• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "NAI"에 대한 통합 검색 내용이 405개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
엔비디아, 한국 AI 인프라·생태계 구축 협력… “GPU 26만 개 이상 추가 도입”
엔비디아가 대한민국 정부 및 기업들과 협력해 클라우드와 AI 팩토리를 중심으로 25만 개 이상의 GPU를 포함하는 전국 규모의 AI 인프라 확장 계획을 발표했다. 이번 인프라는 공공과 민간 부문이 함께 구축하며, 자동차, 제조, 통신 등 한국 주요 산업 전반의 AI 기반 혁신과 경제 성장을 견인할 핵심 토대가 될 예정이다. 이번 계획은 세계 각국 정상이 APEC 정상회의 참석을 위해 한국에 모인 가운데 발표됐다.  과학기술정보통신부는 기업과 산업 전반의 독자 AI 개발을 가속화하기 위해 최신 엔비디아 GPU 5만 개 도입을 추진 중이라고 밝혔다. AI 인프라 구축은 엔비디아 클라우드 파트너인 네이버 클라우드와 NHN클라우드, 카카오가 국가 독자 클라우드 내 컴퓨팅 인프라를 확장하기 위해 엔비디아 블랙웰(Blackwell) 등 GPU 1만 3000 개를 초기 도입하는 것을 시작으로, 향후 국가 AI컴퓨팅센터 구축 등을 통해 수년간 점진적으로 확대될 예정이다. 이 AI 인프라는 연구기관, 스타트업, AI 기업이 모델과 애플리케이션을 개발할 수 있도록 개방되며, 이는 대한민국의 AI 역량 강화와 인프라 확충을 위한 국가 전략을 뒷받침하게 된다. 또한, 엔비디아는 한국의 산업계, 학계, 연구기관과 AI-RAN과 6G 인프라 개발에도 함께하고 있다. 엔비디아는 최근 삼성(Samsung), SK텔레콤(SK Telecom), 한국전자통신연구원(ETRI), KT, LG유플러스(LG U+), 연세대학교와 협력해 지능형·저전력 AI-RAN 네트워크 기술을 공동 개발 중이다. 이 기술은 GPU 연산 작업을 디바이스에서 네트워크 기지국으로 오프로딩함으로써 컴퓨팅 비용을 절감하고 배터리 수명을 연장할 수 있도록 설계됐다.     한국의 자동차, 제조, 통신 분야 선도 기업들은 엔터프라이즈와 피지컬 AI 개발을 가속화하기 위해 대규모 AI 인프라 투자와 확장을 추진하고 있다. 삼성은 GPU 5만 개 이상을 탑재한 엔비디아 AI 팩토리를 구축해 지능형 제조를 발전시키고 제품과 서비스 전반에 AI를 적용한다. 삼성은 엔비디아 네모트론(Nemotron) 사후 훈련 데이터세트, 엔비디아 쿠다-X(CUDA-X), 엔비디아 cu리소(cuLitho) 라이브러리, 엔비디아 옴니버스(Omniverse) 등 엔비디아 기술을 활용해 정교한 반도체 제조 공정의 속도와 수율을 개선하는 디지털 트윈을 구축한다. 또한 엔비디아 코스모스(Cosmos), 엔비디아 아이작 심(Isaac Sim), 엔비디아 아이작 랩(Isaac Lab)을 활용해해 가정용 로봇 개발 포트폴리오를 강화하고 있다. SK그룹은 반도체 연구·개발·생산을 고도화하고, 디지털 트윈과 AI 에이전트 개발을 지원하는 클라우드 인프라 구축을 위해 5만 개 이상의 GPU를 탑재할 수 있는 AI 팩토리를 설계하고 있다. SK텔레콤은 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 기반으로 한 소버린 인프라를 제공해, 국내 제조 기업들이 엔비디아 옴니버스를 활용할 수 있도록 지원할 계획이다. SK 텔레콤은 스타트업, 기업, 정부 기관을 대상으로 디지털 트윈과 로보틱스 프로젝트 가속화를 위한 산업용 클라우드 인프라를 제공할 예정이다. 현대자동차그룹과 엔비디아는 한층 심화된 협력 단계로 나아가며, 모빌리티, 스마트 공장, 온디바이스 반도체 전반에 걸쳐 AI 역량을 공동 개발할 예정이다. 양사는 AI 모델 훈련과 배포를 위해 5만 개의 블랙웰 GPU를 기반으로 협력을 추진한다. 또한 한국 정부의 국가 피지컬 AI 클러스터 구축 이니셔티브를 지원하기 위해, 현대자동차그룹과 엔비디아는 정부 관계자들과 긴밀히 협력해 생태계 조성을 가속화할 계획이다. 이를 통해 약 30억 달러 규모의 투자가 이루어져 한국의 피지컬 AI 산업 발전을 한층 앞당길 전망이다. 주요 이니셔티브로는 엔비디아 AI 기술 센터, 현대자동차그룹 피지컬 AI 애플리케이션 센터, 지역 AI 데이터센터 설립 등이 포함된다. 네이버 클라우드는 소버린 AI와 피지컬 AI용 인프라를 구축하기 위해 엔비디아 AI 인프라를 확장하고 있다. 이에 따라 엔비디아 RTX PRO 6000 블랙웰과 기타 엔비디아 블랙웰 GPU를 포함해 최대 6만 개의 GPU를 도입할 예정이다. 네이버 클라우드는 엔비디아 AI 인프라에서 구동되는 엔비디아 네모트론 오픈 모델을 기반으로 차세대 소버린 AI 개발의 다음 단계를 준비 중이다. 또한 네이버 클라우드는 조선, 보안 등 산업 특화 AI 모델을 개발하고, 대한민국 국민 모두를 위한 포용적 AI 구현에 주력할 계획이다. 과학기술정보통신부는 엔비디아와의 협력을 기반으로 주권 언어 모델 개발을 위한 독자 AI 파운데이션 모델(Sovereign AI Foundation Models) 프로젝트를 추진한다. 본 프로젝트는 엔비디아 네모와 오픈 엔비디아 네모트론 데이터세트를 활용해 로컬 데이터를 기반으로 추론(reasoning) 모델을 개발하고 디스틸(distilling)할 예정이다. 또한 LG AI연구원, 네이버 클라우드, NC AI, SK텔레콤, 업스테이지가 독자 모델 개발을 지원하는 프로젝트에 협력한다. 기업, 연구진, 스타트업은 이 모델 개발에 기여하고 이를 활용해 음성, 추론 등 다양한 기능을 갖춘 AI 에이전트를 개발할 수 있다. LG는 피지컬 AI 기술 개발을 촉진하고, 피지컬 AI 생태계를 지원하기 위해 엔비디아와 협력하고 있다. 양사는 LG 엑사원(EXAONE) 모델을 활용해 스타트업과 학계를 지원한다. 일례로, 암 진단을 지원하는 모나이(MONAI) 프레임워크 기반의 엑사원 패스(EXAONE Path) 의료 모델이 있다. 한국과학기술정보연구원(KISTI)은 엔비디아와 협력해 한국의 슈퍼컴퓨터 6호기 ‘한강’을 활용한 연구 협력을 촉진하기 위한 공동연구센터 설립을 추진 중이다. KISTI는 또한 양자 프로세서와 GPU 슈퍼컴퓨팅을 연결하는 엔비디아의 새로운 개방형 아키텍처 NVQ링크(NVQLink) 지원을 발표했다. 엔비디아 쿠다-Q(CUDA-Q) 플랫폼과 연동되는 NVQ링크는 KISTI가 양자 오류 정정과 하이브리드 애플리케이션 개발 등 분야의 연구를 심화해 차세대 양자-GPU 슈퍼컴퓨터 개발을 가속화할 수 있도록 지원한다. KISTI는 또한 과학 연구 개발을 위한 파운데이션 모델을 구축하고, 오픈소스 엔비디아 피직스네모(PhysicsNeMo) 프레임워크를 활용한 물리 기반 AI 모델 개발을 연구자들에게 지원할 예정이다. 엔비디아와 파트너들은 한국의 경제 발전과 기회 창출을 위해 엔비디아 인셉션(NVIDIA Inception) 프로그램으로 스타트업을 육성하는 얼라이언스를 설립한다. 얼라이언스 회원사는 SK텔레콤을 포함한 엔비디아 클라우드 파트너가 제공하는 가속 컴퓨팅 인프라를 활용할 수 있다. 또한, IMM인베스트먼트, 한국투자파트너스, SBVA 등 벤처캐피털 얼라이언스와 엔비디아 인셉션의 지원을 받게 된다. 아울러 스타트업은 엔비디아의 소프트웨어와 전문 기술 역량도 활용할 수 있게 돼, 차세대 기업들의 성장을 더욱 신속하게 추진할 수 있게 된다. 엔비디아는 스타트업을 위한 엔비디아 인셉션 프로그램의 성과를 바탕으로, 차세대 기업 지원을 위해 한국 정부와도 협력할 계획이다. 또한 중소기업벤처부에서 운영하는 ‘엔업(N-Up)’ AI 스타트업 육성 프로그램에도 참여할 예정이다. 엔비디아의 젠슨 황 CEO는 “대한민국은 기술과 제조 분야에서 선도적 입지를 갖추고 있으며, 이는 대한민국이 AI 산업 혁명의 중심에 서 있음을 보여준다. 이 산업혁명에서 가속 컴퓨팅 인프라는 전력망과 광대역만큼 중요한 기반이 되고 있다. 한국의 물리적 공장이 정교한 선박, 자동차, 반도체, 전자제품으로 세계에 영감을 주었듯, 이제는 인텔리전스라는 새로운 수출품을 생산하며 글로벌 변화를 이끌 수 있다”고 말했다. 배경훈 부총리 겸 과학기술정보통신부 장관은 “AI가 단순히 혁신을 넘어 미래 산업의 기반이 된 지금, 대한민국은 변혁의 문턱에 서 있다. 엔비디아와 함께 국가 AI 인프라를 확충하고 기술을 개발하는 것은 제조업 역량 등 한국이 보유한 강점을 더욱 강화할 수 있는 투자이며, 이는 글로벌 AI 3대 강국을 향한 대한민국의 번영을 뒷받침할 것”이라고 말했다.
작성일 : 2025-10-31
오라클, 대규모 클라우드 AI 클러스터 ‘OCI 제타스케일10’ 공개
오라클이 클라우드 환경 내의 대규모 AI 슈퍼컴퓨터인 ‘오라클 클라우드 인프라스트럭처(OCI) 제타스케일10(Zettascale10)’을 발표했다. OCI 제타스케일10은 여러 데이터센터에 걸쳐 수십만 개의 엔비디아 GPU를 연결하여 멀티 기가와트급 클러스터를 형성하며, 최대 16 제타플롭스(zettaFLOPS)에 이르는 성능을 제공한다. OCI 제타스케일10은 스타게이트의 일환으로 미국 텍사스주 애빌린에서 오픈AI(OpeNAI)와 협력하여 구축한 대표 슈퍼클러스터를 구성하는 기반 패브릭이다. 차세대 오라클 액셀러론 RoCE(Oracle Acceleron RoCE) 네트워킹 아키텍처를 기반으로 구축된 OCI 제타스케일10은 엔비디아 AI 인프라로 구동된다. 오라클은 강화된 확장성, 클러스터 전반에 걸친 초저지연 GPU-GPU 통신, 가격 대비 높은 성능, 향상된 클러스터 활용도, 대규모 AI 워크로드에 필요한 안정성을 제공한다는 점을 내세운다. OCI 제타스케일10은 2024년 9월 출시된 첫 번째 제타스케일 클라우드 컴퓨팅 클러스터의 차세대 모델이다. OCI 제타스케일10 클러스터는 대규모 기가와트급 데이터센터 캠퍼스에 배치되며, 2킬로미터 반경 내에서 밀도를 높여 대규모 AI 학습 워크로드에 최적화된 GPU-GPU 지연 성능을 제공한다. 이 아키텍처는 오픈AI와 협력하여 애빌린 소재 스타게이트 사이트에 구축 중에 있다. OCI는 고객에게 OCI 제타스케일10의 멀티기가와트 규모 배포를 제공할 계획이다. 초기에는 최대 80만 개의 엔비디아GPU를 탑재한 OCI 제타스케일10 클러스터 배포를 목표로 한다. 이는 예측 가능한 성능과 강력한 비용 효율을 제공하며, 오라클 액셀러론의 초저지연 RoCEv2 네트워킹으로 높은 GPU-GPU 대역폭을 구현한다. OCI는 현재 OCI 제타스케일10 주문을 접수 중이라고 전했다. 이 제품은 2026년 하반기 출시 예정으로, 최대 80만 개의 엔비디아 AI 인프라 GPU 플랫폼을 기반으로 제공될 예정이다. 오라클의 마헤쉬 티아가라얀 OCI 총괄 부사장은 “OCI 제타스케일10을 통해 우리는 OCI의 혁신적인 오라클 액셀러론 RoCE 네트워크 아키텍처를 차세대 엔비디아 AI 인프라와 결합해 전례 없는 규모에서 멀티기가와트급 AI 용량을 제공한다. 고객은 성능 단위당 전력 소비를 줄이면서 높은 안정성을 달성해 가장 큰 규모의 AI 모델을 실제 운영 환경에 구축, 훈련 및 배포할 수 있다. 또한 강력한 데이터 및 AI 주권 제어 기능을 통해 오라클의 분산형 클라우드 전반에서 자유롭게 운영할 수 있다”고 말했다. 오픈AI의 피터 호셸레(Peter Hoeschele) 인프라 및 산업 컴퓨팅 부문 부사장은 “OCI 제타스케일10 네트워크 및 클러스터 패브릭은 오라클과 함께 구축한 슈퍼클러스터인 텍사스주 애빌린에 위치한 대표 스타게이트 사이트에서 최초로 개발 및 배포되었다. 고도로 확장 가능한 맞춤형 RoCE 설계는 기가와트 규모에서 패브릭 전체 성능을 극대화하면서도 대부분의 전력을 컴퓨팅에 집중시켜 준다. 오라클과 협력하여 애빌린 사이트를 비롯한 스타게이트 프로젝트 전반을 전개해 나갈 수 있어 매우 기쁘게 생각한다”고 말했다.
작성일 : 2025-10-16
시놀로지, 스토리지 효율 및 보안·생산성 강화한 디스크스테이션 매니저 7.3 출시
시놀로지가 디스크스테이션 매니저(DSM) 7.3의 출시를 발표했다. 이번 버전은 향상된 스토리지 효율성, 강화된 보안 및 신뢰성, 그리고 새로운 생산성 기능을 제공한다. 시놀로지 DSM 7.3에서 제공하는 시놀로지 티어링(Synology Tiering)은 액세스 패턴을 기반으로 파일을 자동으로 이동시켜, 자주 사용하는 ‘핫’ 데이터는 고성능 스토리지에, 드물게 접근하는 ‘콜드’ 데이터는 비용 효율적인 티어에 배치한다. 또한 수정 시간이나 접근 빈도에 따라 사용자가 정책을 지정해 데이터 이동 시점과 방식을 세밀하게 제어할 수 있다.     지난 12개월간 DSM은 50건 이상의 선제적 보안 업데이트를 적용했으며, DSM 7.3에서는 KEV, EPSS, LEV 등 업계 표준 위험 지표를 도입해 위협 우선순위 지정과 보호 기능을 더욱 강화했다. 오피스 스위트(Office Suite)도 커뮤니티의 요구를 반영해 개선됐다. 시놀로지 드라이브(Synology Drive)는 공유 라벨, 간소화된 파일 요청, 향상된 파일 잠금 기능을 제공해 협업을 더 원활하게 지원한다. 또한 메일플러스(MailPlus)는 이메일 검토 기능으로 보안을 강화하고, 도메인 공유 기능을 추가해 분산된 인프라 전반에서 사용자 신원을 통합할 수 있도록 했다. 시놀로지 AI 콘솔(Synology AI Console)은 2025년 8월 출시 이후 지금까지 43만 대 이상의 시놀로지 시스템에 배포돼, 온프레미스 환경에서 AI 기반 협업과 관리를 지원하고 있다. DSM 7.3에서는 맞춤형 데이터 마스킹과 필터링 기능이 추가되어, 민감한 정보가 타사 AI 서비스로 전송되기 전에 로컬에서 보호할 수 있도록 하여 보안성과 워크플로 신뢰성을 한층 높인다. 또한, 시놀로지 AI 콘솔은 앞으로 모든 OpeNAI 호환 API 지원을 추가할 예정이며, 이를 통해 프라이빗 AI 인프라와의 원활한 통합이 가능해지고, 조직은 완전한 데이터 프라이버시와 보안 하에 AI 서비스를 유연하게 배포할 수 있다. 시놀로지는 신뢰할 수 있고 고성능의 스토리지 시스템 제공에 전념하고 있다. 하드웨어와 소프트웨어 구성 요소 모두에 대한 엄격한 검증은 오랜 기간 핵심 개발 우선순위였다. 시놀로지 스토리지 드라이브는 타사 검증 프로그램과 함께 DSM에서 최고의 신뢰성을 제공하도록 설계되었다. 시놀로지는 드라이브 제조업체와 협력하여 인증된 저장 매체의 범위를 확대하고, 더 신뢰할 수 있는 옵션을 제공한다. 한편, 2025년형 DiskStation Plus, Value, J 시리즈는 DSM 7.3에서 타사 드라이브를 사용한 설치 및 스토리지 풀 생성을 지원하여 사용자의 유연성을 높인다. 시놀로지의 케네스 수(Kenneth Hsu) 시스템 그룹 디렉터는 “데이터가 빠르게 증가함에 따라 이를 관리하고 처리하며 가치를 극대화할 수 있는 고급 설루션이 필요하다”면서, “DSM 7.3은 안전하고 신뢰할 수 있으며, AI 혁신까지 지원할 준비가 된 플랫폼 위에서 고객이 변화하는 데이터 관리 과제를 자신 있게 해결할 수 있도록 돕는다”고 전했다.
작성일 : 2025-10-10
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpeNAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpeNAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
엔비디아, 오픈AI와 10GW 규모 시스템 구축 위해 협력
엔비디아가 오픈AI(OpeNAI)와 전략적 파트너십을 체결했다고 밝혔다. 양사는 이번 파트너십의 일환으로 오픈AI의 차세대 AI 인프라 구축을 위해 최소 10GW(기가와트) 규모의 엔비디아 시스템을 도입한다는 의향서를 발표했다. 이번 협력으로 오픈AI는 차세대 모델을 훈련하고, 운영하며, 슈퍼인텔리전스 배포를 위한 기반을 마련하게 된다. 엔비디아는 데이터센터와 전력 용량 확보를 포함한 이번 구축을 지원하기 위해, 신규 시스템이 도입됨에 따라 오픈AI에 최대 1000억 달러를 투자할 계획이다. 첫 번째 단계는 엔비디아 베라 루빈(Vera Rubin) 플랫폼을 통해 2026년 하반기 가동을 목표로 하고 있다. 엔비디아와 오픈AI는 향후 몇 주 안에 이번 전략적 파트너십의 새로운 단계에 대한 세부 사항을 확정할 예정이다. 오픈AI는 “현재 주간 활성 사용자 수가 7억 명을 넘어섰으며, 글로벌 기업, 중소기업, 개발자 전반에서 강력한 활용도를 보이고 있다. 이번 파트너십은 오픈AI가 인류 전체에 이익이 되는 범용 인공지능(AGI) 구축이라는 사명을 추진하는 데 기여할 것”이라고 소개했다. 오픈AI는 AI 팩토리 성장 계획을 위해 전략적 컴퓨팅, 네트워킹 파트너로서 엔비디아와 협력할 예정이다. 양사는 오픈AI의 모델과 인프라 소프트웨어와 엔비디아의 하드웨어와 소프트웨어에 대한 로드맵을 공동 최적화해 나갈 것이다. 이번 파트너십은 오픈AI와 엔비디아가 이미 마이크로소프트, 오라클, 소프트뱅크, 스타게이트 등 파트너사를 비롯한 여러 협력사와 추진 중인 작업을 보완한다. 이를 통해 양사는 세계 최고 수준의 AI 인프라 구축을 위해 한층 더 속도를 낼 계획이다. 엔비디아의 젠슨 황(Jensen Huang) CEO는 “엔비디아와 오픈AI는 지난 10년간 최초의 DGX 슈퍼컴퓨터부터 챗GPT(ChatGPT)의 혁신에 이르기까지 서로를 함께 견인해왔다. 이번 투자와 인프라 파트너십은 차세대 인텔리전스 시대를 이끌 10GW 규모의 인프라 구축이라는 다음 도약을 의미한다”고 말했다. 오픈AI의 샘 알트만(Sam Altman) CEO는 “모든 것은 컴퓨팅에서 시작된다. 컴퓨팅 인프라가 미래 경제의 기반이 될 것이며, 우리는 엔비디아와 함께 구축 중인 인프라를 활용해 새로운 AI 혁신을 창출하고, 이를 사람과 기업이 대규모로 활용할 수 있도록 할 것”이라고 말했다.
작성일 : 2025-09-25
멘딕스, 메가존과 파트너십 맺고 국내 로코드 기반 디지털 혁신 가속화
지멘스 디지털 인더스트리 소프트웨어의 사업부인 멘딕스는 한국 시장에서 입지를 확대하기 위해 AI·클라우드 기업 메가존클라우드의 모회사인 메가존과 전략적 파트너십을 맺었다고 밝혔다. 이번 파트너십은 시장 개발, 고객사 공동 대응 및 기술 지원 등을 제공하기 위한 포괄적인 프레임워크를 구축하여, 현지 전문성과 지원 체계를 바탕으로 디지털 혁신 전략을 가속화하고자 하는 국내 기업들이 세계적 수준의 로코드(low-code) 개발 역량을 활용할 수 있도록 지원하기 위한 것이다. 멘딕스는 “스튜디오 프로(Studio Pro)에 통합된 마이아(Maia)를 통해서 AI 에이전트 시대를 선도함과 동시에 이번 파트너십을 통해 한국 시장에서 로코드 애플리케이션 개발 역량을 대중화하고, 글로벌 확장 전략을 강화하는 데 중요한 이정표를 수립했다”고 평가했다. 메가존은 한국 시장에 대한 전문성과 견고한 유통망을 바탕으로, 국내 기업이 멘딕스의 포괄적인 개발 플랫폼을 보다 손쉽게 활용해 아이디어를 실효성 있는 애플리케이션으로 구현하는 동시에, 엔터프라이즈급 보안과 거버넌스를 유지할 수 있도록 지원할 예정이다. 멘딕스는 자사의 플랫폼이 고객에게 생성형 AI(GeNAI) 기술에 대한 턴키 액세스를 제공하는 GeNAI 리소스 팩(GeNAI Resource Pack)과 고급 AI 기반 개발 툴과 같은 최신 개선 기능을 통해 애플리케이션 개발 프로세스에 AI를 활용하고자 하는 한국 기업들에게 상당한 가치를 제공할 것으로 기대하고 있다. 멘딕스의 역량과 메가존의 현지 시장에 대한 전문성 및 지원 인프라가 결합됨으로써 한국 시장에 로코드 도입을 가속화할 수 있는 기반이 마련되었다는 것이 멘딕스의 평가이다. 메가존은 멘딕스의 공식 총판 파트너로서 파트너 생태계 개발과 세일즈 활성화를 비롯해 시장 개발을 위한 마케팅, 티어-2 리셀러 리크루팅, 기술 지원 등을 지멘스와 함께 적극 리드할 예정이다. 이를 위해 리셀러 발굴·영입, 과천 사옥 및 역삼 센터 내 전문 교육 프로그램 운영, 세일즈 역량 강화, 제품 인증 제공뿐 아니라 세일즈 프로세스 관리, 공동 제안서 작성, 고객 서비스 지원 등을 수행하며, 연간 매출 목표 달성과 협력적 성장 전략을 통해 비즈니스 성과를 견인하는데 기여할 것으로 보고 있다. 이번 협력의 핵심은 전략적 접근방식을 통해 공동 마케팅 및 세일즈 개발을 가속화하기 위한 것이다. 양사는 한국 시장에서 멘딕스 브랜드의 인지도를 높이고 비즈니스 성과를 강화하기 위한 구체적인 계획을 수립하고, 함께 협력할 예정이다. 공동 세미나와 웨비나 개최는 물론, 성공 사례 개발 및 디지털 캠페인에 이르기까지, 공동의 마케팅 활동을 통해 고객과의 상호작용 및 시장 확장을 위한 다양한 접점을 창출할 계획이다. 지멘스 디지털 인더스트리 소프트웨어의 오병준 한국 지사장은 “메가존과의 파트너십은 멘딕스가 아태지역에서 지속적으로 사업을 확장하는데 중요한 이정표가 될 것”이라면서, “한국은 기업들이 최신 개발 설루션을 도입하는데 매우 역동적이고 혁신적인 시장이다. 멘딕스는 메가존의 검증된 현지 전문성과 시장을 선도하는 파트너 네트워크를 활용하여, 국내 기업들이 로코드 개발 방식의 혁신적인 잠재력을 실현하고, 디지털 중심 경제에서 성장을 가속화할 수 있도록 지원하는 보다 효과적인 서비스를 제공하게 될 것”이라고 말했다. 메가존의 조영국 부사장은 “국내 기업들은 현대적이고 민첩한 개발 설루션을 도입하는데 상당히 적극적이다. 메가존은 멘딕스의 로코드 플랫폼을 통해 국내 기업들의 역량 강화를 지원할 수 있는 최적의 위치에 있다”면서, “메가존은 한국 시장 전반에 걸쳐 최첨단 디지털 설루션을 신속하게 공급하고, 안정적으로 지원할 수 있는 입증된 실적을 바탕으로, 기술 도입 격차를 해소할 수 있는 핵심 강점을 보유하고 있다. 앞으로도 기업들이 멘딕스를 효과적으로 활용하여 디지털 혁신 목표를 가속화하고, 전략적 비즈니스 목표를 달성할 수 있도록 원활한 도입 프로세스를 지원하는데 주력할 것”이라고 밝혔다.
작성일 : 2025-09-19
퓨리오사AI, OpeNAI 손잡고 ‘AI 반도체 기술력’ 입증
 OpeNAI 코리아 개소식 행사장에 배치된 RNGD 서버와 시연용 워크스테이션[사진=퓨리오사AI]   퓨리오사AI가 9월 12일 열린 OpeNAI 코리아 개소식에서 자사의 기술력을 선보이며 AI 업계의 주목을 받았다. 이번 행사에서 퓨리오사AI는 자사 2세대 반도체 'RNGD' 2장만으로 오픈AI의 대규모 언어 모델 'gpt-oss 120B' 기반 챗봇을 실시간으로 구동하는 시연을 진행했다. 이번 시연은 퓨리오사AI가 글로벌 AI 인프라 시장에서 중요한 역할을 할 수 있는 잠재력을 증명하는 계기가 됐다. 오픈AI가 공개한 최고 수준의 오픈 소스 기반 모델인 gpt-oss 120B는 MoE(Mixture-of-Experts) 구조를 적용하여 성능과 효율성을 동시에 갖췄다고 평가받는다. 퓨리오사AI의 RNGD는 이러한 초거대 언어 모델을 기존보다 훨씬 효율적인 전력으로 구동할 수 있어, 고질적인 인공지능의 전력 및 비용 문제를 해결할 수 있다는 점에서 큰 의미를 가진다. 퓨리오사AI의 백준호 대표는 “'AGI(범용인공지능)가 인류 전체에 이롭도록 한다'는 OpeNAI의 미션과 'AI를 지속 가능하고 접근 가능하게 한다'는 퓨리오사의 미션은 서로 통한다"며, "RNGD와 gpt-oss의 결합은 전 세계 오픈 소스 기반 AI 생태계를 더욱 빠르게 확산시킬 것"이라고 말했다. 이번 시연을 통해 퓨리오사AI는 초거대 AI 모델 구동에 최적화된 하드웨어 솔루션을 제공하며, AI 기술 대중화에 기여할 것으로 기대된다.    
작성일 : 2025-09-13
헥사곤, ‘헥사곤 라이브 이노베이션 서밋 코리아 2025’에서 정밀 측정·디지털 트윈 혁신 전략 제시
헥사곤 매뉴팩처링 인텔리전스는 9월 3일 서울 양재동 aT센터에서 ‘헥사곤 라이브 이노베이션 서밋 코리아 2025(Hexagon Live Innovation Summit Korea 2025)’를 개최했다고 전했다. 이번 서밋에서 헥사곤은 ▲정밀 측정 하드웨어와 소프트웨어 ▲지오매직 리버스 엔지니어링 및 품질 검사 설루션 ▲CAD/CAM 소프트웨어 ▲라이카 지오시스템즈의 3D 스캐닝 기술을 폭넓게 선보이고, 헥사곤 포트폴리오 기반의 실제 적용 사례를 통해 디지털 혁신과 정밀 측정의 미래를 조명했다. 행사 기조연설은 헥사곤 매뉴팩처링 인텔리전스의 림분춘 아세안·태평양·인도 지역 사장이 맡아 정밀 측정과 스마트 디지털 트윈이 제조업 혁신을 견인하는 핵심 동력임을 강조했다. 그는 포레스터와 함께 발간한 ‘2025 첨단 제조 산업 보고서’를 인용하며, 디지털 트윈이 기업의 민첩성과 품질 혁신을 가능하게 하는 가장 중요한 투자 영역으로 부상하고 있음을 지적했다. 이어 헥사곤이 현실과 가상을 연결하는 정밀 측정 기술과 데이터 기반 설루션을 통해 이러한 산업적 전환을 지원하며, 제조업이 자율성과 경쟁력을 갖춘 미래로 나아가도록 기여하고 있음을 강조했다.     이어서 라이카지오시스템즈 칸 파힘(Khan Faheem) 아시아 사장이 현실 공간 데이터를 활용한 비즈니스 인사이트와 스마트 제조의 접목 가능성을 소개했으며, 헥사곤 매뉴팩처링 인텔리전스의 홍석관 사장은 헥사곤 데이터 기반의 스마트 제조 전략을 발표했다. 또한 헥사곤 매뉴팩처링 인텔리전스의 권의중 본부장은 측정 기술과 품질 혁신의 새로운 패러다임을 제시했으며, 문장희 팀장은 라이카 앱솔루트 트래커 ATS800(Leica Absolute Tracker ATS800)을 활용한 대형 정밀 측정의 업계 표준을 소개하며 제조 현장의 적용 가능성을 공유했다. 또한, 이번 행사에는 한국생산기술원과 DN솔루션즈를 비롯한 주요 고객사와 산업 관계자들이 함께 참여해 헥사곤 설루션의 실제 적용 사례와 협업 성과를 공유했다. 한국생산기술원 김성현 수석연구원은 레이저 트래커 연동 실시간 피드백 제어를 활용한 고정밀 로봇 가공 기술을 소개하며 연구 성과를 공유했다. 또한 DN솔루션즈 박성철 상무는 헥사곤 설루션을 기반으로 한 제조 공정 혁신 사례를 발표해 현장의 생산성 향상과 품질 경쟁력 확보 방안을 제시했다. 주요 관계자의 발표뿐만 아니라 헥사곤의 측정 설루션 시연, 산업별 적용 사례 발표, 전시 및 네트워킹도 함께 진행됐다. 전시에서는 각 분야의 설루션이 소개되었으며 특히, 라이카 앱솔루트 트래커 ATS800과 더불어 초고속 디지털 3차원 측정기(CMM) 마에스트로(MAESTRO), 앱솔루트 암(Absolute Arm), 스마트 스캔 VR800(SmartScan VR800) 등 정밀 측정 하드웨어를 선보였다. 또한 AI 및 머신러닝 기반 제조 공정 최적화 기술인 프로플랜AI(ProplaNAI), 3D 스캔 데이터의 CAD 변환을 지원하는 지오매직 디자인X(Geomagic Design X), 휴대형 3D 스캐닝을 지원하는 라이카 BLK2GO 등 CAD/CAM 및 지오매직 소프트웨어, 라이카 지오시스템즈(Leica Geosystems)의 대표 설루션을 소개하며 리얼리티 캡처와 디지털 트윈을 통한 데이터 기반 품질 관리와 공정 혁신의 실질적 적용 방안을 제시했다. 올해 5월 새롭게 출시된 ATS800은 최대 40미터 거리에서도 리플렉터 없이 고정밀 측정이 가능해 대형 구조물의 품질 검사를 자동화할 수 있는 차세대 레이저 트래커로, 항공우주와 풍력 등 대규모 제조 현장에서 활용도가 높다. 같은 달 공개된 마에스트로는 속도, 정밀도, 연결성을 강화한 차세대 CMM으로, 직관적인 인터페이스와 클라우드 기반 소프트웨어를 통해 품질 검사 프로세스를 간소화하고 생산성을 높일 수 있는 설루션이다. 홍석관 사장은 “이번 행사를 통해 헥사곤의 최신 측정 설루션과 다양한 산업별 적용 사례를 국내 고객과 직접 공유할 수 있어 뜻깊다”면서, “앞으로도 헥사곤은 정밀 측정과 디지털 트윈을 기반으로 자동차, 항공우주, 전자 등 다양한 제조 산업에서 고객이 품질과 생산성을 높이고 디지털 혁신을 가속화할 수 있도록 적극 지원해 나갈 것”이라고 말했다.
작성일 : 2025-09-04
바이브 코딩 지원 멀티 에이전트 코덱스의 사용법
BIM 칼럼니스트 강태욱의 이슈 & 토크   요즘 바이브 코딩(vibe coding)이 열풍이다. 이번 호에서는 오픈AI(OpeNAI)가 개발한 바이브 코딩을 지원하는 멀티 에이전트 코덱스(Codex)의 사용법을 간략히 소개한다. 얼마 전 챗GPT(ChatGPT) 프로 버전에 무료로 오픈된 코덱스와 오픈소스 코덱스 버전(CLI)의 사용법을 모두 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. Codex | OpeNAI   2025년 4월 중순에 OpeNAI o3, o4, Codex가 공개되었다. 멀티 AI 에이전트 기능을 충실히 구현한 영상 데모가 업로드되었고, 특히 자동화 코딩을 지원하는 코덱스가 로컬 컴퓨터에서 실행 가능한 형태로 공개된 점이 인상적이었다.   그림 2. 오픈AI o3, o4, 코덱스 공개 영상   코덱스는 단순한 코드 생성에 그치지 않고 버그 수정, 테스트 실행, 코드 리뷰 제안 등 복잡한 개발 업무를 자동화한다. 각 작업은 사용자의 코드 저장소가 사전 로드된 격리된 클라우드 샌드박스 환경에서 독립적으로 실행되며, 작업의 복잡도에 따라 1분에서 30분 이내에 결과를 제공한다. 또한, 코덱스는 작업 수행 과정에서 생성된 터미널 로그와 테스트 출력 등의 증거를 제공하여, 사용자가 변경 사항을 추적하고 검토할 수 있도록 지원한다.코덱스 코드 및 도구는 깃허브(GitHub)에 공개되었다. Codex Lightweight coding agent that runs : https://github.com/opeNAI/codex 6월 초에는 챗GPT 프로 사용자에게 코덱스 기능이 공개되었다. 코덱스는 챗GPT의 사이드바를 통해 접근할 수 있으며, 사용자는 자연어로 코딩 작업을 지시하거나 기존 코드에 대한 질문을 할 수 있다. 또한 코덱스는 사용자의 개발 환경과 유사하게 구성할 수 있어, 실제 개발 환경과의 통합이 용이하다. 보안 측면에서도 코덱스는 격리된 환경에서 실행되며, 인터넷 접근은 기본적으로 비활성화되어 있다. 필요한 경우 특정 도메인에 대한 접근을 허용할 수 있으며, 이를 통해 외부 리소스를 사용하는 테스트나 패키지 설치 등이 가능하다. 코덱스는 현재 챗GPT 프로/팀/엔터프라이즈 사용자에게 제공되며, 플러스 및 에듀 사용자에게도 점차 확대되고 있다. 또한, 코덱스 CLI(Codex CLI)를 통해 터미널 환경에서도 코덱스의 기능을 활용할 수 있어, 다양한 개발 환경에서의 활용이 가능하다.(opeNAI.com)   챗GPT에서 코덱스 사용법 코덱스를 활용한 전체 사용 과정은 단순한 코드 자동 생성 수준을 넘어, 실제 소프트웨어 개발의 전 과정을 자연어 기반으로 자동화하는 방식으로 개발되어 있다. 코덱스는 현재 깃허브를 기본 연결해 사용하도록 되어 있어, 다음과 같이 필자의 깃허브 프로젝트를 연결해 실습을 진행했음을 밝힌다. https://github.com/mac999/AI_agent_simple_function_ call.git 참고로, 필자는 필자의 깃허브 저장소를 이용하였지만, 독자는 각자 깃허브에 로그인한 후 본인의 프로젝트 개발을 진행할 저장소를 선택해야 한다. 아울러, 바이브 코딩 결과물이 제대로 동작하려면 반드시 챗GPT 등을 이용해 미리 PRD(Product Requirement Document)에 요구사항을 명확히 작성한 후, 이를 바이브 코딩 도구에 입력해 프로젝트와 코드를 생성하도록 하는 것이 좋다.   그림 3. 식사 레스토랑 평가용 앱 개발을 위한 PRD 문서 예시(How to vibe code : 11 vibe coding best practices, https://zapier.com)   프로젝트 시작 : 코드 저장소 구성 및 환경 연결 챗GPT 프로의 왼쪽 메뉴에서 <그림 4>와 같이 코덱스를 실행하면, 연결할 깃허브 계정 및 저장소를 요청한다. 코덱스에서 <그림 4>와 같이 본인의 깃허브 계정을 연결한다.   그림 4     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03