• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "NIM"에 대한 통합 검색 내용이 590개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
에이수스, 엔비디아 GB10 기반 AI 슈퍼컴퓨터 ‘어센트 GX10’ 국내 출시
에이수스 코리아는 엔비디아 GB10 그레이스 블랙웰(Grace Blackwell) 기반의 개인용 AI 슈퍼컴퓨터 ‘Ascent GX10(어센트 GX10)’을 국내 공식 출시한다고 밝혔다. 에이수스 어센트 GX10은 높은 AI 성능과 공간 효율을 제공한다. 손바닥 정도의 사이즈임에도 최대 1000TOPs의 AI 성능을 구현하여 AI 연구원, 데이터 과학자뿐만 아니라 AI 기반 개발 및 연구를 필요로 하는 개인 및 기업 프로젝트에도 최적의 성능을 제공한다.     어센트 GX10은 내장된 GB10 그레이스 블랙웰 슈퍼칩을 통해 FP4 정밀도 기준 최대 1페타플롭의 AI 성능을 지원한다. 이를 위해 최신 세대 CUDA(쿠다) 코어와 5세대 텐서(Tensor) 코어를 탑재하였으며, NVLink C2C 인터커넥트를 통해 연결된 20개의 Arm 아키텍처 기반 고효율 코어를 포함하고 있다. 또한 128GB의 통합 시스템 메모리를 통해 최대 2000억개의 매개변수를 처리할 수 있으며, 엔비디아 커넥트X(NVIDIA ConnectX) 네트워크 인터페이스 카드를 활용해 GX10 시스템 두 대를 연결하여 라마 3.1(Llama 3.1)과 같이 더 많은 매개변수를 가진 대형 AI 모델도 효율적으로 학습하고 처리할 수 있다. 에이수스는 어센트 GX10이 가진 성능을 최대한 발휘할 수 있는 간편한 AI 모델 개발을 위한 쉬운 개발 환경을 제공한다. 개발자는 엔비디아 AI 소프트웨어 라이브러리를 사용할 수 있으며, 엔비디아 NGC 카탈로그와 엔비디아 개발자 포털에서 제공되는 소프트웨어 개발 키트(SDK), 오케스트레이션 도구, 프레임워크, 모델 등 다양한 리소스를 지원받을 수 있다. 여기에 더해 에이전트 AI 애플리케이션 구축을 위한 엔비디아 블루프린트(NVIDIA Blueprints)와 NIM 마이크로 서비스도 지원하여 다양한 연구 및 개발, 테스트가 가능하다. 에이수스는 국내 공식 대리점인 코잇, 크로스젠, 유니퀘스트, 대원CTS를 통해 어센트 GX10의 구매 및 상담이 가능하다고 전했다.
작성일 : 2025-10-31
유아이패스-엔비디아, 민감한 워크플로에 신뢰할 수 있는 에이전틱 자동화 제공
유아이패스가 엔비디아와의 협력을 발표하면서, 금융 사기 탐지나 의료 분야 환자 관리처럼 높은 신뢰가 요구되는 환경에서 기업 고객의 기존 자동화 워크플로를 AI 기능으로 강화할 수 있도록 지원한다고 밝혔다. 유아이패스의 에이전틱 자동화 역량과 엔비디아 네모트론(Nemotron) 공개 모델, 엔비디아 NIM을 결합해 기업은 자연어 처리, 이미지 해석, 예측 분석 등 엔터프라이즈급 AI 모델을 마이크로서비스 형태로 더욱 빠르고 손쉽게 배포할 수 있다. 이를 통해 민감한 워크플로에서 에이전틱 AI와 자동화를 효율적이고 정확하게 대규모로 도입할 수 있다.   이번 협력의 핵심은 유아이패스와 엔비디아 NIM, 네모트론을 연결하는 인티그레이션 서비스(Integration Service) 커넥터를 도입하는 것이다. 이를 통해 기업은 엔비디아 NIM을 활용해 생성형 AI 기능을 자사 애플리케이션과 서비스에 원활하고 신속하게 통합할 수 있어, 자동화 역량과 성능을 한층 강화할 수 있다. 이번 협력은 민감한 업무를 다루는 고객이 높은 신뢰가 요구되는 환경에서도 에이전트, 로봇, 인간 전문가를 활용해 엔드투엔드 비즈니스 프로세스를 자동화할 수 있도록 한다.   유아이패스는 서비스 커넥터 외에도 에이전틱 자동화 전반에서 새로운 기회를 모색하고 있다. 주요 영역에는 ▲AI 기반 에이전트를 효과적으로 조율하기 위한 에이전틱 오케스트레이션 고도화 ▲유아이패스의 자동화 전문성과 맞춤형 오픈소스 엔비디아 네모트론 모델 및 가속 컴퓨팅을 결합한 차별화된 에이전트 개발 ▲온프레미스와 에어갭(air-gapped) 환경까지 역량을 확장해 규제가 엄격한 산업에서도 AI를 안전하게, 대규모로 도입할 수 있도록 지원하는 것이 포함된다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “사기 탐지나 의료 워크플로처럼 민감한 프로세스에는 강력하면서도 신뢰할 수 있는 AI가 필요하다”면서, “엔비디아 NIM 모델을 유아이패스 플랫폼에 통합함으로써, 고객은 엔터프라이즈급 거버넌스를 기반으로 자체 호스팅 모델을 배포하고 체계적으로 관리할 수 있다. 이를 통해 기업은 가장 중요한 프로세스에도 관리 체계와 투명성, 신뢰를 바탕으로 AI를 적용해 실질적인 비즈니스 성과를 창출할 수 있다”고 말했다.   엔비디아의 조이 콘웨이(Joey Conway) 엔터프라이즈 생성형 AI 소프트웨어 시니어 디렉터는 “기업들은 복잡하고 독자적인 운영을 위해 안전하고 신뢰할 수 있는 AI를 원한다”며, “엔비디아 네모트론 공개 모델과 NIM 마이크로서비스를 기반으로, 유아이패스는 규제 환경에서도 복잡한 활용 사례에 대응할 수 있으며, AI 에이전트를 활용해 고도화된 자동화 시스템을 신속히 구축할 수 있다”고 말했다.
작성일 : 2025-10-14
데이터 분석 로코드 설루션을 배워보자 Ⅱ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (3)   지난 호에서는 로코드 분석 솔루션인 KNIME(나임)에 대해 알아보고 전력 판매량(Electric Power Sales) 예측에 대한 따라하기를 진행해 보았다. KNIME을 통해 ‘데이터 불러오기’와 ‘데이터 병합’에 대한 분석을 진행하였다. 이를 통해 KNIME이 어떻게 동작하는지 그리고 어떻게 데이터 분석을 시작할 수 있는지 대략적으로는 파악할 수 있었을 것으로 생각하고 있다. 이번 호에서는 지난 호에 이어서 나머지 전력 판매량 예측 따라하기 부분을 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   규칙 엔진과 데이터 전처리   그림 1   우선 진행해야 할 부분은 Rule Engine(규칙 엔진)이다. Rule Engine이 무엇이고 어떤 데이터 노드인지 알아보자.   그림 2   KNIME 왼쪽 상단의 info 탭을 클릭해서 Rule Engine에 대한 설명을 찾아보도록 하자. 대략의 내용을 읽어보면 Rule Engine은 사용자가 정의할 수 있는 규칙(Rule) 목록을 설정하는 기능인데, 해당 규칙에 매칭이 이루어지면 칼럼(Column)이 새롭게 추가된다. 여기서 규칙은 해당 라인(line)별로 정의되어야 하며, 해당 칼럼은 $name$로 표현되어야 한다.   그림 3   Rule Engine을 통해 시간대별 발전량에서 발전량이 있는 경우를 1, 없는 경우를 0으로 분류하고 ‘is_y_positive’라는 칼럼을 생성하였다. Rule은 $9H$ > 0 => 1로 설정하면 되고, Append column = is_y_positive로 입력한다.   그림 4   노드를 실행(Excute)해 보면 ‘is_y_positive’라는 칼럼이 추가된 것을 알 수 있다.   그림 5   이제 is_y_positive 컬럼이 추가되었으니, 우선 발전량이 있는 경우와 없는 경우로 나누어 각각 얼마나 되는지 카운트해보자.(Value counter 노드)   그림 6   노드를 실행(Excute)해보면 <그림 7>과 같이 발전량이 없는 경우가 12건이 있고, 발전량이 있는 경우는 1448건이라는 것을 알 수 있다.   그림 7     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
엔비디아, “새로운 오픈 모델과 시뮬레이션 라이브러리로 로보틱스 연구개발 가속화”
엔비디아가 오픈소스 뉴턴 물리 엔진(Newton Physics Engine)을 엔비디아 아이작 랩(NVIDIA Isaac Lab)에서 이용 가능하며, 로봇 기술을 위한 엔비디아 아이작 GR00T N1.6 추론 비전 언어 행동(vision language action : VLA) 모델과 새로운 AI 인프라를 함께 제공한다고 발표했다. 이들 기술은 개발자와 연구자에게 개방형 가속 로보틱스 플랫폼을 제공해 반복 작업을 가속화하고, 테스트를 표준화하며, 로봇의 추론과 훈련 통합을 지원한다. 아울러 로봇이 시뮬레이션에서 실제 환경으로 안전하고 안정적으로 기술을 이전할 수 있도록 돕는다. 로봇은 시뮬레이션 환경에서 더 빠르고 안전하게 학습할 수 있지만, 복잡한 관절, 균형, 움직임을 가진 휴머노이드 로봇은 오늘날 기존 물리 엔진의 한계를 시험한다. 전 세계 25만 명 이상의 로보틱스 개발자들은 정확한 물리 엔진을 필요로 하며, 이는 로봇이 시뮬레이션에서 학습한 기술을 현실 세계에서 안전하고 안정적으로 수행하기 위해 필수이다. 엔비디아는 리눅스 재단이 관리하는 GPU 가속 오픈소스 물리 엔진 뉴턴의 베타 버전을 공개했다. 이는 엔비디아 워프(Warp)와 오픈USD(OpenUSD) 프레임워크 기반으로, 엔비디아와 구글 딥마인드, 디즈니 리서치가 공동 개발했다. 뉴턴은 유연한 설계 및 다양한 물리 솔버와의 호환성을 갖췄다. 이를 통해 개발자가 눈이나 자갈 위를 걷거나, 컵과 과일을 다루는 등 매우 복잡한 로봇 동작을 시뮬레이션하고 이를 현실 세계에 성공적으로 적용할 수 있도록 지원한다.     휴머노이드가 물리적 환경에서 인간과 유사한 작업을 수행하기 위해서는 모호한 지시를 이해하고 이전에 경험하지 못한 상황에 대처할 수 있어야 한다. 곧 허깅 페이스에서 공개될 오픈소스 아이작 GR00T N1.6 로봇 파운데이션 모델의 최신 버전에는 피지컬 AI를 위해 개발된 오픈 맞춤형 추론 비전 언어 모델(VLM)인 엔비디아 코스모스 리즌(Cosmos Reason)이 통합될 예정이다. 코스모스 리즌은 로봇이 심층 사고를 하는 두뇌 역할을 담당하며 기존의 지식, 상식, 물리학을 활용해 모호한 지시를 단계별 계획으로 전환하고, 새로운 상황을 처리하며, 다양한 작업에 걸쳐 일반화할 수 있도록 한다. 코스모스 리즌은 현재 피지컬 리즈닝 리더보드(Physical Reasoning Leaderboard) 1위를 차지하고 있으며, 100만 회 이상 다운로드를 기록했다. 또한, 모델 훈련을 위한 대규모 실제 데이터, 합성 데이터를 선별하고 주석을 달 수 있다. 코스모스 리즌 1은 NIM에서 제공되며, 사용하기 쉬운 마이크로서비스 형태로 AI 모델 배포를 지원한다.  아이작 GR00T N1.6은 휴머노이드가 물체를 동시에 이동하고 조작할 수 있도록 해 상체와 팔의 자유도를 넓히고, 무거운 문을 여는 것과 같은 까다로운 작업을 수행할 수 있도록 한다. 개발자는 허깅 페이스의 오픈소스 엔비디아 피지컬 AI 데이터세트(Physical AI Dataset)를 사용해 아이작 GR00T N 모델을 사후 훈련할 수 있다. 이 데이터세트는 480만 회 이상 다운로드됐으며, 현재 수천 개의 합성 궤적과 실제 궤적 데이터를 포함한다. 또한, 엔비디아는 오픈소스 코스모스 월드 파운데이션 모델(WFM)의 신규 업데이트를 발표했다. 300만 회 이상 다운로드된 이 모델은 개발자가 텍스트, 이미지, 영상 프롬프트를 활용해 대규모로 피지컬AI 모델 훈련을 가속화할 수 있는 다양한 데이터 생성을 지원한다. 코스모스 프리딕트(Cosmos Predict) 2.5는 곧 출시될 예정이며, 세 가지 코스모스 WFM의 성능을 하나의 강력한 모델로 통합해 복잡성을 줄이고, 시간을 절약하며, 효율을 높인다. 또한 최대 30초의 긴 동영상 생성, 다중 뷰 카메라 출력을 지원해 더욱 풍부한 세계 시뮬레이션을 구현한다. 코스모스 트랜스퍼(Cosmos Transfer) 2.5는 곧 출시될 예정이며, 기존 모델 대비 3.5배 작으면서도 더 빠르고 높은 품질의 결과를 제공한다. 이제 사실적인 합성 데이터를 생성할 수 있으며, 그라운드 트루스(ground-truth) 3D 시뮬레이션 장면, 깊이, 세분화, 에지, 고해상도 지도와 같은 공간 제어 입력값을 활용할 수 있다.   로봇에게 물체를 잡는 법을 학습시키는 것은 로보틱스에서 가장 어려운 과제 중 하나다. 파지는 단순히 팔을 움직이는 것이 아니라 생각을 정밀한 동작으로 전환하는 것으로, 로봇이 시행착오를 통해 학습해야 하는 기술이다. 엔비디아 옴니버스(Omniverse) 플랫폼 기반의 아이작 랩 2.3 개발자 프리뷰의 새로운 정밀 파지(dexterous grasping) 워크플로는 다관절 손과 팔을 가진 로봇을 가상 환경에서 자동화된 커리큘럼으로 훈련시킨다. 이 과정은 간단한 작업부터 시작해 점차 복잡성을 높여간다. 해당 워크플로는 중력, 마찰, 물체의 무게 등 요소를 변경해 로봇이 예측 불가능한 환경에서도 기술을 습득하도록 훈련시킨다. 컵을 집거나 방을 가로질러 걷는 것과 같이 새로운 기술을 로봇에게 숙달시키는 것은 매우 어렵다. 또한, 이러한 기술을 실제 로봇에서 테스트하는 과정은 시간과 비용이 많이 요구된다. 이러한 어려움을 해결할 수 있는 방법은 시뮬레이션이다. 시뮬레이션은 로봇이 학습한 기술을 무수한 시나리오, 작업, 환경에서 테스트할 수 있는 방법을 제공한다. 그러나 개발자들은 시뮬레이션 환경에서도 현실 세계를 반영하지 못하고 단편적이고 단순화된 테스트를 구축하는 경우가 많다. 완벽하고 단순한 시뮬레이션 환경에서 학습한 로봇은 현실 세계의 복잡성에 직면하는 순간 실패할 가능성이 크다. 엔비디아와 라이트휠은 개발자가 시스템을 처음부터 구축하지 않고도 시뮬레이션 환경에서 복잡한 대규모 평가를 실행할 수 있는 오픈소스 정책 평가 프레임워크인 아이작 랩-아레나(Arena) 공동 개발 중이다. 이 프레임워크는 확장 가능한 실험과 표준화된 테스트를 지원하며 곧 공개될 예정이다. 엔비디아는 개발자들이 이러한 첨단 기술과 소프트웨어 라이브러리를 최대한 활용할 수 있도록, 까다로운 워크로드를 위해 설계된 AI 인프라를 발표했다. 엔비디아 GB200 NVL72는 엔비디아 그레이스(Grace) CPU 36개와 엔비디아 블랙웰(Blackwell) GPU 72개를 통합한 랙 규모 시스템으로, 주요 클라우드 공급업체들이 채택해 복잡한 추론과 피지컬 AI 작업을 포함한 AI 훈련과 추론을 가속화하고 있다. 엔비디아 RTX 프로 서버(RTX PRO Servers)는 훈련, 합성 데이터 생성, 로봇 학습, 시뮬레이션 전반의 모든 로봇 개발 워크로드를 위한 단일 아키텍처를 제공하며, RAI 연구소(RAI Institute)에서 도입 중이다. 블랙웰 GPU로 구동되는 엔비디아 젯슨 토르(Jetson Thor)는 로봇이 실시간 지능형 상호작용을 위한 다중 AI 워크플로 실행을 지원한다. 또한 실시간 로봇 추론으로 휴머노이드 로보틱스 전반에서 고성능 피지컬 AI 워크로드와 애플리케이션의 돌파구를 마련한다. 젯슨 토르는 피규어 AI, 갤봇(Galbot), 구글 딥마인드, 멘티 로보틱스, 메타(Meta), 스킬드 AI, 유니트리(Unitree) 등 파트너사에 도입 중이다. 엔비디아의 레브 레바레디언(Rev Lebaredian) 옴니버스, 시뮬레이션 기술 부문 부사장은 “휴머노이드는 피지컬 AI의 차세대 영역으로, 예측 불가능한 세상에서 추론하고, 적응하며, 안전하게 행동하는 능력이 필요하다. 이번 업데이트로 개발자들은 로봇을 연구 단계에서 일상 생활로 가져오기 위한 세 가지 컴퓨터를 갖게 됐다. 아이작 GR00T가 로봇의 두뇌 역할을 하고, 뉴턴이 신체를 시뮬레이션하며, 엔비디아 옴니버스가 훈련장이 된다”고 말했다.
작성일 : 2025-09-30
엔비디아, 3D 객체를 빠르게 만들기 위한 ‘AI 블루프린트’ 공개
엔비디아가 3D 객체 생성을 위한 ‘엔비디아 AI 블루프린트(NVIDIA AI Blueprint for 3D object generation)’를 공개했다. 이는 3D 아티스트가 간단한 텍스트 프롬프트만으로 최대 20개의 3D 객체를 생성해 특정 장면의 프로토타입을 만들 수 있도록 지원한다. 3D 아티스트는 끊임없는 프로토타이핑 작업 문제에 직면하고 있다. 전통적인 워크플로에서는 3D 장면 구현을 위해 저충실도 임시 애셋을 제작하고, 핵심 요소가 제자리에 배치될 때까지 수정을 반복해야 하기 때문이다. 그 후에야 시각적 요소를 세부적으로 다듬어 완성할 수 있다. 이렇게 프로토타이핑은 시간이 많이 소요되고 종종 불필요한 작업을 수반한다. 그 결과 아티스트는 창의적인 작업보다 지루한 모델링 작업에 더 많은 시간을 할애해야 한다. 생성형 AI는 장면 프로토타이핑을 위한 초안을 제안하거나 객체를 생성하는 등 중간 작업을 신속히 처리해 아티스트를 돕는다. 그러나 이러한 가속화된 워크플로를 구현하기 위해 여러 AI 모델을 연결하는 일은 기술적으로 복잡할 수 있다. 엔비디아 AI 블루프린트는 샘플 워크플로를 제공해 사용자가 복잡한 기술 단계를 건너뛰고 고급 생성형 AI 기술을 빠르게 활용할 수 있도록 지원한다. 또한 AI 블루프린트는 각 사용자의 요구에 맞게 조정될 수 있다.     엔비디아가 이번에 새로 공개한 AI 블루프린트는 3D 아티스트가 간단한 텍스트 프롬프트만으로 최대 20개의 3D 객체를 생성해 특정 장면의 프로토타입을 만들 수 있게 해주는 워크플로다. 또한 새로운 마이크로소프트 트렐리스(Microsoft TRELLIS) 엔비디아 NIM 마이크로서비스는 3D 객체 생성을 위한 AI 블루프린트 내에서 작동하며, 기존 모델보다 20% 빠른 속도로 고품질 3D 애셋을 생성한다. 아이디어의 탄생에서 시작하는 3D 프로젝트는 테마, 장소, 장식, 색상, 질감 등 시각적 세부 요소를 신중히 고려하는 과정을 거친다. 장면에 애셋을 배치한 후에도 개별 또는 전체 시각 요소를 여러 차례 검토하고 수정해야 한다. 3D 객체 생성을 위한 엔비디아 AI 블루프린트는 프로토타이핑 과정을 자동화하는 파이프라인을 제공한다. 사용자가 프롬프트로 예술적인 아이디어를 입력하면, 블루프린트에 내장된 대형 언어 모델(LLM)이 장면에 포함 가능한 20개의 객체를 제안한다. 이는 라마 3.1 8B(Llama 3.1 8B) 엔비디아 NIM 마이크로서비스로 가속화된다. 엔비디아 사나(SANA)는 고해상도 이미지를 빠르게 합성하는 텍스트-이미지 프레임워크로, 생성 가능한 객체를 보여주는 프리뷰를 생성한다. 각 객체는 재생성, 수정, 삭제가 가능해 아티스트의 자유로운 창작 활동을 지원한다. 이후 아티스트는 새로운 마이크로소프트 트렐리스 엔비디아 NIM 마이크로서비스를 통해 각 객체를 고품질 프리뷰에서 즉시 활용 가능한 3D 모델로 변환할 수 있다. 이 마이크로서비스는 최첨단 모델의 배포를 간소화하고 속도를 20% 향상시킨다. 또한 최대 20개의 3D 애셋 모음은 즉시 사용하거나 오픈 소스 3D 플랫폼 블렌더(Blender)에서 추가로 다듬을 수 있도록 준비된다. AI 블루프린트는 이를 자동으로 블렌더로 내보내며, 아티스트는 다른 인기 3D 애플리케이션으로도 애셋을 내보낼 수 있다. 아울러 라마 3.1 8B NIM 마이크로서비스로 구동되는 LLM은 장면에 포함할 객체의 아이디어와 프롬프트 제안을 생성할 수 있다. 따라서 프롬프트 경험이 많지 않은 아티스트도 창의적인 생산성을 높일 수 있다. 일반적으로 이러한 워크플로를 설정하려면 많은 시간과 기술적 지식이 필요하며, 적합한 파이프라인을 선택하기 위해 다양한 모델을 실험해야 한다. 엔비디아는 “AI 블루프린트는 검증된 워크플로를 사전에 선별해 패키징된 형태로 제공함으로써, 엔비디아 지포스 RTX(GeForce RTX)와 RTX PRO GPU에서의 배포를 단순화하고 시작 과정을 간소화한다”고 설명했다.
작성일 : 2025-09-04
데이터 분석 로코드 설루션을 배워보자 Ⅰ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2)   지난 호에서는 로코드 분석 설루션이 필요한 이유에 대해 알아보았다. 또한 데이터 분석이 일반적으로 거치는 과정에 대해서도 살펴 보았는데, 이러한 과정에 파이썬(Python)과 같은 프로그래밍 언어가 활용되는 상황 또한 정리해 보았다. 이번 호에서는 로코드 분석 설루션인 KNIME(나임)에 대해 알아보고, 전력 판매량 예측에 대한 분석 과제를 따라하기 과정을 통해 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   지난 호에서 살펴본 일반적인 데이터 분석 과정은 다음과 같다.   요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   이전에 강조한 바와 같이, 아무리 쉬운 코딩 언어라고 할지라도 데이터 분석을 요청받은 데이터 과학자(data scientist)가 이를 실제 업무에 적용하여 원하는 결과를 빠르고 정확하게 구현해내는 것은 어려운 일이다. 또한 코딩에 능숙한 데이터 과학자라고 해도 깃허브(Github) 및 인터넷 상에 공유된 소스코드를 다운받아 재활용 및 가공하여 사용하는 경우가 많은데, 이때 악성 코드 등에 대한 보안 이슈도 문제가 될 소지가 있다. 사실 데이터 과학자는 수학 및 통계적 지식을 활용하여 빠르게 정확하게 데이터 분석을 하고 싶은 것이고, 이를 위해 효율적인 툴을 사용하고자 한다. 우리는 이러한 현상을 극복해 나가고자 로코드 분석 설루션(low code analytics solution)을 대안으로 검토하였고, 이를 활용하여 데이터 분석을 수행해 나가는 과정을 따라가 보고자 한다. 지난 호에서 유관부서로부터 전력 판매량(electric power sales) 예측에 대한 분석 과제를 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황의 시민 데이터 과학자(citizen data scientist)로 가정하여 주어진 과제 목표를 달성하였다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 이를 처리하기 위해 파이썬으로 코드를 작성한 사례를 공유하였고, 동일한 내용을 로코드 분석 설루션인 KNIME을 활용하여 처리한 사례도 공유하였다.   그림 1   이번 호에서는 KNIME에 대해 알아보고 전력 판매량 예측에 대한 분석과제를 따라하기 과정을 통해 완성해 보도록 하겠다. 우선 구글 제미나이(Google Gemini)에게 KNIME에 대한 역사와 특징에 대해 알려 달라고 해보자.(그림 2~4)   그림 2   그림 3   그림 4   가트너(Gatner)의 피어 인사이트(Peer insight) 리뷰를 확인해 보았는데, 평점(rating)이 상당히 높은 편이고 사용자의 반응도 높다는 것을 확인하였다. 또한 오픈소스 기반 소프트웨어로서 기업에서도 무료로 자유롭게 설치하여 사용할 수 있다는 측면에서(KNIME Analytics Platform) 로코드 분석 설루션으로 선택하기에 부족함이 없다는 것을 확인하였다.   그림 5   현재 KNIME은 데이터 사이언스를 위한 최적의 설루션을 위해 세 가지 서비스를 제공하고 있다. 이번 호에서는 KNIME Analytics Platform을 활용하여 전력 판매량 예측에 대한 분석 과제를 따라해보고자 한다.   그림 6     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
[ Physical AI × 세계 최초 기술(RCRA) ] AI·로봇 융합 제조·물류 'Next Standard'
■ AX & Robotics-Driven Manufacturing R&D  · Safety Congress with LG Leaders and Global Experts  ■   ● 장소 : LG사이언스파크 E9동 B1층 프런티어홀 (마곡중앙 8로 71) - 발산역 도보 5분, 마곡나루역 도보 7분, 김포공항역 택시 15분   ● 일시 : 9월 18일 (목) 12시  30분 참석등록 시작 (1:00세션 시작 ~ 4:30 종료)   ● 참가료 : 600 명 한정 무료   ● 참가 신청 링크 :  [참가 신청하기]   ● 참가 신청 URL : https://forms.gle/3ywdEZeSJa7sRM4G9   ● 아젠다 상세 :   ① [ Track Keynote ] 고장·충돌·사고를 넘어: System Thinking과 Digital Thread로 보는 로봇 공정의 숨은 리스크   -  경희대학교 임성수 교수   · 세션 상세:  많은 기업이 로봇·AI를 도입해 스마트팩토리의 생산성과 품질 향상을 기대하지만, 실제 운영에서는 고장·충돌·안전사고가 잦습니다. 이는 설계–생산–운영 전 과정의 데이터 단절과 의사결정 구조 분절에서 비롯됩니다. 본 세션에서는 System Thinking 과 Digital Thread를 통해 전사 차원의 리스크를 사전에 식별하고, 설계–생산–운영 데이터를 유기적으로 연결해 문제를 예방하는 구체적 접근법을 제시합니다.   · 연사 소개:  임성수 교수는 경희대 기계공학과 교수이자 대한기계학회 부회장으로, 로봇 안전 분야 권위자다. 산업용 로봇 ISO 국제표준 한국 대표 전문가이자 ISO 15066-3 프로젝트 리더를 맡아왔으며, 대통령 표창 (2024)과 산업부 장관 표창 등 다수의 수상 경력이 있다. 학계·산업계·정부를 아우르는 국제 표준화와 산업 발전의 가교 역할을 수행하고 있다.   ②  Collision-Free Human-Robot Collaboration – AI Safety Simulation and Global Compliance Cases   - 세이프틱스 김휘연 CSO   · 세션 상세: 로봇은 이제 일부 업종의 선택이 아니라 모든 제조 현장의 기본 인프라이며,  그 핵심은 안전성입니다. 안전 없는 자동화는 생산성·품질 모두를 보장할 수 없습니다. 본 세션에서는 Biomechanical Injury Threshold Model과 Digital Twin Safety Simulation을 활용해 자동화 설비의 실제 공정 안전성을 데이터로 분석하고 잠재 위험을 정량화하는 방법을 소개합니다. ISO 10218, ISO/TS 15066  등 국제 안전 규격 대응 사례를 통해 사고 예방을 넘어 리드타임 단축, 품질 보증, 글로벌 납품 승인 및 파트너십 강화로 이어지는 실제 경험을 공유하며, 로봇 안전성이 스마트팩토리의 Next Standard임을 제시합니다.   · 연사 소개 : 김휘연 CSO는 Safetics 전략총괄로, 공학 시뮬레이션 분야의 전문가다. 두산·한화·뉴로메카 등 국내 및 UR ·FANUC·KUKA 등 글로벌 기업과 협력해 왔고, 삼성·현대·GM·P&G 등 세계 유수 기업에 안전 솔루션을 적용한 경험이 있다. 인간-로봇 협업 (HRC) 분야에서 차세대 안전 기술을 선도하는 글로벌 전략가로 알려져 있다.   ③ 위험성 평가는 이제 ‘공정 설계 도구’다 – Front Loading Engineering과  MBSD로 여는 로봇 스마트 팩토리 품질/안전 혁신 - 세이프틱스 임정호 박사   · 세션 상세 : 기존 스마트팩토리 안전 평가는 설비 설치 후 뒤늦게 이뤄져 설계 변경·추가 비용, 일정 지연, 품질 저하로 이어지는 구조적 한계가 있었습니다. 본 세션에서는 이를 극복하기 위해 Front Loading Engineering 과 Model-Based Safety Design(MBSD)을 적용한 사례를 소개합니다. 설계 단계에서 선제적으로 위험성을 평가하고 안전 대책을 반영해 안전을 사후 점검이 아닌 설계의 일부로 통합한 접근법입니다. 이를 통해 설비 변경 비용 절감, 리드타임 단축, 안전·품질 동시 향상이라는 성과를 달성하며 , 위험성 평가가 스마트팩토리 경쟁력의 필수 설계 도구임을 보여드립니다.   · 연사 소개: 임정호 박사는 경희대 기계공학과 연구교수, 산업 자동화·물류 설비 기업과  KOTITI 시험연구원 경력을 바탕으로 수백 개 기업에 로봇 안전 컨설팅을 수행해 온 전문가이다. ISO 10218-2, ISO 13482 국제 표준 전문가로 산업 현장 요구를 깊이 이해하며, 한국로봇산업협회 전문위원과 산업부 소재부품기술개발사업 기획위원으로도 활동하고 있다.   ④ 지능형 로봇 기술혁신과 스마트물류의 확산 - LG CNS  손명운 팀장   · 세션 상세: 지능형 로봇 기술은 AI 수준에 따라  1세대 고정형 로봇에서 센서 기반 2세대, 학습형 3세대를 거쳐, 물리 환경과 상호작용하며 스스로 판단·학습하는 4세대 Physical AI 로봇으로 진화하고 있습니다 . 특히 휴머노이드 로봇은 범용지능을 갖추어 물류·제조 현장의 복잡한 부가가치 작업까지 수행할 수 있는 잠재력을 보여주고 있으며, Amazon과 BMW 등은 이미 현장 실증을 진행 중입니다. 이러한 변화의 핵심은 Robot Foundation Model(RFM)로,  방대한 시뮬레이션·원격제어 데이터 학습과 현장 파인튜닝을 통해 정교한 자율 동작을 구현합니다. Teleoperation 기반 원격작업으로 실시간 대응과 학습데이터 축적이 가능해 지속적 성능 향상이 이루어지며, 이는 단순 자동화를 넘어 완전 무인화 스마트물류센터로의 전환을 가속화합니다. 본 세션에서는 Physical AI와 휴머노이드가 제공하는 혁신과 이를 활용한 물류·제조 경쟁력 강화 방안을 제시합니다.   · 연사 소개: 손명운 팀장은 LG CNS에서 20년 이상 근무하며 북미 의료솔루션 개발과 C 사 자동유도차량 자동화 등 다수의 글로벌·국내 프로젝트를 수행해 온 디지털 혁신 전문가이다. 사용자 편의성 제고를 위한 여러 DX 과제부터 미국 유수의 회사들의 솔루션 사업, 자동화 설비 구축까지 폭넓은 현장 경험을 보유하고 있으며, AX, RX 기술을 활용한 물류자동화를 구현하고 차별화된 고객 가치를 개발하고 있다.    ● 참가 신청 링크 :  [참가 신청하기]   ● 참가 신청 URL :  https://forms.gle/3ywdEZeSJa7sRM4G9   ● 참가 신청 QR코드:    ● 장소 : LG사이언스파크  E9동 B1층 프런티어홀 (마곡중앙8로 71) - 발산역 도보 5분, 마곡나루역 도보 7분, 김포공항역 택시  15분   ● 일시 : 9월  18일 (목) 12시 30분 참석등록 시작 (1:00세션 시작 ~ 4:30 종료)   ● 참가료 : 600명 한정 무료   ● 문의  : Safetics   dblee0803@safetics.io 
작성일 : 2025-08-29
코리아 그래픽스 2025 컨퍼런스(9/11~12, 온라인) 초대합니다
코리아 그래픽스 컨퍼런스 내용이 보이지 않으면 여기를 클릭하세요!       코리아 그래픽스 2025 아젠다 AI로 혁신하는 3D 시각화와 산업의 미래 1일차(9월 11일) - 디지털 트윈 & 3D 시각화 1. [기조연설] 디자이너와 생성형 AI가 만드는 디자인-제조의 미래 / 한양대학교 현경훈 교수 2. 리얼타임을 통한 디지털 트랜스포메이션의 진화, 그리고 에픽게임즈의 에코시스템 / 에픽게임즈 코리아 권오찬 시니어 에반젤리스트 3. AI 워크스테이션을 통한 생산성 향상 방안 및 사례 / HP코리아 차성호 이사 4. AEC 산업을 위해 진화하는 공간지능 기술 / 에스엘즈 정재헌 대표 5. Unity Asset Manager로 혁신하는 CAD 데이터 관리와 실시간 협업 / 유니티코리아 김현민 Senior Solutions Engineer 6 CAD와 Unity의 만남: 새로운 비즈니스 수익 모델과 창의적 혁신 / 메가존클라우드 홍동희 Unity 유닛 Tech 그룹장 7. AI 이미지 인지기술 기반 3D 도면 생성  방안 및 적용 솔루션(CADian AI-CAD) 소개 / 캐디안 한명기 상무 8. 모빌리티 XR 사례와 AI 융합 기술의 미래 / 이노시뮬레이션 이지선 CTO 2일차(9월 12일) - AI 비주얼 트렌드 & 응용 1. [기조연설] AI 시대, 그래픽 디자인 방식의 패러다임 변화와 혁신 사례/ 서울미디어대학원대학교 유훈식 교수 2. 언리얼 엔진을 활용한 제조 SW 개발의 신속한 프로토타이핑 및 의사결정 / 현대자동차 신종호 책임 3. Image Gen.AI를 활용한 업무 생산성 향상 방안 / LG CNS 이희재 팀장 4. 이미지부터 3D까지: 크리에이터가 알려주는 생성형 AI 영상 제작 / 아이스케이프 조세희 대표 5. 크리에이터를 위한 AI 에이전트 활용과 바이브 코딩 / AI팩토리 김태영 대표 6. AI 툴로 구현하는 나만의 비주얼 세계: 실무 적용과 아트워크 융합 사례 / IUM SPACE 이윰 대표 7. [기조연설] XR과 인공지능의 만남: XR 콘텐츠의 무한한 가능성과 초연결 콘텐츠의 미래 / 고려대학교 박진호 교수
작성일 : 2025-08-22
HPE, 엔비디아와 협력해 에이전틱·피지컬 AI 혁신 가속화
HPE는 기업이 AI를 도입하고 개발 및 운영하는 과정을 폭넓게 지원하는 ‘HPE 기반 엔비디아 AI 컴퓨팅(NVIDIA AI Computing by HPE)’ 포트폴리오의 주요 혁신 사항을 공개했다. HPE는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)와의 통합을 한층 강화하고, 최신 엔비디아 AI 모델 및 엔비디아 블루프린트(NVIDIA Blueprints)를 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)에 탑재함으로써 개발자들이 AI 애플리케이션을 보다 간편하게 구축하고 운영할 수 있도록 지원하게 되었다고 전했다. 또한 HPE는 엔비디아 블랙웰(NVIDIA Blackwell) 기반 가속 컴퓨팅을 탑재한 HPE 프로라이언트 컴퓨트(HPE ProLiant Compute) 서버를 출하할 예정이며, 이를 통해 생성형 AI, 에이전틱 AI 및 피지컬 AI 워크로드를 향상된 성능으로 지원할 수 있을 것으로 보고 있다. 엔비디아 블랙웰 아키텍처를 탑재한 HPE 프로라이언트 컴퓨트 서버는 두 종류의 엔비디아 RTX PRO 서버 구성을 포함한다. HPE 프로라이언트 DL385 Gen11 서버는 신규 2U RTX PRO 서버 폼팩터의 공랭식 서버로, 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 최대 2개까지 지원한다. 이 제품은 기업의 증가하는 AI 수요를 충족해야 하는 데이터센터 환경에 최적화된 설계를 지향한다. HPE 프로라이언트 컴퓨트 DL380a Gen12 서버는 4U 폼팩터 기반으로, 엔비디아 RTX PRO 6000 GPU를 최대 8개까지 지원하며 2025년 9월 출시될 예정이다.   특히 HPE 프로라이언트 컴퓨트 Gen12 서버는 HPE iLO(Integrated Lights Out) 7의 실리콘 RoT(Root of Trust) 및 시큐어 인클레이브(Secure Enclave) 기반으로 한 다층 보안 기능을 갖추고 있으며, 위조 및 변조 방지 보호와 양자 내성 펌웨어 서명(quantum-resistant firmware signing) 기능을 통해 한층 강화된 보안 환경을 제공한다.   ▲ HPE 프로라이언트 DL380a Gen12 서버   또한, HPE 컴퓨트 옵스 매니지먼트(HPE Compute Ops Management)으로 지원되는 중앙 집중형 클라우드 네이티브 방식의 라이프사이클 자동화 기능은 서버 관리에 소요되는 IT 업무 시간을 최대 75%까지 줄이고, 서버당 연간 평균 4.8시간의 다운타임 감소 효과를 제공한다. 대상 워크로드에는 생성형 및 에이전틱 AI을 비롯해 로보틱스 및 산업용 사례 등 피지컬 AI, 품질 관리(QC) 모니터링 및 자율주행과 같은 비주얼 컴퓨팅, 시뮬레이션, 3D 모델링, 디지털 트윈, 그리고 각종 엔터프라이즈 애플리케이션이 포함된다. 한편, HPE는 올해 말 출시 예정인 차세대 ‘HPE 프라이빗 클라우드 AI’를 발표했다. 이 설루션은 엔비디아 RTX PRO 6000 GPU를 탑재한 HPE 프로라이언트 컴퓨트 Gen12 서버를 지원하며, GPU 세대 간의 원활한 확장성, 폐쇠망(air-gapped) 관리 및 엔터프라이즈 멀티 테넌시(multi-tenancy) 기능 등을 제공할 예정이다. HPE와 엔비디아가 공동 개발한 엔터프라이즈 턴키 AI 팩토리 설루션인 HPE 프라이빗 클라우드 AI는 에이전틱 AI를 위한 최신 버전의 엔비디아 네모트론(NVIDIA Llama Nemotron) 모델, 피지컬 AI 및 로보틱스를 위한 코스모스 리즌(Cosmos Reason) VLM(vision language model), 엔비디아 블루프린트 VSS 2.4 (NVIDIA Blueprint for Video Search and Summarization)를 지원하여 대규모 영상 데이터에서 인사이트를 추출하는 영상 분석 AI 에이전트를 구축할 수 있다. 또한, HPE 프라이빗 클라우드 AI는 최신 AI 모델을 위한 엔비디아 NIM 마이크로서비스, 엔비디아 블루프린트를 빠르게 배포할 수 있도록 맞춤형 설계되어, 고객들은 HPE AI 에센셜(HPE AI Essentials)를 통해 이를 간편하게 활용할 수 있다. 이와 함께 HPE 프라이빗 클라우드 AI는 엔비디아 AI 가속화 컴퓨팅, 네트워킹, 소프트웨어와의 깊은 통합을 바탕으로, 기업들이 데이터 통제를 유지하면서도 AI의 가치를 보다 신속하게 활용할 수 있도록 지원한다. 이를 통해 고객은 급증하는 AI 추론 수요를 효과적으로 관리하고 AI 생산 속도를 가속화할 수 있다. HPE 셰리 윌리엄스(Cheri Williams) 프라이빗 클라우드 및 플렉스 설루션 부문 수석 부사장 겸 총괄은 “HPE는 AI 시대를 맞아 기업들이 성공을 이룰 수 있도록 필요한 툴과 기술을 제공하는 데 전념하고 있다”면서, “엔비디아와의 협업을 통해 기술 혁신의 경계를 지속적으로 넓혀가며, 생성형 AI, 에이전틱 AI, 피지컬AI의 가치 실현을 포함해 엔터프라이즈 환경의 복잡하고 다양한 요구를 충족하는 설루션을 제공하고 있다. HPE 프로라이언트 서버와 HPE 프라이빗 클라우드 AI의 확장된 역량을 결합함으로써, 기업들이 AI 혁신의 다음 단계를 더욱 신속하고 신뢰 있게 수용할 수 있도록 지원하고 있다”고 밝혔다. 엔비디아의 저스틴 보이타노(Justin Boitano) 엔터프라이즈 AI 부사장은 “기업은 최신 AI 요구사항에 맞추기 위해 유연하고 효율적인 인프라가 필요하다”면서, “엔비디아 RTX PRO 6000 블랙웰 GPU를 탑재한 HPE 2U 프로라이언트 서버는 단일 통합형 기업용 플랫폼에서 거의 모든 워크로드를 가속화할 수 있도록 해줄 것”이라고 밝혔다.
작성일 : 2025-08-18