• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "CAD"에 대한 통합 검색 내용이 24,039개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
AutoForm Car Body Planner, 차체 구매 견적 및 비용 산출 프로세스
AutoForm Car Body Planner   개발 : AutoForm, www.autoform.com 자료 제공 : AutoForm, 02-6332-1150, www.autoform.com/kr   AutoForm(오토폼)은 제품 설계부터 차체 조립에 이르기까지 전체 개발 프로세스 체인의 디지털화를 지원하는 통합 플랫폼을 제공한다. 특히, 디지털화 노력이 상대적으로 미진했던 차체 구매 부문의 견적 및 비용 산출 프로세스의 투명성을 확보하기 위해 ‘AutoForm CarBody Planner’를 도입하여 구매 프로세스의 디지털화를 추진하고 있다. 이는 ESG 경영과 맞물려 고객사로부터 큰 주목을 받고 있다. 또한, ESG 경영을 위한 디지털 트랜스포메이션을 통해 지속 가능한 경영을 실현하고, 환경적, 사회적, 거버넌스 측면에서의 책임을 다하기 위해 노력하고 있다. 1. 주요 특징  자동차 차체 개발 프로세스에서 초기 제품 설계 후, OEM 협력사의 구매 부서가 CBP를 통해 자동으로 수율을 검토한다. 이를 통해 빠른 대응과 OEM의 입찰 원가인 수율 보고서 작성이 간소화된다. 또한, OEM 구매 부서는 차종별 수율 이력 관리를 통해 효율성을 높이고, 협력사의 작업 시간을 단축하며, 입찰 정보 계산의 디지털화를 통해 경험에 의한 편차를 줄일 수 있다. 2. 주요 기능 ■ 웹사이트 기반에서 차체 전체 입력 및 각 제품의3D확인 가능 ■ 제품의 소제 및 정보를 차제 제품 입력과 동시에 적용 가능 ■ AutoForm Simulation 기반의 전체 제품 자동 수율 계산   3. 도입 효과 OEM 구매팀의 입찰 결정 시 정합성 확보로 신뢰성이 높아지며, 자동 수율 검토 덕분에 빠르고 효율적인 대응이 가능하다. 입찰 정보 계산의 디지털화로 경험에 의한 편차가 제거되고, 협력사의 업무 효율성 증대와 작업 시간 단축으로 생산성이 향상된다. 마지막으로, 클라우드 기반의 협업 공간 제공으로 부서 간 원활한 협업이 가능하다. 이러한 특징과 효과를 통해 AutoForm의 디지털 트랜스포메이션은 구매 프로세스의 혁신을 이끌고, ESG 경영을 실현하는데 큰 기여를 하고 있다. 4. 주요 고객 사이트 오토폼은 전 세계 50여 개국, 1,000여 개 회사에서 3,500명 이상의 사용자가 주요 엔지니어링 및 제조 공정을 위해 신뢰하고 있다. 주요 고객은 자동차 및 기타 OEM, 금형 및 스탬핑 업체, 철강 및 알루미늄 공급업체이며, 항공 우주 산업뿐만 아니라 의료, 가전 및 백색 가전 산업으로도 점점 더 진출하고 있다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-06
Automotive Industry의 새로운 지평선에서(HL만도 배홍용 CTO) - 영상보기 & 내용 요약
HL만도 배홍용 CTO, 자동차 산업의 미래 심층 분석   PLM DX 베스트 프랙티스 컨퍼런스 2024에서  배홍용 만도 CTO가 'Automotive Industry의 새로운 지평선에서'라는 주제로 강연을 진행하며 자동차 산업의 거대한 변화를 예고했다. 62년 역사의 만도는 섀시, 자율주행, 로보틱스, 소프트웨어 분야를 융합하며 미래 모빌리티 시대를 위한 혁신을 주도하고 있다. 배 CTO는 급변하는 시장 상황 속에서 자동차 부품 산업이 직면한 도전과 기회, 그리고 미래 모빌리티의 핵심 트렌드를 심층적으로 분석했다. 전기차(EV) 대세론, 부품 생태계의 지각변동을 불러오다 배 CTO는 전기차 시장의 폭발적인 성장세를 강조하며, 2030년에는 EV가 자동차 시장의 절반을 넘어설 것으로 전망했다. 특히 글로벌 EV 시장에서 강력한 존재감을 드러내는 BYD를 언급하며, 완성차 업계뿐만 아니라 부품 산업 내 경쟁 심화를 예상했다. EV는 고전압 배터리, 전력 변환 시스템 등 새로운 부품 수요를 창출하는 반면, 내연기관 관련 부품 산업의 축소와 정비 시장의 변화를 불가피하게 만들 것이라고 진단했다. 자율주행, 기술적 난관 속에서도 로봇 택시를 중심으로 현실화될 전망 자율주행 기술의 발전은 미래 모빌리티의 핵심 동력이지만, 배 CTO는 높은 개발 비용, 엄격한 법규 제제, 그리고 아직 해결해야 할 기술적 과제들로 인해 레벨 3 이상의 자율주행 도입이 예상보다 더디게 진행되고 있다고 밝혔다. 하지만 그는 로봇 택시와 같은 특정 영역에서는 레벨 4 수준의 자율주행 기술이 상용화될 가능성이 높다고 예측하며, 자율주행차 시장이 개인 소유 모델과 공유 기반 사용자 모델로 나뉘어 발전할 것이라고 전망했다. 마이크로 모빌리티, 도심 이동의 새로운 해법으로 떠오르다 친환경적이면서도 짧은 거리를 효율적으로 이동할 수 있는 마이크로 모빌리티 시장의 성장 가능성에도 주목했다. 다만 국내에서는 아직 관련 규제가 명확하게 정립되지 않아 시장 활성화에 제약이 있을 수 있다고 지적했다. 소프트웨어 정의 차량(SDV), 자동차 산업의 패러다임 전환 배 CTO는 소프트웨어가 차량의 기능과 성능을 결정하는 SDV 시대가 본격적으로 개막할 것이라고 전망하며, 하드웨어와 소프트웨어의 융합 및 분리 전략이 중요하다고 강조했다. 만도는 이러한 변화에 발맞춰 SDV 관련 소프트웨어 및 하드웨어 솔루션 개발에 박차를 가하고 있으며, 다양한 앱 생태계를 구축할 수 있는 차량용 소프트웨어 앱스토어 사업에도 참여하고 있다고 밝혔다. SDV의 안전성과 신뢰성을 확보하기 위해서는 자동차 제조사, 부품 공급업체, 소프트웨어 기업 간의 긴밀한 협력이 필수적이라고 덧붙였다. 구독 경제와 텔레 오퍼레이션, 미래 모빌리티 서비스의 핵심 축으로 부상 자동차 구매 방식의 변화와 더불어 테슬라의 FSD와 같은 구독 기반 서비스 모델이 확산될 것이라고 예상했다. 또한 자율주행 기술의 한계를 극복하고 안전성을 확보하기 위한 텔레 오퍼레이션(원격 제어) 기술의 중요성을 강조하며, 이를 위해서는 고품질 통신 네트워크와 실시간 데이터 처리 기술 확보가 필수적이라고 설명했다. 친환경 부품과 AI 기술, 지속 가능한 모빌리티 시대를 열다 ESG 경영의 중요성이 강조되는 시대적 흐름에 발맞춰 자동차 부품 산업에서도 친환경 소재 개발과 재활용 기술 도입이 더욱 확대될 것이라고 전망했다. 또한 AI 기술이 자동차 부품의 연구 개발 효율성을 높이고 제품 혁신을 가속화하는 핵심 동력이 될 것이라고 강조하며, 만도는 AI 기반 설계 및 검증 시스템 개발에 적극적으로 투자하고 있다고 밝혔다. 인간 중심의 미래 모빌리티를 향하여 배 CTO는 자동차 산업이 과거의 틀을 벗어나 완전히 새로운 시대로 접어들고 있으며, 미래 모빌리티는 단순한 이동 수단을 넘어 즐거움과 편리함을 제공하고 환경까지 고려하는 '인간 중심'으로 발전해야 한다고 강조했다.   * 해당 내용 정리는 AI(구글 제미나이)의 도움으로 작성되었습니다. 상세 내용은 원본 영상을 통해 확인하시기 바랍니다.  발표자료 다운로드 https://www.CADgraphics.co.kr/newsview.php?pages=lecture&sub=lecture01&catecode=7&num=74990   #모빌리티 #자동차산업 #전기차 #자율주행 #SDV #친환경부품 #AI #만도 #자동차부품산업 #소프트웨어정의차량 #자동차트렌드
작성일 : 2025-05-06
모빌리티 혁명, UAM의 현재와 미래(한국항공우주연구원 황창전) - 영상보기 & 내용 요약
PLM/DX 베스트 프랙티스 컨퍼런스 2024에서 한국항공우주연구원 황창전 UAM연구부장은 'UAM(Urban Air Mobility)'의 현황과 미래에 대한 깊이 있는 발표를 진행했다. 내용을 요약 정리하여 소개한다. 단순한 개인용 비행체를 넘어, 예약 기반 MaaS(Mobility as a Service)로 진화할 UAM 생태계를 조망하며, 미래 도시 이동의 혁신적인 변화를 예고했다. UAM, 도시 이동의 패러다임을 바꿀 혁신 황창전 부장은 UAM을 1900년대 초 마차에서 자동차로의 전환에 비견되는 파괴적 혁신으로 정의했다. 도심 내 이동 효율성을 극대화하고 새로운 이동 옵션을 제공함으로써, 미래 도시인의 삶의 질을 향상시키는 데 기여할 것이라는 전망이다. 핵심은 버티포트(수직 이착륙장) 네트워크를 구축하여 주요 도심 거점을 연결하고, 초기 유인 운항을 시작으로 점진적인 자율 비행 시스템으로 발전시켜 나가는 것이다. UAM 관련 핵심 용어 이해 OPPAV (Optionally Piloted Personal Air Vehicle): 유·무인 겸용 개인 항공기로, 한국의 OPPAV 개발 프로젝트는 UAM 기술 자립화의 중요한 발걸음이다. UAM (Urban Air Mobility): 도시 지역 내 승객과 화물을 아우르는 종합적인 항공 운송 시스템을 의미한다. RAM (Regional Air Mobility): UAM과 유사하지만, 인구 밀도가 낮은 지역을 대상으로 하며 안전 기준이 다소 완화될 수 있다. 플라잉 카 (Flying Car): 지상과 공중 이동이 모두 가능한 차량이나, 현재 기술적 난제와 효율성 문제로 실현 가능성은 낮게 평가된다. 글로벌 UAM 시장 동향 및 한국의 노력 전 세계적으로 도시 교통 문제 해결과 효율적인 이동 수단에 대한 요구가 높아짐에 따라 UAM 개발 경쟁이 치열하게 전개되고 있다. 2010년대부터 다수의 기업들이 eVTOL(electric Vertical Take-Off and Landing) 항공기 개발에 뛰어들었으며, 글로벌 UAM 시장은 2040년까지 수조 달러 규모로 성장할 것으로 예측된다. 한국 역시 OPPAV 개발 프로젝트를 통해 UAM 기술 확보에 적극적으로 나서고 있다. 한국항공우주연구원을 중심으로 현대자동차 등 여러 기관이 협력하여 틸팅 로터와 고정 로터를 결합한 독특한 디자인의 OPPAV 기술 시연기를 개발했으며, 첨단 비행 제어 시스템과 경량 복합 소재 기술을 적용했다. 정부 주도의 UAM 상용화 준비와 미래 정부 주도로 설립된 UAM 팀 코리아는 산업계, 학계, 연구 기관, 정부 간 협력을 통해 UAM 개발 및 상용화를 촉진하는 핵심적인 역할을 수행하고 있다. 정부는 2025년 초기 상업 서비스 개시를 목표로 UAM 로드맵을 수립하고, 그랜드 챌린지 프로젝트를 통해 통합적인 기술 실증을 진행 중이다. 또한, NASA와의 협력을 통해 UAM 관련 기술 개발 및 안전성 확보에도 힘쓰고 있다. 황창전 부장은 UAM의 미래를 자율 비행 능력 향상, 전천후 운용 능력 확보, 그리고 높은 수준의 안전성과 신뢰성 확보로 전망했다. 상용화를 위해서는 항공기 인증 및 안전 표준 마련이 필수적이며, eVTOL 항공기의 설계 표준화 및 대량 생산을 위한 혁신적인 재료 개발과 제조 공정 개선이 요구된다. 지속적인 연구 개발과 기술적 난제 해결 노력을 통해 UAM은 가까운 미래에 도시 이동의 혁신을 이끌어낼 것으로 기대된다.   * 해당 내용 정리는 AI(구글 제미나이)의 도움으로 작성되었습니다. 상세 내용은 원본 영상을 통해 확인하시기 바랍니다.  영상보기 발표자료 다운로드 https://www.CADgraphics.co.kr/newsview.php?pages=lecture&sub=lecture01&catecode=7&num=74990  
작성일 : 2025-05-05
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder
주요 디지털 트윈 소프트웨어 디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder 개발 : Ansys, www.ansys.com 자료 제공 : Ansys Korea, 02-6009-0500, www.ansys.com   Ansys Twin Builder는 디지털 트윈(Digital Twin) 기술을 활용하여 실제 물리 시스템을 가상 환경에서 시뮬레이션하고 최적화할 수 있는 솔루션이다. 멀티피직스 시뮬레이션 기술을 기반으로 물리 모델과 실시간 센서 데이터를 결합하여 예측 유지보수 및 성능 최적화를 지원한다. 제조, 자동차, 항공우주, 전자, 에너지, 의료 등 다양한 산업에서 활용된다.   1. 주요 특징 (1) Physics 기반의 디지털 트윈 구축 IoT 데이터 및 시뮬레이션 모델을 결합하여 정밀한 디지털 트윈 모델 생성 (2) 실시간 시뮬레이션 및 예측 유지보수 지원  센서 데이터를 활용하여 장비의 고장 가능성 예측 및 유지보수 최적화 (3) 멀티피직스 통합 분석  전자기, 유체, 구조, 열 해석을 통합하여 복잡한 시스템 성능 분석 가능 (4) AI 및 머신러닝 연계 가능  OptiSLang을 활용한 AI 기반 최적화 및 데이터 분석 지원 (5) IoT 및 클라우드 플랫폼과 연계  AWS, Microsoft Azure, PTC ThingWorx 등 다양한 IoT 플랫폼과의 호환성 제공 2. 주요 기능 (1) 디지털 트윈 생성 및 실행  시뮬레이션 모델을 물리 데이터와 연결하여 실시간 가상 시뮬레이션 수행 (2) Model-Based Systems Engineering(MBSE) 지원  시스템 레벨 설계를 위한 MBSE 기반 시뮬레이션 제공 (3) 고급 시뮬레이션 및 자동화  MATLAB, Simulink, FMI 모델과 통합 가능하여 복잡한 시스템 해석 (4) PLM 및 데이터 관리 통합  Siemens Teamcenter, PTC Windchill 등 주요 PLM 시스템과 연계하여 제품 수명주기 관리 지원 (5) Predictive Maintenance 기능 내장  실시간 데이터 분석을 통해 유지보수 전략 개선 3. 도입 효과 ■ 설비 가동률 향상: 디지털 트윈을 활용한 사전 예측 유지보수로 시스템 다운타임 감소 ■ 제품 개발 기간 단축: 프로토타입 제작 없이 가상 환경에서 제품 설계 검증 가능 ■ 운영 비용 절감: 최적화된 유지보수 전략을 통해 운영 및 유지보수 비용 절감 ■ 설계 품질 향상: 실제 운영 데이터를 기반으로 제품 설계 개선 및 성능 최적화 4. 주요 고객 사이트 ■ 제조업: 두산 그룹, POSCO  ■ 자동차: 현대자동차그룹, LS Automotive Technologies, HL Mando ■ 항공우주: Korea Aerospace Industries (KAI), Hanwha Aerospace ■ 반도체/전자: Samsung Electronics, SK Hynix, LG Electronics, Samsung Electro-Mechanics, Samsung Display, LG Display, LG Innotek, LX Semicon ■ 에너지: LG Energy Solution, SK On, Samsung SDI, Hyundai Electric & Energy Systems, Doosan Enerbility, Hanwha Solutions   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-04
지멘스, 모든 규모의 기업이 PLM을 활용할 수 있도록 팀센터 X 확장
지멘스 디지털 인더스트리 소프트웨어는 모든 규모의 조직이 SaaS(서비스형 소프트웨어) 기반 PLM(제품 수명주기 관리)을 활용하여 제조 산업 전반의 디지털 전환과 혁신을 촉진할 수 있도록 팀센터 X(Teamcenter X) 소프트웨어의 새로운 버전을 출시한다고 발표했다. 새로운 팀센터 X 제품군은 기계, 전기, 전자 개발을 아우르는 프로세스 관리 및 크로스 도메인 기능 등 다양한 고급 기능을 사전 구성된 형태로 제공한다. 팀센터 X는 기존 두 종류의 버전에 새롭게 두 가지를 추가해, 총 네 가지 버전으로 제공된다.     팀센터 X 에센셜즈(Teamcenter X Essentials)는 간편한 배포와 낮은 운영 비용을 고려하여 설계되었으며, 기계 설계에 집중하는 기업을 위한 데이터 관리 기능을 제공한다. CAD 데이터 관리, 제품 구조 및 리비전 관리, 사용 위치 검색, 체크인/체크아웃, 3D 보기 및 마크업 기능이 포함되어 있으며, 기업의 성장에 따라 확장성을 지원한다. 새롭게 출시된 팀센터 X 스탠더드(Teamcenter X Standard)는 에센셜즈 버전을 기반으로 단순 변경 관리, 프로젝트 일정 관리, 문서 관리, 보고서 생성 등 추가적인 PLM 기능을 포함한다. 모든 기능은 사전 구성된 형태로 제공되며, 고객의 요구에 맞게 조정할 수 있다. 역시 새롭게 출시된 팀센터 X 어드밴스드(Teamcenter X Advanced)는 제품 수명 주기 전반에 걸쳐 기계, 전자 및 전기 설계 간의 크로스 도메인 협업이 필요한 기업을 지원한다. 전기 및 전자 설계 통합 및 분류를 위한 데이터 관리 기능이 추가되었으며, 마찬가지로 사전 구성된 상태로 제공되고 필요 시 맞춤화할 수 있다. 팀센터 X 프리미엄(Teamcenter X Premium)은 클라우드 공급자를 선택할 수 있으며, 팀센터의 전체 기능을 활용하고자 하는 기업을 위한 포괄적 PLM 설루션이다. 엔터프라이즈 BOM, 비즈니스 시스템 통합, 모델 기반 시스템 엔지니어링(MBSE), 제조 계획, 품질 및 컴플라이언스 관리, 제품 비용 및 서비스 수명 주기 관리까지 포함한다. 또한 산업용 기계, 의료기기, 반도체 등 특정 산업군을 위한 사전 구성 설루션도 제공된다. 지멘스 디지털 인더스트리 소프트웨어의 프랜시스 에반스(Frances Evans) 라이프사이클 협업 소프트웨어 수석 부사장은 “팀센터 X의 이번 확장은 SaaS PLM을 모든 규모의 기업이 보다 쉽게 접근할 수 있도록 하려는 지멘스의 사명을 이어가는 것”이라면서, “새로운 팀센터 X의 기능은 더 많은 고객이 빠르게 PLM 도입을 시작하고, 이후 팀센터 포트폴리오 전반을 통해 비즈니스 과제를 확장해 나갈 수 있도록 돕는다”고 말했다.
작성일 : 2025-05-02
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅳ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21)   이번 호에서는 다양한 유형의 난류 모델과 사용 시기, 그리고 복잡한 형상을 위한 고충실도 난류 모델링에 있어 케이던스 밀레니엄 M1(CADence Millennium M1) CFD 슈퍼컴퓨터가 어떻게 혁신을 가져오는지에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   자동차 산업은 거의 매일 새로운 혁신과 개발이 등장하며 끊임없이 발전하고 있다. 자동차 업계는 전기 구동 차량과 대량 생산이 증가하는 추세에 발맞춰 보다 지속 가능한 미래를 만들기 위해 노력하고 있다. 자동차 생산량은 꾸준히 늘고 있지만, 업계는 여러 디자인 또는 새로운 헤드라이트, 스플리터, 사이드 스커트 추가와 같은 아주 작은 디자인 변경에 대해서도 풍동 테스트 또는 프로토타입 테스트를 수용하면서 연비 기준을 충족해야 하는 과제에 직면해 있다. 그 결과, 항력 계수 등 관심 있는 유동장 정보와 성능 관련 수치를 예측하여 필요한 실험 횟수를 크게 줄일 수 있는 시뮬레이션 기반 접근 방식이 점점 더 인기를 얻고 있다.   그림 1   유체 흐름의 난류를 이해하고 전산 유체 역학(CFD) 시뮬레이션을 통해 동일한 난류를 재현하려면 다양한 난류 모델을 사용해야 한다. 자동차 애플리케이션과 리소스 가용성에 따라 적합한 난류 모델을 선택하면 설계 주기를 단축하는 데 도움이 될 수 있다.    난류의 모델링 기법 ‘난류’는 압력과 속도의 혼란스러운 변화를 특징으로 하는 불규칙한 흐름을 일컫는 용어이다. 우리는 일상 생활에서 난류를 경험하며 공기 역학, 연소, 혼합, 열 전달 등과 같은 다양한 엔지니어링 응용 분야에서 중요한 역할을 한다. 하지만 유체 역학을 지배하는 나비에-스토크스 방정식은 매우 비선형적인 편미분 방정식이며 난류에 대한 이론적 해법은 존재하지 않는다. 난류는 광범위한 공간적, 시간적 규모를 포함하기 때문에 모델링과 시뮬레이션이 어려울 수 있다. 일반적으로 큰 와류는 난기류에 의해 생성된 에너지의 대부분을 전달하고 작은 와류는 이 에너지를 열로 발산한다. 이 현상을 ‘에너지 캐스케이드’라고 한다. 몇 년에 걸쳐 다양한 난기류 모델링 접근법이 개발되었으며, 가장 일반적인 세 가지 접근법을 간략히 설명한다. Direct Numerical Simulation(DNS) : DNS에서는 모델이나 근사치 없이 미세한 그리드와 매우 작은 시간 단계를 사용하여 모든 규모에서 난기류를 해결한다. DNS의 계산 비용은 엄청나게 높지만 결과는 가장 정확하다. DNS 시뮬레이션은 난류장에 대한 포괄적인 정보를 제공하기 위한 ‘수치 실험’으로 사용된다. Large-Eddy Simulation(LES) : 이름에서 알 수 있듯이 이 난류 모델링 기법은 큰 소용돌이를 해결하고 보편적인 특성을 가진 작은 소용돌이를 모델링한다. LES 시뮬레이션은 최소 길이 스케일을 건너뛰어 계산 비용을 줄이면서도 시간에 따라 변화하는 난기류의 변동 요소를 자세히 보여준다. Reynolds-Averaged Navier-Stokes Model(RANS) : RANS 방정식은 나비에-스토크스 방정식의 시간 평균을 취하여 도출되었다. 난기류 효과는 미지의 레이놀즈 응력 항을 추가로 모델링하여 시뮬레이션한다. RANS 시뮬레이션은 평균 흐름을 해결하고 난류 변동을 평균화하므로 다른 두 가지 접근 방식보다 훨씬 비용 효율적이다.   올바른 선택 : DNS, LES 또는 RANS 올바른 난류 모델을 선택하는 것은 모든 시뮬레이션의 중요한 측면이며, 이는 주로 시뮬레이션의 목적, 흐름의 레이놀즈 수, 기하학적 구조 및 사용 가능한 계산 리소스에 따라 달라진다. 학술 연구의 경우 DNS 시뮬레이션은 난류의 근본적인 메커니즘과 구조를 이해하는 데 가장 적합한 결과를 제공한다. DNS는 레이놀즈 수가 낮은 경우에 적합하지만, 막대한 시간과 리소스가 필요하기 때문에 대부분의 산업 분야에서는 실용적인 선택이 아니다. 반면에 LES는 일반적으로 레이놀즈 수가 높은 복잡한 형상을 포함하는 산업용 사례를 처리하는 데 적합한 옵션이다. LES가 생성하는 고충실도 결과물은 경쟁이 치열한 자동차 시장에서 중요한 한 차원 높은 성능 개선이 가능한 설계를 가능하게 한다.   그림 2    RANS 시뮬레이션은 LES에 비해 근사치의 범위가 넓기 때문에 정확도가 떨어진다. 그러나 정확도와 계산 비용 간의 균형으로 인해 RANS는 계산 리소스와 시뮬레이션 시간이 제한된 업계 사용자에게 일반적인 설루션이다. 이 방법은 또한 짧은 시간 내에 여러 사례를 분석해야 할 때 널리 사용된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
AI 기반 기능 및 성능이 향상된 오토캐드 2026
오토캐드 2026의 새로운 기능과 개선사항   이번 호에서는 지난 3월 출시된 오토캐드(AutoCAD)의 40번째 제품인 ‘오토캐드 2026(코드네임 Watt)’에서 새로 추가된 기능과 변경 및 개선된 사항을 살펴보도록 하자.   ■ 양승규 캐드앤그래픽스 전문 필진으로, MOT를 공부하며 엔지니어와 직장인으로 살아가는 방법에 대해 탐구한다. 건축과 CAD를 좋아한다. 홈페이지 | yangkoon.com    시작 오토캐드 2026의 스플래시 이미지(Splash image)는 이전 버전과 달리 완전히 새롭게 디자인되었다. 2026 버전은 오토데스크의 40주년을 기념하여 특별한 스플래시 이미지와 함께 시작된다.   그림 1   최초 실행 시 시작 탭이 활성화되며, 아래쪽의 메뉴를 선택하여 ‘학습(LEARN)’, ‘작업(CREATE)’ 화면으로 이동할 수 있다. 학습 화면에는 새로워진 사항에 대한 동영상 도움말, 시작하기 비디오, 기능 비디오, 학습 팁, 온라인 지원 메뉴가 표시되며, 작업 화면에서는 시작하기, 최근 문서, 알림, 오토데스크 독스(Autodesk Docs) 연결 메뉴가 표시된다.   그림 2   성능 향상 오토캐드 2026은 이전 버전에 비해 놀라운 성능 향상을 제공한다.  파일 열기 속도 : 최대 11배 향상 애플리케이션 시작 속도 : 4배 향상 대용량 도면 처리 : 50% 더 빠른 렌더링 및 처리 네트워크 환경 : LAN/네트워크 환경에서 DWG 파일 작업 시 특히 더 빠른 속도   DWG 파일 포맷 오토캐드 2026은 오토캐드 2025와 동일한 DWG 파일 포맷인 ‘AutoCAD 2018 Drawing’을 사용한다. DWG 버전 2018 이후에는 계속 같은 포맷을 유지 중이다.    DWG 버전 코드 AC1032 : AutoCAD 2018-2026  AC1027 : AutoCAD 2013/2014/2015/2016/2017  AC1024 : AutoCAD 2010/2011/2012  AC1021 : AutoCAD 2007/2008/2009  AC1018 : AutoCAD 2004/2005/2006  AC1015 : AutoCAD 2000/2000i/2002    AI 기반 기능 오토캐드 2026에는 설계 프로세스를 혁신적으로 변화시키는 여러 AI 기반 기능이 추가되었다.   오토데스크 어시스턴트   그림 3   그림 4   오토데스크 어시스턴트(Autodesk Assistant)는 대화형 AI 기반 디지털 어시스턴트로, 오토캐드 작업 중 발생하는 질문에 자연어로 응답한다. 이전 버전보다 더 정확하고 맥락을 이해하는 응답을 제공한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02