는데, 이는 전년 대비 40% 성장한 수치이다. 유럽 기업의 평균 AI 도입률인 42%보다 높았는데, 특히 지난해에만 약 49만 9000 개의 한국 기업이 AI를 처음 도입한 것으로 추정된다. 본스토우 디렉터는 “AI를 도입한 기업들은 실질적인 이점을 경험하고 있다. 56%가 생산성 및 효율성 향상으로 매출 증가를 경험했고, 79%는 업무 생산성 향상 효과를 확인했다. 그리고 AI 도입에 따라 주당 평균 13시간의 업무 시간을 절감했다”고 소개했다. AI 도입률은 높지만, 국내 기업의 70%는 여전히 챗봇이나 간단한 반복 업무 자동화와 같은 기초적인 수준의 AI 활용에 머무르고 있는 상황이다. AI를 다양한 업무 영역에 통합하는 중간 단계는 7%, 여러 AI 도구나 모델을 결합하여 복잡한 업무를 수행하거나 비즈니스 모델을 혁신하는 변혁적 단계는 11%에 불과했다. 본스토우 디렉터는 “기업들이 AI의 잠재력을 완전히 활용하기 위해 더 높은 단계로 나아가야 할 필요가 있다”고 짚었다. 본스토우 디렉터는 국내 기업의 AI 도입이 양극화되고, AI 혁신의 편차를 키울 수 있다고 전했다. 한국 스타트업의 70%가 AI를 확대하고 있는데 이는 유럽의 58%보다 높은 수치로, 국내 스타트업 생태계는 AI 도입에서 뚜렷한 강점을 보였다. 스타트업의 33%는 AI를 비즈니스 전략 및 운영의 핵심 요소로 두고 있으며, 32%는 가장 고도화된 방식으로 AI를 활용하고 있다. 또한, 21%는 AI 기반의 새로운 제품 및 서비스를 개발 중이다. 반면, 국내 대기업의 69%는 여전히 AI를 효율 개선, 업무 간소화 등 기초적인 수준에서만 활용하고 있는 것으로 나타났다. 대기업의 10%만이 AI 기반 신제품 또는 서비스 개발 단계에 진입했는데, 이는 스타트업의 절반 수준이다. 이번 조사에서는 AI 도입의 주요 장애 요인으로 기술 및 디지털 인재의 부족, 자금 접근성, 규제 환경 등이 꼽혔다. 조사 응답 기업의 43%가 디지털 인재를 확보하지 못해 AI 도입 또는 확산에 어려움을 겪고 있다고 응답했고, 지난 1년간 디지털 역량 교육에 참여한 직원은 약 34%였다. 67%의 기업은 정부의 지원 정책이 AI 도입 결정에 중요하다고 응답했으며, 45%의 스타트업은 벤처 자본 56 · 접근성이 성장을 위한 핵심 요소라고 평가했다. 그리고 국내 기업들은 기술 예산 가운데 평균 23%를 규제 준수 비용에 투입하고 있으며, 34%는 AI 기본법 등 관련 입법으로 인해 이 비용이 증가할 것으로 예상했다. 본스토우 디렉터는 “한국이 AI 부문에서 세계를 선도할 수 있는 인프라와 스타트업 생태계 그리고 강한 열정을 가지고 있음을 확인했다. 하지만 AI 활용의 깊이를 더해주는 변혁적인 활용으로 나아가지 못하고 있는 점과 인재 부족, 규제 불확실성 등의 장애 요인을 해결해야 AI를 미래의 성장 동력과 경쟁력의 원천으로 삼을 수 있을 것”이라고 평가했다. 그리고, 이를 위해 한국 정부가 ▲기술 인재에 대한 투자 ▲혁신 친화적이고 명확한 규제 환경 조성 ▲공공 부문의 기술 현대화 및 디지털 전환 추진 등에 관심을 기울일 것을 제안했다.   ▲ AWS 김선수 AI/ML 사업 개발 수석 스페셜리스트   기업의 생성형 AI 활용 문턱 낮춘다 AWS의 김선수 AI/ML 사업 개발 수석 스페셜리스트는 국내 기업들이 AI를 잘 활용할 수 있도록 돕는 AWS의 생성형 AI 기술 스택과 주요 서비스를 소개했다. 그는 “2023년이 생성형 AI 개념 검증(PoC)의 해였다면 2024년은 생산 적용, 2025년은 비즈니스 가치 실현의 해가 될 것”이라고 짚었다. 또한 복잡한 작업을 자율적으로 수행하는 에이전트 AI에 대한 관심이 커지고 있다면서, 가트너(Gartner)의 전망을 인용해 “2026년까지 기업의 80% 이상이 생성형 AI API(애플리케이션 프로그래밍 인터페이스)를 사용하거나 관련 기능이 탑재된 애플리케이션을 배포할 것”이라고 전망했다. AWS는 생성형 AI를 위한 기술 스택을 세 가지 계층으로 제공한다. 가장 아래쪽에는 GPU, AI 프로세서 등을 포함해 모델 훈련과 추론에 필요한 인프라 레이어가 있고, 중간에는 AI 모델에 연결하여 각 기업에 최적화된 생성형 AI 애플리케이션을 구현하도록 돕는 모델/도구 레이어, 가장 위쪽에는 복잡한 개발 없이 쉽고 빠르게 활용할 수 있는 생성형 AI 애플리케이션 레이어가 있다. 이 기술 스택의 핵심으로 AWS가 내세운 것이 아마존 베드록(Amazon Bedrock)이다. 베드록은 생성형 AI 애플리케이션을 쉽게 구축하고 확장할 수 있도록 지원하는 완전 관리형 서비스이다. 앤트로픽, 메타, 미스트랄 AI 등 12개가 넘는 AI 기업의 파운데이션 모델(FM)을 선택해 활용할 수 있다는 점이 특징이다. 아마존 베드록은 비용, 지연 시간, 정확도를 최적화할 뿐만 아니라 기업의 필요에 맞게 모델을 맞춤 설정하거나 유해 콘텐츠/프롬프트 공격 등을 필터링해 안전한 AI 활용 환경을 갖출 수 있도록 돕는다. 김선수 수석 스페셜리스트는 “베드록은 프롬프트 엔지니어링, 검색 증강 생성(RAG), 미세조정(파인 튜닝) 등 다양한 방식으로 모델을 활용할 수 있도록 지원한다. 특히 RAG 구현을 위한 지식 베이스 및 벡터 검색 기능을 기본으로 제공해, 기업의 내부 데이터를 안전하게 연결하고 관련성 높은 답변을 생성할 수 있다”고 전했다. 최근 생성형 AI는 어시스턴트(assistant)를 넘어 워크플로를 자동화하는 에이전트(agent)로 진화하고 있으며, 궁극적으로는 사람의 개입 없이 AI끼리 자율적으로 협업하는 에이전틱 AI(agentic AI) 시스템으로 나아갈 것으로 보인다. AWS는 생성형 AI 에이전트 구축을 위해 ▲아마존 Q 디벨로퍼(Amazon Q Developer)와 같이 사전 구축된 에이전트 제품 ▲아마존 베드록 에이전트(Amazon Bedrock Agents)와 같이 내장된 오케스트레이션을 제공하는 완전 관리형 설루션 ▲스트랜드 에이전트(Strands Agents)와 같은 경량 오픈소스 SDK(소프트웨어 개발 키트)를 활용해 직접 에이전트를 구축할 수 있는 제품 등을 선보이고 있다.    ▲ AWS는 AI 에이전트의 구축과 배포를 위해 다양한 기술을 제공한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
시높시스, 앤시스 인수 완료… 반도체부터 시스템까지 통합 제품 개발 역량 강화
시높시스(Synopsys)가 앤시스(Ansys) 인수를 완료했다고 발표했다. 2024년 1월에 양사의 합병이 발표된 후 이번에 인수 작업이 완료되면서, 시높시스와 앤시스는 실리콘 설계, IP 및 시뮬레이션·해석 분야의 선도 기술을 결합해 제공할 수 있게 됐다. 시높시스는 앤시스와 통합으로 고객이 AI 기반 제품을 신속하게 혁신할 수 있도록 지원하고, 310억 달러 규모로 추산되는 전체 시장에서 우위를 점할 수 있을 것으로 보고 있다. 시높시스는 제품이 실제 환경에서 어떻게 작동할지에 대해 강화된 통찰력을 제공함으로써 엔지니어들이 제품을 혁신하고, 출시 기간과 비용을 단축하며, 제품 품질을 개선할 수 있도록 꾸준히 지원할 계획이다. 또한 앤시스와 통합을 통해 반도체, 하이테크, 자동차, 항공우주, 산업 등 다양한 산업 분야의 고객에게 전체론적인 시스템 설계 설루션을 제공할 수 있을 것으로 보고 있다. 시높시스는 2026년 상반기까지 멀티다이(multi-die) 첨단 패키징을 포함해 전체 EDA 스택에 걸쳐 다중물리(멀티피직스)를 융합하는 첫 통합 기능을 제공할 것으로 예상한다. 통합 로드맵에는 자동차 및 기타 산업을 위한 복잡한 지능형 시스템의 테스트 및 가상화를 발전시키기 위한 통합 설루션도 포함된다.     시높시스의 사신 가지(Sassine Ghazi) CEO는 “수십 년 동안 시높시스는 칩 혁신을 이끌어온 실리콘 설계 및 IP 분야에서 획기적인 발전을 이뤄왔다. 지능형 시스템 개발의 복잡성이 증가함에 따라 AI로 강화되고 전자공학과 물리학이 더 깊이 통합된 설계 설루션이 요구된다”면서, “앤시스의 선도적인 시스템 시뮬레이션 및 분석 설루션을 시높시스의 일부로 통합함으로써, 엔지니어링 팀의 역량을 폭넓게 극대화하고 실리콘에서 시스템에 이르는 혁신에 불을 지필 수 있게 됐다”고 전했다. 합병아 완료되면서 앤시스의 아제이 고팔(Ajei Gopal) 전 CEO와 앤시스 이사회 멤버였던 라비 비자야라가반(Ravi VijayaRAGhavan)은 시높시스 이사회에 합류하게 된다. 고팔은 “반세기 동안 앤시스는 여러 산업의 혁신가들이 시뮬레이션 및 분석의 예측 능력을 통해 한계를 뛰어넘을 수 있도록 지원해왔다”면서, ”두 회사는 공통의 문화 및 성공적인 파트너십을 공유하며, 이제 혁신가들이 인류 발전을 이끌도록 힘을 실어준다는 공동의 사명을 갖게 됐다. 시높시스 이사회의 일원으로서 이 사명을 수행하게 되기를 기대하며, 신속하고 성공적인 통합을 예상한다”고 말했다.
작성일 : 2025-07-21
스트라타시스, ‘3D 프린팅 포럼 2025’에서 국내 기업의 디지털 제조 혁신 위한 기술 소개
스트라타시스가 7월 17일 그래비티 조선 서울 판교오토그래프 컬렉션 지하 1층 스페이스 볼룸홀에서 ‘스트라타시스 3D 프린팅 포럼 2025’를 개최한다고 밝혔다.  스트라타시스는 “이번 포럼에서 디지털 제조 혁신을 선도하는 3D 프린팅의 현재와 미래를 살펴보고, 스트라타시스의 글로벌 사례와 인사이트를 공유할 예정”이라면서, “그동안 어디에서도 볼 수 없었던 스트라타시스의 다양한 산업군 내 글로벌 사례 소개와 국내 고객사가 스트라타시스 3D 프린팅을 통해 어떻게 디지털 혁신을 이루어내고 있는지 아낌없이 공유하는 자리가 될 것”이라고 전했다. 스트라타시스 코리아 문종윤 지사장의 환영사로 시작하는 포럼은 스트라타시스 안드레아스 랭펠드(Andreas Langfeld) CRO의 ‘적층제조 기술의 트렌드 및 시장 전망 소개’ 기조 연설로 이어진다. 또한 스트라타시스의 얀 라겔(Yann RAGeul) 부회장은 ‘자동차 및 모빌리티 산업’에서 쓰이는 스트라타시스 3D 프린팅의 글로벌 사례를, 다니엘 프린스(Dainel Princ) PJ/P3 디렉터는 ‘제조 부품 및 산업용 부품산업’에서의, 프레드 피셔(Fred Fischer) 디렉터는 ‘항공우주 및 국방산업’에서의 스트라타시스 활용 현황을 공유한다. 오후 세션은 국내 고객사의 사례발표가 이어진다. 박인백 LG전자 AM Solution 팀 팀장, 박성환 현대모비스 책임, 유진광 충북 테크노파크 책임, 엄재용 TPC 메카트로닉스 수석은 각 산업별로 활용되고 있는 스트라타시스 제품과 활용 사례를 발표하며, 최승호 스트라타시스 코리아 애플리케이션 개발팀장은 의료산업의 사례를 발표한다.     전 세계 제조업계는 지금 공급망 재편과 고부가가치화, 지속가능성을 중심으로 빠르게 재편되고 있다. 이러한 변화속에서 3D 프린팅은 미래 제조산업을 견인하는 핵심 기술로 부상하고 있으며, 특히 최종 부품 생산을 위한 새로운 표준으로 자리매김하고 있다. 스트라타시스는 고도화된 소재, 진화된, 플랫폼, 생산공정에 최적화된 적층제조 설루션을 내세우면서 다양한 산업군에서 디지털 제조 혁신을 추진해왔다. 스트라타시스의 설루션은 FDM(Fused Deposition Modeling), 폴리젯(PolyJet), P3(Programmable PhotoPolymerization), SAF(Selective Absorption Fusion), SLA(Stereo Lithography Apparatus) 등의 포트폴리오를 기반으로 자동차·항공우주·소비재·교육·의료·패션 등 산업 여러 분야에서 활용되고 있다. 문종윤 지사장은 “빠른 속도로 재편되고 있는 전 세계 미래 제조산업의 흐름 속에서, 스트라타시스는 글로벌 리딩 기업으로 항상 고객이 가장 필요한 순간에 최적의 설루션을 제공하며 디지털 제조 혁신을 실현해왔다”면서, “이번 스트라타시스 3D 프린팅 포럼은 전 세계적인 변화의 흐름 속에서 최신 기술 트렌드와 글로벌 사례를 공유하고, 함께 미래 제조 전략을 논의하는 소통의 장이 될 것으로 기대한다”고 전했다.
작성일 : 2025-07-14
아이비스–에스엠솔루션즈, AI 기반 차량 소프트웨어 기술 개발 위해 협력
차량용 모빌리티 소프트웨어 기업 아이비스가 사이버 보안 및 AI 기술 기업 에스엠솔루션즈와 함께 자동차 및 모빌리티 분야의 AI 기반 기술 공동 개발을 위한 양해각서(MOU)를 체결했다고 전했다. 양사는 이번 협력을 통해 차량 내 온디바이스 AI 기술과 보안 AI 기술을 융합한 미래형 SDV(소프트웨어 정의 차량) 플랫폼 구축에 나설 예정이다. 아이비스는 차량 내 디지털 클러스터와 인포테인먼트 시스템, 차량 제어기에 적용되는 임베디드 소프트웨어를 개발해 온 기업으로, SDV 환경에서 요구되는 실시간성, 확장성, 표준화 기반 기술을 갖추고 있다. 특히, 차량 실시간 데이터 추상화 기술과 통합 관제 설루션 등 데이터 기반 소프트웨어 플랫폼을 바탕으로, 최근에는 차량 내 AI 소프트웨어 기술 개발에도 집중하고 있다. 에스엠솔루션즈는 사이버 보안, 소프트웨어 품질 검증, AI 기반 위협 탐지 및 보안 자동화 기술을 전문으로 하는 IT 설루션 기업이다. 이번 협약을 통해 양사는 ▲온디바이스 AI 기반 차량용 소프트웨어 및 서비스 기술 공동 개발 ▲SDV 환경에서 AI 적용의 신뢰성 확보를 위한 테스트 및 검증 기술 협력 ▲AI 기반 보안 취약점 분석 및 침투 테스트 기술 공동 연구 ▲AI-보안 융합 기반의 차량 내 소프트웨어 보호 체계 구축 등을 포함한 다양한 협력을 추진할 계획이다. 세부적으로, 양사는 차량 내 온디바이스 AI 시스템과 SDV 플랫폼 상의 AI 기능 확장을 목표로 AI 기반 핵심 기술을 공동 연구한다. AI/ML 기반 위협 탐지, 생성형 AI를 활용한 보안 취약점 자동 검증, 제로데이 공격 대응 기술 등의 개발을 포함해, 차량 네트워크 및 ECU 대상 침투 테스트 기술도 함께 고도화할 예정이다. 이를 위해 아이비스는 차량 내 데이터 처리 및 AI 추론 기능을 수행하는 소프트웨어 프레임워크 개발을 주도하고, 실제 차량과 에지 컴퓨팅 환경에서의 적용을 위한 엔지니어링 기술을 제공한다. 특히 자사의 차량 데이터 추상화 기술 및 차량 서비스 프레임워크를 중심으로 한 실시간 AI 데이터 운영 기술을 강화하여, 차량 내부 AI 시스템의 신뢰성과 확장성을 확보해 나갈 방침이다. 에스엠솔루션즈는 생성형 AI와 대규모 언어 모델(RAG 포함) 기반의 AI 학습 기술을 바탕으로 차량용 소프트웨어 보안 강화를 지원한다. 퍼징 테스트 및 보안 취약점 탐지 기술, 오픈소스 보안 취약점 점검, 정적 분석 및 시큐어 코딩 설루션 등 폭넓은 보안 역량을 보유하고 있으며, 이번 협력을 통해 차량 내 온디바이스 AI 모델의 보안 내재화와 실차 환경에 특화된 보안 기술의 실증 적용을 추진할 계획이다. 아이비스 남기모 대표는 “최근 SDV 시대에 맞춰 차량 내 소프트웨어 구조가 AI 중심으로 전환되고 있으며, 이는 AI가 차량 소프트웨어 아키텍처를 정의하는 ADV(AI-Defined Vehicle) 패러다임으로 확장되고 있다. 아이비스는 SDV 기반 소프트웨어 기술에 AI를 접목한 차량 내 AI 활용을 위한 소프트웨어 프레임워크 고도화에 집중하고 있으며, 이번 협력을 계기로 ADV 전환을 뒷받침할 수 있는 온디바이스 AI 기술과 보안 체계의 기반을 구축해 나가겠다”고 말했다. 에스엠솔루션즈 김상모 대표는 “아이비스와의 이번 협력은 차량용 소프트웨어의 보안성과 AI 기술의 융합을 통해 SDV 및 ADV 시대를 선도할 수 있는 중요한 기회이다. 에스엠솔루션즈는 생성형 AI와 보안 자동화 기술을 바탕으로 차량 내 온디바이스 AI 시스템의 신뢰성과 안전성을 확보하는 데 기여할 계획이다. 양사의 기술 역량을 결합해 글로벌 모빌리티 시장에서 혁신적인 보안 설루션을 제공해 나가겠다”고 말했다.
작성일 : 2025-07-09