• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "GIS"에 대한 통합 검색 내용이 1,248개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
어도비, 기업의 고객 경험 오케스트레이션 혁신을 지원하는 AI 에이전트 정식 출시
어도비가 기업의 고객 경험 및 마케팅 캠페인 구축, 전달, 최적화 방식을 혁신적으로 바꿀 AI 에이전트(AI Agents)의 정식 출시를 발표했다. 또한 어도비는 익스피리언스 플랫폼(Adobe Experience Platform : AEP) 에이전트 오케스트레이터(Agent Orchestrator)를 통해, 자사 및 서드파티 생태계 전반에서 에이전트가 맥락을 파악하고, 여러 단계의 작업을 계획하며, 응답을 개선하는 등 다양한 기능을 수행할 수 있도록 에이전트를 맞춤화, 관리하는 기업용 AI 플랫폼도 구축하고 있다고 밝혔다. 에이전트 오케스트레이터의 토대가 되는 어도비 익스피리언스 플랫폼은 기업들이 전사적으로 실시간 데이터를 연결해 기업 데이터, 콘텐츠, 워크플로에 대한 심층적인 인사이트를 제공하는 플랫폼이다. 어도비 익스피리언스 플랫폼 고객의 70% 이상이 어도비 및 서드파티 전반의 에이전트와 팀이 상호작용할 수 있도록 지원하는 대화형 인터페이스인 어도비의 AI 어시스턴트를 사용하고 있다. 허쉬 컴퍼니, 레노버, 머클, 웨그먼스 푸드 마켓, 윌슨 컴퍼니 등의 브랜드가 어도비의 에이전틱 AI 설루션을 사용해 조직 내 전문성을 강화하고 영향력 있는 고객 경험을 제공하고 있다.     어도비 익스피리언스 플랫폼 에이전트 오케스트레이터는 의사결정 과학 및 언어 모델 기반의 추론 엔진을 탑재해, 동적 및 적응형 추론도 지원한다. 자연어 프롬프트에서 사용자의 의도를 해석하고, 전체적으로 조율된 계획에 따라 어떤 에이전트를 활성화할지 상황에 맞춰 결정한다. 그 결과 에이전트 오케스트레이터는 맥락에 맞게 목표를 이룰 수 있도록 자동화 작업을 수행하고, 사람이 개입하는 방식을 사용해 세부 조정도 지원한다.  ▲오디언스 에이전트(Audience Agent ▲저니 에이전트(Journey Agent) ▲익스페리멘테이션 에이전트(Experimentation Agent) ▲데이터 인사이트 에이전트(Data Insights Agent) ▲사이트 옵티마이제이션 에이전트(Site Optimization Agent) ▲프로덕트 서포트 에이전트(Product Support Agent) 등의 AI 에이전트는 어도비 실시간 고객 데이터 플랫폼(Adobe Real-Time Customer Data Platform : RT-CDP), 어도비 익스피리언스 매니저(Adobe Experience Manager), 어도비 저니 옵티마이저(Adobe Journey Optimizer), 어도비 커스터머 저니 애널리틱스(Adobe Customer Journey Analytics) 등 어도비 엔터프라이즈 애플리케이션 내에서 직접 사용할 수 있다. 기업은 AI 에이전트를 활용해 마케터의 역량을 강화하고 고객 경험 오케스트레이션(CXO)를 가속화할 수 있다. 출시를 앞둔 익스피리언스 플랫폼 에이전트 컴포저(Experience Platform Agent Composer)는 기업이 브랜드 가이드라인, 조직 정책 관리 등에 기반해 AI 에이전트를 맞춤화하고 구성할 수 있는 단일 인터페이스를 제공한다. 이를 통해 팀은 AI 에이전트 작업을 세밀하게 조정하고 성과를 가시화하는 시간을 단축할 수 있다. 또 에이전트 SDK(Agent SDK) 및 에이전트 레지스트리(Agent ReGIStry)를 포함한 새로운 개발자 툴을 통해 개발자는 에이전틱 애플리케이션을 구축, 확장 및 조율할 수 있게 돼, 새로운 산업과 사용자 페르소나에 맞춰 사용 사례를 확장할 수 있다. 팀이 더 나은 성과를 내기 위해 에이전틱 AI를 도입함에 따라, 서로 다른 생태계에 속한 AI 에이전트 간 상호운용성은 매우 중요하다. 에이전트 컴포저는 기업이 Agent2Agent 프로토콜을 사용해 여러 에이전트의 협업을 추진할 수 있는 툴을 제공한다. 특정 요구사항을 충족하는 맞춤형 역량을 통해 더 많은 워크플로에 걸쳐 에이전틱 AI의 가치를 확장시킨다. 또한 코그니전트, 구글 클라우드, 하바스, 메달리아, 옴니콤, PwC, VML과의 새로운 에이전틱 AI 파트너십을 통해 에이전트 간 워크플로의 원활한 실행과 다양한 산업 및 사용 사례에 걸친 맞춤화도 가능해졌다. 안줄 밤브리(Anjul Bhambhri) 어도비 익스피리언스 클라우드 엔지니어링 수석 부사장은 “어도비는 오랫동안 디지털 데이터를 실행 가능한 인사이트로 전환함으로써, 기업들이 고객에게 매력적인 경험을 제공하도록 지원해왔다. 이제 어도비는 에이전틱 AI(Agentic AI)를 활용해 특화된 에이전트를 구축하고, 이를 데이터, 콘텐츠, 경험 생성 워크플로에 내장하고 있다”면서, “어도비의 AI 혁신은 프로세스를 재구상하고 마케팅 팀의 생산성을 높이고, 개인화된 경험을 대규모로 제공해 비즈니스 성장을 촉진함으로써 고객 경험을 향상하고 있다”고 말했다.
작성일 : 2025-09-12
바이브 코딩 지원 멀티 에이전트 코덱스의 사용법
BIM 칼럼니스트 강태욱의 이슈 & 토크   요즘 바이브 코딩(vibe coding)이 열풍이다. 이번 호에서는 오픈AI(OpenAI)가 개발한 바이브 코딩을 지원하는 멀티 에이전트 코덱스(Codex)의 사용법을 간략히 소개한다. 얼마 전 챗GPT(ChatGPT) 프로 버전에 무료로 오픈된 코덱스와 오픈소스 코덱스 버전(CLI)의 사용법을 모두 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. Codex | OpenAI   2025년 4월 중순에 OpenAI o3, o4, Codex가 공개되었다. 멀티 AI 에이전트 기능을 충실히 구현한 영상 데모가 업로드되었고, 특히 자동화 코딩을 지원하는 코덱스가 로컬 컴퓨터에서 실행 가능한 형태로 공개된 점이 인상적이었다.   그림 2. 오픈AI o3, o4, 코덱스 공개 영상   코덱스는 단순한 코드 생성에 그치지 않고 버그 수정, 테스트 실행, 코드 리뷰 제안 등 복잡한 개발 업무를 자동화한다. 각 작업은 사용자의 코드 저장소가 사전 로드된 격리된 클라우드 샌드박스 환경에서 독립적으로 실행되며, 작업의 복잡도에 따라 1분에서 30분 이내에 결과를 제공한다. 또한, 코덱스는 작업 수행 과정에서 생성된 터미널 로그와 테스트 출력 등의 증거를 제공하여, 사용자가 변경 사항을 추적하고 검토할 수 있도록 지원한다.코덱스 코드 및 도구는 깃허브(GitHub)에 공개되었다. Codex Lightweight coding agent that runs : https://github.com/openai/codex 6월 초에는 챗GPT 프로 사용자에게 코덱스 기능이 공개되었다. 코덱스는 챗GPT의 사이드바를 통해 접근할 수 있으며, 사용자는 자연어로 코딩 작업을 지시하거나 기존 코드에 대한 질문을 할 수 있다. 또한 코덱스는 사용자의 개발 환경과 유사하게 구성할 수 있어, 실제 개발 환경과의 통합이 용이하다. 보안 측면에서도 코덱스는 격리된 환경에서 실행되며, 인터넷 접근은 기본적으로 비활성화되어 있다. 필요한 경우 특정 도메인에 대한 접근을 허용할 수 있으며, 이를 통해 외부 리소스를 사용하는 테스트나 패키지 설치 등이 가능하다. 코덱스는 현재 챗GPT 프로/팀/엔터프라이즈 사용자에게 제공되며, 플러스 및 에듀 사용자에게도 점차 확대되고 있다. 또한, 코덱스 CLI(Codex CLI)를 통해 터미널 환경에서도 코덱스의 기능을 활용할 수 있어, 다양한 개발 환경에서의 활용이 가능하다.(openai.com)   챗GPT에서 코덱스 사용법 코덱스를 활용한 전체 사용 과정은 단순한 코드 자동 생성 수준을 넘어, 실제 소프트웨어 개발의 전 과정을 자연어 기반으로 자동화하는 방식으로 개발되어 있다. 코덱스는 현재 깃허브를 기본 연결해 사용하도록 되어 있어, 다음과 같이 필자의 깃허브 프로젝트를 연결해 실습을 진행했음을 밝힌다. https://github.com/mac999/AI_agent_simple_function_ call.git 참고로, 필자는 필자의 깃허브 저장소를 이용하였지만, 독자는 각자 깃허브에 로그인한 후 본인의 프로젝트 개발을 진행할 저장소를 선택해야 한다. 아울러, 바이브 코딩 결과물이 제대로 동작하려면 반드시 챗GPT 등을 이용해 미리 PRD(Product Requirement Document)에 요구사항을 명확히 작성한 후, 이를 바이브 코딩 도구에 입력해 프로젝트와 코드를 생성하도록 하는 것이 좋다.   그림 3. 식사 레스토랑 평가용 앱 개발을 위한 PRD 문서 예시(How to vibe code : 11 vibe coding best practices, https://zapier.com)   프로젝트 시작 : 코드 저장소 구성 및 환경 연결 챗GPT 프로의 왼쪽 메뉴에서 <그림 4>와 같이 코덱스를 실행하면, 연결할 깃허브 계정 및 저장소를 요청한다. 코덱스에서 <그림 4>와 같이 본인의 깃허브 계정을 연결한다.   그림 4     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03