• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "LLaVA"에 대한 통합 검색 내용이 2개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[무료다운로드] 오픈소스 LLaVA 기반 멀티모달 생성형 AI 서비스 만들기
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 챗GPT 4.0(ChatGPT 4.0)과 같은 LMM(Large langauge Multi-modal Model : 멀티모달 대규모 언어 모델)인 LLaVA(Large Language and Vision Assistant : 라바) 기반 멀티모달 생성형 AI 서비스 개발 방법을 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast   라바는 이미지 투 텍스트(Image To Text)와 같은 언어-이미지 시각 어시스턴스(Language-Image Visual Assistant)를 지원하기 위해 ViT(Visual Instruction Tuning : 시각적 지시 조정)을 기반으로 개발된 멀티모달 모델 오픈소스이다. 예를 들어, 이미지를 단순히 분류해 주는 것이 아닌, 이미지 내 특정 객체들을 인식하고 관계를 설명할 수 있는 기술을 지원한다.   그림 1. 단독 로컬 서버 PC에서 라바 서비스 모습   참고로, ViT는 이미지의 특정 위치에 대한 객체 정보를 인식할 수 있도록 학습하는 기술이다. 예를 들어, GPT-4는 특정 부분의 시각적 특징을 인코딩하기 위해 YOLO 모델과 같이 경계 상자를 사용하고, CLIP 모델과 같이 해당 부분에 대한 텍스트 임베딩을 입력하여 학습한다. Visual Instruction Tuning : https://arxiv.org/abs/2304.08485   그림 2. ViT의 개념   라바의 NeXT 버전은 구글 제미나이 프로의 성능을 능가했다고 밝혔으며, 이전 버전인 라바 1.5에 비해 이미지 해상도, OCR 기능 등이 개선되었다고 한다.    그림 3. 라바 아키텍처   이번 호에서는 Ollama를 이용해 라바 NeXT를 로컬 PC에서 실행하는 방법을 따라해 본다.    라바의 개요 라바는 대형 멀티모달 모델로, GPT-4.0과 유사한 LMM을 개발하고자 마이크로소프트 연구팀에서 오픈소스로 개발되었다. MS는 라바의 논문, 깃허브(GitHub) 코드, 데모 사이트 등을 공개하였다.  LLaVA Demo : https://LLaVA.hliu.cc LLaVA paper(Visual Instruction Tuning - Microsoft Research) : https://www.microsoft.com/en-us/research/publication/visual-instruction-tuning 라바 LMM은 비전 인코더, LLM 모델을 기반으로 개발되었으며, 이미지 투 텍스트에서 인상적인 성능을 보여준다. 라바는 비전 인코더로 오픈AI(OpenAI)에서 공개한 CLIP 모델을 사용했으며, 메타(페이스북)에서 공개한 LLaMA 기반 Vicuna LLM 모델을 사용했다. 학습은 A100 GPU×8×1 Day 와 60만개 데이터셋을 사용했다. 라바를 설치하고 실행해 보기 위해서는 다음의 개발 환경이 컴퓨터에 미리 설치되어 있다고 가정한다.(우분투, 엔비디아, 쿠다 등의 설치 방법은 지난 연재를 참고하기 바란다.) NVIDIA driver, CUDA, Python, anaconda, Ubuntu 22.04 Tensorflow, PyTorch Ollama(https://ollama.com/download)     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-06-03
CAD&Graphics 2024년 6월호 목차
  17 THEME. 제조기업이 말하는 스마트 혁신 전략과 추진 과정   제조 혁신의 미래 : 포스코의 디지털 트윈 추진 사례 설계부터 운영까지 : LG의 스마트 공장 구축 여정과 사례 생산성을 넘어서는 가치 추구 : 현대차/기아의 스마트 공장 추진 현황   INFOWORLD    New Products 29 비주얼 콘텐츠 제작의 퍼포먼스 · 품질 · 생산성 향상 언리얼 엔진 5.4 34 건축 설계-시공 워크플로 개선 및 건설 생산성 강화 올플랜 2024-1 서비스 릴리스 36 하드웨어 기반 반도체 개발 검증 솔루션 벨로체 CS 45 이달의 신제품   Case Study 38 발레오, SXSW에서 차량 내 XR 레이싱 게임 공개 자율주행 시대의 새로운 사용자 경험을 제시하다   Focus 40 폼랩, “제조산업에서 3D 프린팅의 가능성 넓힌다” 42 AWS, 산업 혁신 지원하는 포괄적 클라우드/AI 기술 소개   Column 48 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 AI 전환 시대의 디지털 엔지니어링 이니셔티브 51 책에서 얻은 것 No. 20 / 류용효 컨셉맵으로 미래 그리기   On Air 56 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI LLM과 스테이블 디퓨전 최신 기술 및 활용 동향 57 캐드앤그래픽스 CNG TV 지식방송 지상중계 다양한 산업군에서의 HPC on AWS 58 캐드앤그래픽스 CNG TV 지식방송 지상중계 생성형 AI 시대의 BIM 기술과 스마트 건설 59 캐드앤그래픽스 CNG TV 지식방송 지상중계 산업별 DX/PLM 전략과 생성형AI 혁신 60 캐드앤그래픽스 CNG TV 지식방송 지상중계 미래를 선도하는 혁신 제조 기술의 활용 가능성 61 News 66 New Books   Directory 115 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 68 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈소스 LLaVA 기반 멀티모달 생성형 AI 서비스 만들기 72 새로워진 캐디안 2024 살펴보기 (6) / 최영석 캐디안 2024 SE의 새로운 기능 소개 76 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2025 (2) / 천벼리 아레스 AI 어시스트 112 복잡한 모델에서 인사이트를 얻고 설계 의사결정을 돕는 직스캐드 (3) / 이소연 사용성을 강화하는 QPro 및 LANDY 연동   Reverse Engineering 83 문화유산 분야의 이미지 데이터베이스와 활용 사례 (6) / 유우식 고서 자형 데이터베이스   Mechanical 94 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (1) / 김성철 크레오 11.0에서 향상된 주요 기능 소개 100 산업 디지털 전환을 위한 버추얼 트윈 (2) / 최윤정 자동차 산업에서 3D익스피리언스 카티아의 활용법   Analysis 80 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (10) / 나인플러스IT 전기/기계 엔지니어의 역량을 강화하는 통합 AI 열 해석 104 앤시스 워크벤치를 활용한 해석 성공사례 / 김은자 앤시스 플루언트 GPU 솔버의 소개와 활용 108 시뮤텐스 소프트웨어를 활용한 복합소재 해석 (3) / 씨투이에스코리아 복합재 성형-구조 연계 해석을 위한 시뮤드레이프       캐드앤그래픽스 2024년 6월호 목차 from 캐드앤그래픽스
작성일 : 2024-05-31