• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "IP"에 대한 통합 검색 내용이 5,980개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
인텔, 아크 프로 B-시리즈 GPU 및 제온 6 프로세서의 AI 추론 벤치마크 결과 소개
인텔은 ML커먼스(MLCommons)가 발표한 최신 MLPerf 추론 v5.1 벤치마크에서 P코어를 탑재한 인텔 제온(Intel Xeon) 및 인텔 아크 프로 B60(Intel Arc Pro B60) 그래픽으로 구성된 인텔 GPU 시스템(코드명 프로젝트 배틀매트릭스)의 추론용 워크스테이션이 달성한 결과를 공개했다. 6가지 주요 벤치마크 테스트 결과, 라마(Llama)4 80B 모델 추론 처리량에서 인텔 아크 프로 B60은 엔비디아 RTX 프로 6000 및 L40S에 비해 각각 최대 1.25배 및 최대 4배의 가격 대비 성능 우위를 보였다. 인텔은 “이는 하이엔드 워크스테이션 및 에지 애플리케이션 전반에 걸쳐 새로운 AI 추론 워크로드를 처리하는 인텔 기반 플랫폼의 성능과 접근 우수성을 보여주는 결과”라고 평가했다. 인텔의 리사 피어스(Lisa Pearce) 소프트웨어, GPU 및 NPU IP 그룹 총괄은 “MLPerf v5.1 벤치마크 결과는 인텔의 GPU 및 AI 전략을 강력히 입증하고 있다. 새로운 추론 최적화 소프트웨어 스택을 탑재한 아크 프로 B-시리즈 GPU는 기업과 개발자가 강력하면서도 설정하기 쉽고, 합리적인 가격에 확장 가능한 추론 워크스테이션으로 AI 분야에서 경쟁력을 높여준다”고 밝혔다.     이전까지는 높은 추론 성능을 제공하면서 데이터 프라이버시 침해에서 자유로운 플랫폼을 우선시하는 전문가들이 독점적인 AI 모델에 의한 과도한 구독 비용 부담 없이 LLM(대형 언어 모델)을 배포하기에 필요한 역량을 갖추기 위한 선택지가 제한적이었다. 새로운 인텔 GPU 시스템은 최신 AI 추론 요구사항을 충족하도록 설계되었으며, 풀스택 하드웨어와 소프트웨어를 결합한 올인원(all-in-one) 추론 플랫폼을 제공한다. 인텔 GPU 시스템은 리눅스 환경을 위한 새로운 컨테이너 기반 설루션을 통해 간소화된 도입과 사용 편의성을 목표로 한다. 또한 멀티 GPU 스케일링 및 PCle P2P 데이터 전송으로 높은 추론 성능을 발휘하도록 최적화되었으며, ECC, SRIOV, 텔레메트리(telemetry) 및 원격 펌웨어 업데이트 등과 같은 엔터프라이즈급 안전성 및 관리 용이성을 갖추고 있다. CPU는 AI 시스템에서 계속해서 중요한 역할을 수행하고 있다. 오케스트레이션 허브로서 CPU는 데이터 전처리, 전송 및 전반적인 시스템 조율을 담당한다. 지난 4년간 인텔은 CPU 기반 AI 성능을 지속적으로 향상시켜왔다. P 코어를 탑재한 인텔 제온 6는 MLPerf 추론 v5.1에서 이전 세대 대비 1.9배의 성능 향상을 달성했다.
작성일 : 2025-09-10
[PLM/DX 베스트 프랙티스 컨퍼런스 2025] 발표자료 다운로드 안내
안녕하세요? PLM/DX컨퍼런스사무국입니다. 캐드앤그래픽스, 한국CDE학회, 한국산업지능화협회가 주최하고 한국산업지능화협회 기술위원회가 주관한 'PLM/DX 베스트 프랙티스 컨퍼런스 2025'에 참여해 주신 모든 분들께 감사드립니다. 많은 관심과 성원으로 이번 행사도 잘 마무리 되었습니다. [PLM/DX 베스트 프랙티스 컨퍼런스 2025] 발표자료 다운로드 안내 - 발표자료는 아래 아젠다에서 PDF 표시된 자료만 공개가 가능합니다.     [PLM/DX 베스트 프랙티스 컨퍼런스 2025] 참가업체 소개 바로가기 >> [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2025, 제조 혁신을 위한 PLM과 AI 전략을 짚다 [PLM/DX 베스트 프랙티스 컨퍼런스 2025] 기사 바로가기 >> [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2025, 제조 혁신을 위한 PLM과 AI 전략을 짚다   [PLM/DX 베스트 프랙티스 컨퍼런스 2025] 유료결제완료 발표자료 요청 이번 컨퍼런스 발표자료 다운로드는 유료 결제 후에 가능합니다. 다만 홈페이지 다운로드 용량 제한으로 인하여 전체 자료를 다운로드 할 수 있게 하는데 제약이 있어 첨부한 파일에는' PLM/DX 컨퍼런스 2025' 가이드 파일만 올려 두었습니다. 결제완료 후 메일(plm@cadgraphics.co.kr)로 연락주시면 대용량 추가 자료를 별도로 보내드립니다. 홈페이지에서 직접 결제하는데 문제가 있다면 당사로 연락주시기 바랍니다.   메일 제목 :  [PLM/DX 컨퍼런스 2025] 유료결제완료 발표자료 요청 내용 : 결제시 회원명 / 전화 / 이메일 메일 보낼 곳 : plm@cadgraphics.co.kr 문의 : PLM컨퍼런스사무국 (02-333-6900)   PLM/DX 베스트 프랙티스 컨퍼런스 2025 영상보기  
작성일 : 2025-09-08
작용, 반작용, 상호작용
시점 – 사물이나 현상을 바라보는 눈 (9)   지난 호에서는 ‘개별 관찰’, ‘집단 관찰’, ‘확률과 통계’에 관한 주제의 세 번째 이야기로 ‘확률과 통계’에 관해서 생각해 보았다. 통계는 단순한 숫자놀음이지만 그 숫자를 어떻게 얻었는지 어떻게 해석해야 하는지를 고민하지 않고 사용하게 되면 의도와는 다르게 엉뚱한 결론에 도달할 수 있다. 룰렛 돌림판과 주사위의 경우를 예로 들어 확률과 통계에 관해서 생각해 보았다.  이번 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일들을 조금 특별한 시각으로 바라보고자 한다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리 현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등을 예로 들어가며 이야기를 전개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본   유체 베어링 오래전에 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본을 보고 신기해했던 기억이 있다.(그림 1) 마치 중력이 작동하지 않는 듯한 인상을 받았다. 지구본을 만든 돌의 무게를 상상하면 그런 느낌이 들 수밖에 없다. 기계적 베어링 대신에 물을 베어링으로 사용한 유체 베어링이 사용된 것이다. 유체 베어링(fluid bearing 또는 fluid dynamic bearing)은 베어링 표면 사이에서 빠르게 움직이는 가압 액체 또는 가스의 얇은 층에 의해 하중이 지지되는 베어링이다. 움직이는 부품 사이에 접촉이 없다. 부품 사이에 마찰이 없어 유체 베어링은 다른 많은 종류의 베어링보다 마찰, 마모 및 진동이 적은 것이 특징이다. 일부 유체 베어링은 올바르게 작동하는 조건에서는 부품의 마모가 거의 없다. <그림 1>의 경우에는 지구본이 완벽한 구의 형태가 되어야만 물이 베어링의 역할을 할 수 있다. 물이 지구본에 작용하는 중력을 거슬러 지구본을 들어올려야 하는데 지구본을 감싸고 있는 링(ring)과의 간격이 장소에 따라 차이가 있으면 압력이 고르게 걸리지 않게 된다. 따라서 무거운 지구본을 부양할 수 없게 되고 지구본을 자유롭게 회전시킬 수도 없다. 지구본이 떠 있는 상태에서 자유롭게 회전할 수 있다면 작은 힘으로 회전 방향과 속도를 바꿀 수 있다. 마찰력이 거의 없기 때문이다.   뉴턴의 운동법칙 고전역학에서 뉴턴의 운동법칙(Newton's laws of motion)은 물체의 운동을 세 가지의 원리로 설명한 물리 법칙이다.(그림 2) 영국의 수학자, 물리학자, 천문학자였던 아이작 뉴턴이 도입한 이 법칙은 고전역학의 기본 바탕을 이루고 있다. 라틴어로 1687년에 출판된 ‘자연철학의 수학적 원리(Philosophiæ Naturalis PrincIPia Mathematica, Mathematical PrincIPles of Natural Philosophy)’라는 책에서 뉴턴의 운동법칙 세 가지가 소개되었다. 제1법칙은 ‘관성의 법칙’ 또는 ‘갈릴레이의 법칙’으로 불린다. 물체의 질량 중심은 외부 힘이 작용하지 않는 한 일정한 속도로 움직인다. 마찰이나 에너지 손실이 없다면 관성으로 속도가 유지된다. 즉, 물체에 가해진 알짜 힘(net force)이 0일 때 물체의 속도가 변하지 않으므로 질량 중심의 가속도는 0(a = 0, V : Constant)이다. 제2법칙은 ‘가속도의 법칙’으로 불린다. 물체의 운동량의 시간에 따른 변화율(가속도, a)은 그 물체에 작용하는 힘(F, 크기와 방향에 있어서)과 같다. 물체에 더 큰 알짜 힘이 가해질 수록 물체의 운동량 변화는 더 커진다.(F = ma) 물체에 힘을 가하면 힘이 가해진 물체는 운동량이 바뀐다. 제3법칙은 ‘작용과 반작용의 법칙’으로 불리며, 물체 A가 다른 물체 B에 힘을 가하면 물체 B는 물체 A에 크기는 같고 방향은 반대인 힘을 동시에 가한다.(FAB = -FBA ). ‘모든 작용에 대해 크기는 같고 방향은 반대인 반작용이 존재한다’라고 설명하기도 한다. 당연한 이야기같기도 하고 알 듯 말 듯한 이야기같기도 하다. 필자도 글을 쓰면서 아무리 간단한 사실도 언어를 사용해서 표현한다는 것이 얼마나 어려운 일인지 생각하게 된다. 실제로 언어로 표현된 많은 사실, 느낌, 감정이 얼마나 정확하게 표현된 것이고 그 의미를 얼마나 정확하게 이해할 수 있는지 의문스러울 때가 많다.   그림 2. 뉴턴의 세 가지 운동법칙   작용, 반작용, 상호작용의 사전적 의미 때로는 이미 잘 알고 있고 자주 사용하는 용어나 단어도 어떤 의미로 사용되는지 살펴보면 의외로 새로운 발견을 하게 되는 경우가 있다. 이번 기회에 작용, 반작용, 상호작용이라는 단어의 뜻을 사전에서 찾아보자. 작용(action) 어떠한 현상을 일으키거나 영향을 미침 [물리] 어떠한 물리적 원인이나 대상이 다른 대상이나 원인에 기여함 또는 그런 현상. 역학에서 물체 사이의 힘도 이 결과로 생긴다.  [철학] 현상학에서, 표상·의식·체험 따위의 심리적 과정에 있어서 대상의 의미 내용을 지향하는 능동적인 계기를 이르는 말 반작용(reaction)  어떤 움직임에 대하여 그것을 거스르는 반대의 움직임이 생겨남 또는 그 움직임 [물리] 물체 A가 물체 B에 힘을 작용시킬 때, B가 똑같은 크기의 반대 방향의 힘을 A에 미치는 작용. 한쪽에 미치는 힘을 작용이라 할 때, 그 다른 쪽에 미치는 힘을 이른다.  상호작용(interaction)  [생명] 생물체 부분들의 기능 사이나, 생물체의 한 부분의 기능과 개체의 기능 사이에서 이루어지는 일정한 작용 [사회] 일반 사람이 주어진 환경에서 다른 사람이나 사물과 서로 관계를 맺는 모든 과정과 방식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
포토닉스 소자 시뮬레이션을 위한 앤시스 루메리컬
앤시스 워크벤치를 활용한 해석 성공 사례   포토닉스 소자와 시스템 설계 및 해석이 가능한 광학 및 포토닉스 소자 시뮬레이션 소프트웨어 앤시스 루메리컬(Ansys Lumerical)은 오늘날 통신, 반도체, 바이오포토닉스, 센서, 디스플레이 등 다양한 산업에서 활용되고 있다. 이번 호에서는 앤시스 루메리컬에 대한 간단한 소개부터 다양한 솔버에 대해 소개하고자 한다.   ■ 박건 태성에스엔이 SBU팀의 매니저로 포토닉스, 파동광학 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   앤시스 루메리컬 앤시스 루메리컬은 포토닉스 소자, 프로세스 설계 및 재료 모델링을 위한 goldstandard 제품으로, 다양한 응용 분야에서 강력하고 신뢰할 수 있는 설루션을 제공한다. 또한 광학 소자와 시스템을 설계하고 분석하는데 있어 높은 성능을 보여준다. 앤시스 루메리컬은 <그림 1>과 같이 통신, 반도체, 바이오포토닉스, 센서, 디스플레이, 복잡한 포토닉스 소자 등 다양한 산업에서 활용되고 있다.   그림 1. 앤시스 루메리컬의 응용 분야   표 1. 앤시스 루메리컬 제품 및 솔버   앤시스 루메리컬 제품은 <표 1>과 같이 크게 디바이스 레벨(device level)과 시스템 레벨(system level)의 두 가지로 분류할 수 있다. 포토닉스 소자 설계 및 해석이 가능한 디바이스 레벨에는 광학적 해석을 하는 FDTD, 웨이브가이드(waveguide) 설계 및 해석에 특화된 모드(MODE), 전기적 특성 및 열적 특성 등 다양한 물리적 해석이 가능한 멀티피직스(MultIPhysics)가 있으며, 설계한 포토닉스 소자를 회로 레벨에서 시뮬레이션 가능한 인터커넥트(INTERCONNECT)가 있다.   그림 2. 앤시스 루메리컬의 다양한 솔버를 사용한 설계 예시   <그림 2>처럼 앤시스 루메리컬의 다양한 솔버를 사용하여 소자를 설계하면 광학적 특성 해석 뿐만 아닌 광학적으로 생성된 전기, 열 특성 분석도 가능하다. 반대로 전기, 열, 양자적 특성으로 발생하는 광학적 특성도 해석이 가능하다.   앤시스 루메리컬 FDTD 앤시스 루메리컬 FDTD(Finite-Difference TimeDomain)는 시간 영역에서 맥스웰(Maxwell) 방정식을 직접 풀어 전자기파의 전파를 시뮬레이션한다. 이를 통해 전자기장의 시간적 변화를 정확하게 분석할 수 있다. FDTD를 통해 분석할 수 있는 결과는 근거리 전자기장, 원거리 전자기장, 반사 스펙트럼, 투과 스펙트럼, 흡수 스펙트럼, 포인팅(Poynting) 벡터 등이 있다. 앤시스 루메리컬 FDTD에는 FDTD, RCWA, STACK 등 총 세 가지의 솔버가 있다. FDTD는 RCWA와 STACK으로 수행하는 모든 해석이 가능하지만, 특정한 해석 구조와 조건에서 RCWA와 STACK 솔버를 사용한다면 FDTD보다 훨씬 빠른 속도로 해석이 가능하며 데이터 사용량도 줄일 수 있다.   그림 3. FDTD 솔버 선택 방법   <그림 3>처럼 서로 다른 굴절률을 가진 여러 층(다층 구조)에 평면파가 입사되는 조건에 대해 시뮬레이션할 때, 구조의 형태에 따라 적합한 솔버를 선택하면 해석 시간과 컴퓨터 자원을 효율적으로 쓸 수 있다. 다층박막 및 필름 같은 형태의 구조 : STACK 솔버 동일한 형태의 구조가 규칙성을 가지고, 반복적으로 배치된 와이어 그리드(wire grid) 및 창살(grating)같은 형태의 구조 : RCWA 솔버 주기성이 없는 랜덤한 형태의 구조 : FDTD 솔버     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
데이터 분석 로코드 설루션을 배워보자 Ⅰ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2)   지난 호에서는 로코드 분석 설루션이 필요한 이유에 대해 알아보았다. 또한 데이터 분석이 일반적으로 거치는 과정에 대해서도 살펴 보았는데, 이러한 과정에 파이썬(Python)과 같은 프로그래밍 언어가 활용되는 상황 또한 정리해 보았다. 이번 호에서는 로코드 분석 설루션인 KNIME(나임)에 대해 알아보고, 전력 판매량 예측에 대한 분석 과제를 따라하기 과정을 통해 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   지난 호에서 살펴본 일반적인 데이터 분석 과정은 다음과 같다.   요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   이전에 강조한 바와 같이, 아무리 쉬운 코딩 언어라고 할지라도 데이터 분석을 요청받은 데이터 과학자(data scientist)가 이를 실제 업무에 적용하여 원하는 결과를 빠르고 정확하게 구현해내는 것은 어려운 일이다. 또한 코딩에 능숙한 데이터 과학자라고 해도 깃허브(Github) 및 인터넷 상에 공유된 소스코드를 다운받아 재활용 및 가공하여 사용하는 경우가 많은데, 이때 악성 코드 등에 대한 보안 이슈도 문제가 될 소지가 있다. 사실 데이터 과학자는 수학 및 통계적 지식을 활용하여 빠르게 정확하게 데이터 분석을 하고 싶은 것이고, 이를 위해 효율적인 툴을 사용하고자 한다. 우리는 이러한 현상을 극복해 나가고자 로코드 분석 설루션(low code analytics solution)을 대안으로 검토하였고, 이를 활용하여 데이터 분석을 수행해 나가는 과정을 따라가 보고자 한다. 지난 호에서 유관부서로부터 전력 판매량(electric power sales) 예측에 대한 분석 과제를 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황의 시민 데이터 과학자(citizen data scientist)로 가정하여 주어진 과제 목표를 달성하였다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 이를 처리하기 위해 파이썬으로 코드를 작성한 사례를 공유하였고, 동일한 내용을 로코드 분석 설루션인 KNIME을 활용하여 처리한 사례도 공유하였다.   그림 1   이번 호에서는 KNIME에 대해 알아보고 전력 판매량 예측에 대한 분석과제를 따라하기 과정을 통해 완성해 보도록 하겠다. 우선 구글 제미나이(Google Gemini)에게 KNIME에 대한 역사와 특징에 대해 알려 달라고 해보자.(그림 2~4)   그림 2   그림 3   그림 4   가트너(Gatner)의 피어 인사이트(Peer insight) 리뷰를 확인해 보았는데, 평점(rating)이 상당히 높은 편이고 사용자의 반응도 높다는 것을 확인하였다. 또한 오픈소스 기반 소프트웨어로서 기업에서도 무료로 자유롭게 설치하여 사용할 수 있다는 측면에서(KNIME Analytics Platform) 로코드 분석 설루션으로 선택하기에 부족함이 없다는 것을 확인하였다.   그림 5   현재 KNIME은 데이터 사이언스를 위한 최적의 설루션을 위해 세 가지 서비스를 제공하고 있다. 이번 호에서는 KNIME Analytics Platform을 활용하여 전력 판매량 예측에 대한 분석 과제를 따라해보고자 한다.   그림 6     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
ZW3D 2026 : 사용자 경험 혁신하는 3D CAD/CAE/CAM 소프트웨어
개발 : ZWSOFT 주요 특징 : 기계/제조 분야에 특화된 3D CAD/CAE/CAM 소프트웨어, 제품 설계를 위한 특화 기능을 바탕으로 설계 엔지니어링 과정의 효율을 향상, 기계 및 장비 분야에 필요한 대용량 파일 처리 속도 향상, 스마트 구속을 통한 설계 자동화, 2D CAD와 싱크로나이즈를 통해 2D & 3D 설계 협업 최적화 등 공급 : 지더블유캐드코리아   설계 자동화와 도면 연동으로 통합 워크플로 실현 복잡하고 유기적으로 연결된 설계-제조 환경에서 엔지니어는 단순한 모델링을 넘어 변화에 즉각 반응하는 데이터 흐름과 반복 작업 없는 설계, 그리고 설계 의도와 도면 간의 일관성을 요구받고 있다. ZW3D 2026은 이러한 현실적 과제를 해결하기 위해 기존의 단순한 설계 도구에서 벗어나, 설계(CAD) – 검증(CAE) – 제조(CAM) 프로세스의 연속성을 가지기 위해 통합된 플랫폼으로 탈바꿈하고 있다. 이번 ZW3D 2026 버전에서 주목할 만한 점은, 설계자가 수동으로 반복하던 구속 조건 설정을 자동화하고, 제품 설계에 필요한 조립 구조를 클릭 몇 번으로 생성할 수 있도록 자동화 프로세스로 최적화한 부분이다. 여기에 20만개의 부품에 이르는 대용량 어셈블리 환경에서도 안정적인 렌더링과 임포트(import) 속도를 제공하며, 3D 모델의 변경 사항이 DWG 기반의 2D 도면에 실시간으로 반영되는 싱크로나이즈(synchronize)를 통해 설계 일관성과 도면의 정확성을 동시에 확보할 수 있게 되었다. 이러한 기능적 업데이트는 단지 속도 차원에서의 효율화가 아니며, 설계 변경이 잦은 제품 개발 프로세스에서 데이터간 발생되는 오류를 줄이고, 반복 작업 시간을 줄이며 무엇보다 유기적인 설계 협업 관계를 끝까지 유지시킬 수 있는 기반을 제공한다. ZW3D 2026은 2D CAD 전용 소프트웨어인 ZWCAD와 3D CAD/CAE/CAM 소프트웨어인 ZW3D 간의 플랫폼을 통합하여 활용할 수 있는 통로를 구축한 첫 번째 설루션이다. 아직까지도 실제 현업에서 많이 사용하는 *.dwg나 *.dxf와 같은 2D 확장자를 3D 데이터와 연결함으로써 보다 빠른 제조 도면을 생산할 수 있기 때문에, 더욱 최적화된 2D & 3D 통합을 이뤄낸 설루션이 될 것이다. 이를 통해 설계 데이터와 사용자 액션 간의 실시간 연결성이 확보되고, 반복 작업은 자동화되며, 엔지니어는 복잡한 제품 설계를 보다 스마트하고 빠르게 완성할 수 있는 환경을 갖추게 되었다.     신기능 : 설계 워크플로를 혁신하는 생산성 향상 기능 ZW3D 2026은 설계자와 엔지니어의 생산성을 높이기 위해 다양한 신규 기능을 도입했다.   새로운 엔지니어링 기능(마운팅 보스, 립/홈, 스냅 후크) 기계·제품 설계에 요구되는 '마운팅 보스, 립/홈, 스냅 후크’ 등 다양하고 실용적인 엔지니어링 기능이 추가되었다. 마운팅 보스는 플라스틱 및 금속 부품의 고정 구조 설계에 최적화되었으며, 립 기능은 구조적 강성을 강화하는 데 유용하다. 스냅후크 기능은 부품 간 결합을 간소화하며, 특히 플라스틱 사출 성형 설계에서 정밀한 조립이 가능하도록 지원한다. 이러한 기능은 표준화된 템플릿과 함께 제공되어 설계 초기 단계에서부터 시간을 절약할 수 있다.     새로운 슬롯 기능과 나사산 기능의 향상(지능형 구속 조건 추론) 슬롯 및 나사산 생성 기능도 대폭 강화되었다. 이전까지는 사용자가 직접 프로파일을 생성해야 하는 과정이 필요했지만, 새롭게 도입된 슬롯 기능을 통해 복잡한 형상의 슬롯(직사각형, 곡선, 도브테일 등)을 간단한 클릭으로 생성할 수 있다. 그리고, 지능형 구속 조건 추론을 통해 슬롯의 위치와 방향을 자동으로 최적화한다.     나사산 기능 또한 ISO, DIN, ANSI 등 다양한 표준 프로파일을 지원하며, 지능형 추론 알고리즘을 통해 나사산의 피치와 깊이를 자동 조정한다. 이를 통해 나사산 모델링 시간이 약 35% 단축되었으며, 설계 정확도가 향상되었다.     압축 파일 열기(압축 파일에서 직접 임포트) ZW3D 2026은 ZIP, RAR 등 압축 파일에서 설계 데이터를 직접 임포트할 수 있는 기능을 새롭게 추가했다. 이를 통해 사용자는 별도의 압축 해제 과정 없이 대용량 데이터를 신속히 불러와 작업을 시작할 수 있다. 특히, 외부 협력업체와 공유되는 대규모 데이터셋을 효율적으로 처리하며, 데이터 로딩 시간이 기존 대비 약 40% 단축되었다. 이 기능은 복잡한 프로젝트 환경에서 즉시 작업이 가능하다는 점에서 워크플로 간소화에 큰 기여를 한다.     향상된 기능 : 더 빠르고 스마트하게 ZW3D 2026은 기존 기능의 성능을 개선하여 사용자 경험을 한층 강화했다.   판금 변환(원 클릭으로 시트메탈 설계 워크플로 혁신)     소비자 제품의 복잡한 판금 설계는 산업 스타일의 시각적인 니즈를 충족하기 위해 빈번한 설계 변경을 요구하며, 이는 후속 엔지니어링 작업을 복잡하게 만들고 수동 변환 과정에서 시간 소모와 오류를 일으킨다. 판금 모듈에 새롭게 추가된 ‘판금 변환’ 기능은 단 한 번의 클릭으로 복잡한 솔리드 모델이나 외부 판금 부품을 즉시 편집 가능한 판금 형상으로 변환하며, 자동으로 굽힘 영역을 수집하고 정의한다. 새롭게 추가된 벤트, 컷아웃, 루버, 엠보싱과 같은 기능을 활용하여 복잡한 판금 구조 생성을 간소화할 수 있으며, 실제 사례에서 가전제품 케이스 설계 시간을 최대 50% 단축했다.   스마트한 구속 조건 추론 스마트 구속 조건 추론 기능은 어셈블리 설계 과정에서 컴포넌트 선택 시 적합한 구속 조건을 자동으로 추천한다. 자주 사용하는 조건은 시스템이 학습하여 제안하고, 여러 부품을 한 번에 그룹 구속 설정하는 것도 가능하다. 개선된 알고리즘은 과구속 문제를 최소화하며, 구속 조건 충돌 관리자 탭을 통해 문제가 발생한 부품을 직관적으로 확인하고 수정할 수 있다. 이 기능은 최대 20만 부품으로 구성된 대규모 어셈블리에서도 안정적인 성능을 제공하며, 구속 설정 시간을 약 30% 줄였다.     설계 효율 향상(대용량 파일 처리 및 다중 솔리드 도면 작업 속도 향상) 수천~수만 개 부품으로 구성된 대용량 어셈블리 데이터에서도 불러오기/렌더링/저장 속도가 향상되었다. ZW3D 2026은 최적화된 데이터 처리 엔진을 통해 최대 20만 부품의 어셈블리 파일 로딩 속도를 이전 버전 대비 약 50% 단축했다. 또한, 다중 솔리드 도면 작업 시 렌더링 및 편집 속도가 약 40% 개선되어, 복잡한 설계 데이터의 수정과 검토가 더욱 원활해졌다. 이는 중장비, 산업 설비, 금형 설계 등 대규모 프로젝트에서 특히 효과적이다.   자동 도면 생성으로 2D 도면 워크플로 혁신 비표준 장비 설계 프로젝트에서는 수천~수만 개의 2D 도면 생성이 전체 프로젝트 주기의 최대 30%를 차지하며, 이는 설계 프로세스의 주요 병목 지점이다. ZW3D 2026은 자체 Z3RRW 확장자 기반의 자동 도면 생성 기능과 주석 기능을 통해 이러한 문제를 해결한다. 엔지니어는 단일 템플릿 설정만으로 치수와 공정 테이블을 일괄 생성할 수 있으며, 3D 모델 변경 시 해당 2D 도면이 자동으로 갱신되어 수작업을 최소화한다. 실제 사례에서 사출 성형 프로젝트의 도면 업데이트 시간이 4시간에서 3분으로 단축되었고, 15만 개 부품의 공장 레이아웃 프로젝트에서는 최적화된 투영 엔진으로 도면 뷰 생성 시간이 5분에서 1분으로 줄어들었다. 이로써 복잡한 워크플로에서도 도면 출력의 정확성과 일관성을 유지하며, 생산성을 높일 수 있다.     핵심 신기능 : 2D 싱크로나이즈(2D/3D 도면 시트 연동) ZW3D 2026의 핵심 기능인 2D 싱크로나이즈(2D Synchronize)는 2D 도면과 3D 도면 간의 실시간 동기화를 지원한다. 이 기능은 3D 모델(참조 파트)의 변경 사항을 2D 도면에 자동으로 동기화하고 변경된 치수가 연동된 도면에 자동 적용되도록 한다. ZWCAD에서 데이터 연동을 하려면 ‘치수’ 메뉴에서 ‘관련된 DWG/DXF’ 옵션을 활성화하여 생성된 2D 및 3D 도면에 연동성을 부여하고 ‘DWG/DXF로 동기화’ 버튼을 클릭하면, 연동된 DWG/DXF 도면에 변경 사항이 즉시 반영된다. 즉, DWG/DXF 파일로 다시 내보내지 않고도 설계 변경 사항과 주석이 실시간으로 업데이트되어 재작업 프로세스를 줄이고 작업 효율이 향상된다. 이를 통해 설계 일관성을 유지하면서 수정 작업 시간을 약 60% 절감할 수 있다. 또한, 협업 환경에서 다수의 설계자가 동시에 2D 및 3D 데이터를 수정하더라도 충돌을 최소화하며, 2D/3D 설계 데이터 공유를 지원하여 협업 효율을 높였다.     ZW3D 2026은 기존 사용자들이 겪던 불편을 해소하고, 최신 설계 트렌드를 반영한 지능적이고 실용적인 기능 개선에 중점을 두었다. 압축 파일 직접 열기, 원클릭 판금 변환, 스마트 구속 조건 추론, 자동 도면 생성, 그리고 2D 싱크로나이즈를 통한 2D/3D 실시간 연동은 설계 환경의 유연성과 효율을 높인다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
앤시스 2025 R2 : AI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션
개발 및 공급 : 앤시스코리아 주요 특징 : 원클릭으로 전문 지식에 접근 가능한 AI 기반 어시스턴트 지원, AI+ 기능이 탑재된 7종 제품을 통한 시뮬레이션 효율 및 접근성 향상, 데이터 관리 및 워크플로 자동화 강화를 통한 AI 통합 효과 향상 등   앤시스는 자사 전 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션 속도와 접근성을 크게 향상시키는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높인다. 특히, 초기 설계 단계에서의 스마트한 의사결정을 가능하게 하여, 차세대 위성부터 데이터센터 설계에 이르기까지 다양한 산업 분야에서 실질적인 가치를 제공한다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다. 앤시스 2025 R2는 AI 기반 다양한 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원한다.   ▲ 앤시스 2025 R2는 시뮬레이션 워크플로 전반의 생산성, 정확성, 인사이트를 향상시키는 AI 기반 기술을 새롭게 선보인다.   물리 기반 AI로 직관적인 시뮬레이션 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 ‘앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)’을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 마이크로소프트 애저(Microsoft Azure)의 니디 체펠(Nidhi Chappell) AI 인프라 부문 부사장은 “마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합을 통해 엔지니어들은 핵심 정보에 신속하게 접근하고, 앤시스의 깊이 있는 엔지니어링 전문성을 활용함으로써 생산성을 높이고 혁신을 가속화할 수 있다”고 전했다. 2025 R2는 앤시스 포트폴리오 전반에 AI 기능을 추가했다. 이를 통해 충실도가 높은 시뮬레이션을 자동으로 생성, 검증 및 최적화하여 모델 생성 속도를 높이고, 수동 작업을 줄이며 인적 오류를 줄일 수 있다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근 가능 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도는 17배 향상, 위상 배열 안테나의 빔 조향 정확도 개선으로 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션 최적화 이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다.   데이터 처리 및 자동화를 통한 AI 활용 극대화 앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 40개 이상의 파이썬(Python) 라이브러리를 포함한 파이앤시스(PyAnsys) 컬렉션은 신규 도구인 파이에스티케이(PySTK) 및 파이켐킨(PyChemkin)을 통해 앤시스 설루션과의 자동화 연동을 강화 및 다양한 산업 애플리케이션 내 생산성·효율성 강화 웹 기반 협업 플랫폼인 앤시스 메디니 사이버 보안(Ansys medini Cybersecurity) SE는 위협 분석 및 취약점 관리 자동화 통해 사이버 보안 리스크 최소화 SysML v2 기반 웹 플랫폼 앤시스 시스템 아키텍처 모델러(Ansys System Architecture Modeler : SAM)를 통한 소프트웨어·안전·시뮬레이션 통합, 포괄적 MBSE 구현 지원 스마트 자동화와 고도화된 데이터 관리 기술은, 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 대표 사례로, 에너지 효율형 모터 제어 설루션 분야의 글로벌 선도 기업인 댄포스 드라이브(Danfoss Drives)는 앤시스의 시뮬레이션을 활용해 복잡한 시스템 설계를 검증하고, 성능 최적화, 에너지 절감, 운영 신뢰성 향상 등 산업 전반의 지속 가능한 혁신적인 드라이브 기술을 구현하고 있다. 댄포스 드라이브의 가상 설계·테스트·최적화 총괄 책임자인 마이클 라우르센(Michael Laursen)은 “파이앤시스는 사용자 맞춤형 자동화, 시스템 통합, 확장성을 구현하는 핵심 도구이다. 개방형 생태계를 기반으로 다양한 툴을 유기적으로 연결하고 AI 기능을 접목함으로써 설계부터 최적화까지의 워크플로를 가속화할 수 있다”고 밝혔다. 또한 “앤시스 기술은 디지털 설계 프로세스를 고도화하는 동시에 빠르게 변화하는 산업 환경에 유연하게 대응할 수 있는 기반을 마련해줄 뿐만 아니라, 비용 절감과 제품 개발 기간 단축에도 실질적으로 기여하고 있다”고 전했다.   현실을 모사하는 고성능 물리 시뮬레이션 정교한 물리 모델과 시뮬레이션 기술은 복잡한 설계 과제를 해결하는 데 필수이다. 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다. 앤시스 메카니컬(Ansys Mechanical)의 신규 혼합 솔버는 대형 과도 모델의 연산 속도 향상 및 시간에 따른 열 변화 분석 지원 복잡한 적층형 전자 시스템 메싱 작업의 자동화 및 속도·정확도·사용성 향상, 신규 메싱 플로 기능을 통한 수작업 간소화 앤시스 록키(Ansys Rocky) 및 프리플로우(Ansys FreeFlow)를 통한 고급 다물리(multIPhysics) 연성 해석 기능 제공, 열·유체-구조·전자기 결합을 포함한 상세 시뮬레이션 및 성능 최적화 지원 앤시스 파워X(Ansys PowerX) 디버깅 툴을 통한 반도체 전력 소자의 설계 시간 단축, 기생 성분 이슈의 신속한 식별, 설정 간소화 및 효율적인 2D 메싱 작업 지원 RF 전력 분야의 기업인 앰플리온은 앤시스의 고급 시뮬레이션 기술을 활용해 4G LTE 및 5G NR 인프라는 물론 산업, 과학, 의료, 방송, 항법, 안전 무선통신용으로 사용되는 고신뢰·고성능 GaN 및 LDMOS 설루션을 설계하고 있다. 앰플리온의 모델링 및 특성화 그룹 팀장인 비토리오 쿠오코(Vittorio Cuoco, Ampleon) 박사는 “전자기, 열, 기계 간의 복잡한 상호작용을 효과적으로 제어하며 RF 전력 제품을 설계하는 일은 매우 까다로운 과제”라며, “앤시스의 설루션은 이러한 복잡성을 정면으로 해결할 수 있는 정밀한 시뮬레이션을 제공해 설계 리스크를 줄이고 제품 신뢰성을 높이는 데 도움이 되며, 그 결과는 성능 향상, 에너지 절감, 그리고 더 높은 효율성이라는 측면에서 크다”라고 전했다. 이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 온디맨드 방식의 기술을 적극 활용함으로써, 기업은 디지털 전환을 보다 수월하게 실현할 수 있다.   클라우드 기반 시뮬레이션 통한 디지털 전환 가속 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 극대화한다. 이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있으며, 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다. 앤시스 아이스팩(Ansys Icepak) 및 플루언트 GPU 솔버(Fluent GPU Solver)를 통한 전자 냉각 시뮬레이션 연산 속도 최대 2.5배 향상, 앤시스 플루언트(Ansys Fluent) 웹 인터페이스에서는 제한적 GPU 솔버 기반의 실시간 모니터링 기능 제공 앤시스 디스커버리(Ansys Discovery)의 메싱 기능 개선을 통한 시뮬레이션 신뢰도 및 품질 향상, GPU 기반의 셋업 속도 개선으로 더 빠르고 안정적인 해석 환경 구현 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute)의 온디맨드(on-demand) HPC 성능이 앤시스 스피오스(Speos) 및 루메리컬 FDTD(Lumerical FDTD) 포함한 6종 제품에 적용, 별도 설치나 IT 지원 없이 고성능 클라우드 환경 활용 가능     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03