• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "BEM"에 대한 통합 검색 내용이 187개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
오픈AI CLIP 모델의 이해/코드 분석/개발/사용
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 생성형 AI의 멀티모달 딥러닝 기술 확산의 계기가 된 오픈AI(OpenAI)의 CLIP(Contrastive Language-Image Pre-Training, 2021) 코드 개발 과정을 분석하고, 사용하는 방법을 정리한다.    ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 이메일 | laputa99999@gmail.com 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast CLIP은 구글이 개발한 자연어 번역 목적의 트랜스포머 모델, 비전 데이터 변환에 사용되는 VAE(Variational Autoencoder) 개념을 사용하여 멀티모달 학습 방식을 구현하였다. 이번 호에서는 그 과정을 설명하고 파이토치로 직접 구현하는 과정을 보여준다. CLIP을 이용하면 유튜브, 넷플릭스와 같은 영상에서 자연어로 질의해 해당 장면을 효과적으로 검색할 수 있다. 참고로, CLIP에서는 트랜스포머가 핵심 컴포넌트로 사용되었다. CLIP과 같이 트랜스포머가 자연어 번역 이외에 멀티모달의 핵심 기술이 된 이유는 비정형 데이터를 연산 가능한 차원으로 수치화할 수 있는 임베딩 기술의 발전과 트랜스포머의 Key, Query, Value 입력을 통한 여러 학습 데이터 조합이 가능한 특징이 크게 작용했다.    그림 1. 멀티모달 시작을 알린 오픈AI의 CLIP 모델(Learning Transferable Visual Models From Natural Language Supervision, 2021)   트랜스포머와 VAE를 이용한 멀티모달 CLIP 네트워크를 좀 더 깊게 파헤쳐 보도록 한다. 앞서 설명된 트랜스포머, 임베딩과 관련된 개념에 익숙하다면, CLIP을 이해하고 구현하는 것이 그리 어렵지는 않을 것이다.    CLIP에 대한 이해 오픈AI에서 개발한 CLIP 모델은 공유 임베딩 공간 내에서 이미지 및 텍스트 형식을 통합하는 것을 목표로 했다. 이 개념은 기술과 함께 이미지와 텍스트를 넘어 다른 양식을 수용한다.(멀티모달) 예를 들어, 유튜브 등 비디오 애플리케이션 내에서 텍스트 검색 성능을 개선하기 위해 공통 임베딩 공간에서 비디오 및 텍스트 형식을 결합하여 모델을 학습시켰다. 사실, 임베딩 텐서를 잠재 공간(Latent Space)으로 이기종 데이터를 변환, 계산, 역변환할 수 있다는 아이디어는 VAE 기술, 구글의 트랜스포머 논문(2017)을 통해 개발자들 사이에 암시되어 있었다. 이를 실제로 시도해본 연구가 CLIP이다.  참고로, CLAP(Contrastive Language-Audio Pretraining)은 동일한 임베딩 공간 내에서 텍스트와 오디오 형식을 통합하는 또 다른 모델로, 오디오 애플리케이션 내에서 검색 기능을 개선하는 데 유용하다. CLIP은 다음과 같은 응용에 유용하다. 이미지 분류 및 검색 : CLIP은 이미지를 자연어 설명과 연결하여 이미지 분류 작업에 사용할 수 있다. 사용자가 텍스트 쿼리를 사용하여 이미지를 검색할 수 있는 보다 다양하고 유연한 이미지 검색 시스템을 허용한다. 콘텐츠 조정 : CLIP은 부적절하거나 유해한 콘텐츠를 식별하고 필터링하기 위해 이미지와 함께 제공되는 텍스트를 분석하여, 온라인 플랫폼의 콘텐츠를 조정하는 데 사용할 수 있다. 참고로, 메타 AI(Meta AI)는 최근 이미지, 텍스트, 오디오, 깊이, 열, IMU 데이터 등 6가지 양식에 걸쳐 공동 임베딩을 학습하는 이미지바인드(ImageBind)를 출시했다. 두 가지 모달리티를 수용하는 최초의 대규모 AI 모델인 CLIP은 이미지바인드 및 기타 다중 모달리티 AI 시스템을 이해하기 위한 전제 조건이다. CLIP은 배치 내에서 어떤 N×N(이미지, 텍스트) 쌍이 실제 일치하는지 예측하도록 설계되었다. CLIP은 이미지 인코더와 텍스트 인코더의 공동 학습을 통해 멀티모달 임베딩 공간을 만든다. CLIP 손실은 트랜스포머의 어텐션 모델을 사용하여, 학습 데이터 배치에서 N개 쌍에 대한 이미지와 텍스트 임베딩 간의 코사인 유사성을 최대화하는 것을 목표로 한다.  다음은 이를 설명하는 의사코드이다. 1. img_en = image_encoder(I)   # [n, d_i] 이미지 임베딩 인코딩을 통한 특징 추출  2. txtxt_emdn = textxt_emdncoder(T)    # [n, d_t] 텍스트 임베딩 인코딩을 통한 특징 추출 3. img_emd = l2_normalize(np.dot(img_en, W_i), axis=1)    # I×W 결합(조인트) 멀티모달 임베딩 텐서 계산 4. txt_emd = l2_normalize(np.dot(txtxt_emdn, W_t), axis=1)  # T×W 결합(조인트) 멀티모달 임베딩 텐서 계산 5. logits = np.dot(img_emd, txt_emd.T) * np.exp(t)   # I×T * E^t 함수를 이용한 [n, n]코사인 유사도 계산 6. labels = np.arange(n) 7. loss_i = cross_entropy_loss(logits, labels, axis=0)  # 이미지 참값 logits과 예측된 label간 손실 8. loss_t = cross_entropy_loss(logits, labels, axis=1)  # 텍스트 참값 logits과 예측된 label간 손실 9. loss = (loss_i + loss_t)/2   # 이미지, 텍스트 손실 평균값   실제 오픈AI 논문에는 <그림 2>와 같이 기술되어 있다.(동일하다.)   그림 2     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
로컬 호스트 LLM 오픈소스 기반 BIM 전문가 챗봇 서비스 만들어보기
BIM 칼럼니스트 강태욱의 이슈 & 토크   요즘 LLM 모델을 사용하는 방법이 점차 간편해지고 있어 자체적으로 LLM을 구축해 챗봇, 전문가 시스템 등을 자신의 서버에서 제공하는 경우가 많아지고 있다. 이번 호에서는 GPU가 있는 PC에서 직접 실행해 볼 수 있도록, 로컬 호스트 LLM(대규모 언어 모델) 오픈소스 기반의 BIM 전문가 챗봇 서비스를 간단히 개발해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 이메일 | laputa99999@gmail.com 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast   이번 호에서는 기존의 BIM PDF 파일을 검색해 학습하고, LLM에 RAG(Retrieval-augmented generation) 증강 학습한 후, 이를 간단한 UI로 웹 서비스하는 과정을 간략히 따라해 본다. 이번 호의 내용은 로컬 LLM의 편한 개발을 지원하는 올라마(Ollama), LLM 프롬프트 엔지니어링 프레임워크인 랭체인(LangChain), 텍스트 임베딩 벡터 데이터베이스 크로마(Chroma), 손쉬운 웹 앱 개발 지원 도구인 스트림릿(Streamlit)을 사용한다. 이를 이용해 간단하게 BIM 전문 지식을 PDF로 학습한 챗봇을 개발한다.   그림 1. 로컬 호스트 LLM 챗봇 아키텍처   그림 2. 구현된 BIM 지식 챗봇 서비스   LLM에 관련된 깊은 내용은 다음의 링크를 참고한다. 이 글은 여러 참고 자료를 이용해 작성된 것이다. 상세 내용은 레퍼런스를 참고하기 바란다. Facebook LLAMA-2 paper : https://daddynkidsmakers.blogspot.com/2024/02/llama-2.html Facebook LLAMA-2 installation : https://daddynkidsmakers.blogspot.com/2023/09/llama2.html LLM은 빅테크 업체 간 경쟁이 심한 분야이다. 이와 관련해서 젬마(Gemma), MPT-7B과 같은 LLM 모델이 오픈소스로 공개되고 있어 선택지가 많아지고 있다. 이와 관련해서는 다음을 참고한다.  Google Gemma : https://github.com/google/gemma_pytorch Blooom : https://huggingface.co/bigscience/bloom   설치 설치를 위해서는 엔비디아 드라이버, CUDA, 텐서플로(TensorFlow), 파이토치(PyTorch) 등 기본 딥러닝 개발 환경이 설치되어 있어야 한다.(최소 구동을 위한 GPU RAM은 6GB이다.) TensorFlow 설치 : https://www.tensorflow.org/install/pip?hl=ko#windows-native_1 Start Locally | PyTorch 설치 : https://pytorch.org/get-started/locally/ 설치 순서는 다음과 같다.  1. 기본 패키지를 설치한다. LLM 모델 기반 서비스 개발 지원 라이브러리 랭체인, 웹 앱 UI 개발을 지원하는 스트림릿, 텍스트 임베딩 벡터 데이터베이스 크로마 DB 등을 설치한다. pip install langchain streamlit streamlit_chat pypdf fastembed chardet pip install chromadb==0.4.15   그림 3. 다양한 LLM 모델을 이용한 서비스 개발을 지원하는 랭체인 패키지   그림 4. 간단한 코드로 웹 앱 개발을 지원하는 UI 라이브러리 패키지 streamlit.io   혹은 pip와 유사한 패키지 설치 관리자인 poetry를 설치한 후, 다음 사용 패키지들을 pyproject.toml 이름으로 저장하고 설치한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-04-01
생성형 AI 데이터 학습에 사용되는 딥러닝 강화학습의 개념과 구조
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 생성형 AI 모델 학습과 같이 현재도 다양한 곳에서 필수로 사용되는 강화학습 딥러닝 기술의 기본 개념, 이론적 배경, 내부 작동 메커니즘을 확인한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 이메일 | laputa99999@gmail.com 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast   강화학습은 바둑, 로봇 제어와 같은 제한된 환경에서 최대 효과를 얻는 응용분야에 많이 사용된다. 강화학습 코딩 전에 사전에 강화학습의 개념을 미리 이해하고 있어야 제대로 된 개발이 가능하다. 강화학습에 대해 설명한 인터넷의 많은 글은 핵심 개념에 대해 다루기보다는 실행 코드만 나열한 경우가 많아, 실행 메커니즘을 이해하기 어렵다. 메커니즘을 이해할 수 없으면 응용 기술을 개발하기 어렵다. 그래서 이번 호에서는 강화학습 메커니즘과 개념 발전의 역사를 먼저 살펴보고자 한다. 강화학습 개발 시 오픈AI(OpenAI)가 개발한 Gym(www.gymlibrary.dev/index.html)을 사용해 기본적인 강화학습 실행 방법을 확인한다. 참고로, 깃허브 등에 공유된 강화학습 예시는 대부분 게임이나 로보틱스 분야에 치중되어 있는 것을 확인할 수 있다. 여기서는 CartPole 예제로 기본적인 라이브러리 사용법을 확인하고, 게임 이외에 주식 트레이딩, 가상화폐, ESG 탄소 트레이딩, 에너지 활용 설비 운영과 같은 실용적인 문제를 풀기 위한 방법을 알아본다.   그림 1. 강화학습의 개념(출처 : Google)   강화학습의 동작 메커니즘 강화학습을 개발하기 전에 동작 메커니즘을 간략히 정리하고 지나가자.   강화학습 에이전트, 환경, 정책, 보상 강화학습의 목적은 주어진 환경(environment) 내에서 에이전트(agent)가 액션(action)을 취할 때, 보상 정책(policy)에 따라 관련된 변수 상태 s와 보상이 수정된다. 이를 반복하여 총 보상 r을 최대화하는 방식으로 모델을 학습한다. 정책은 보상 방식을 알고리즘화한 것이다. <그림 2>는 이를 보여준다. 이는 우리가 게임을 하며 학습하는 것과 매우 유사한 방식이다.   그림 2. 강화학습 에이전트, 환경, 액션, 보상 개념(출처 : towardsdatascience)   강화학습 설계자는 처음부터 시간에 따른 보상 개념을 고려했다. 모든 시간 경과에 따른 보상치를 동시에 계산하는 것은 무리가 있으므로, 이를 해결하기 위해 DQN(Deep Q-Network)과 같은 알고리즘이 개발되었다. 모든 강화학습 라이브러리는 이런 개념을 일반화한 클래스, 함수를 제공한다. 다음은 강화학습 라이브러리를 사용한 일반적인 개발 코드 패턴을 보여준다.   train_data, test_data = load_dataset()  # 학습, 테스트용 데이터셋 로딩 class custom_env(gym):  # 환경 정책 클래스 정의    def __init__(self, data):       # 환경 변수 초기화    def reset():       # 학습 초기 상태로 리셋    def step(action):       # 학습에 필요한 관찰 데이터 변수 획득       # 액션을 취하면, 그때 관찰 데이터, 보상값을 리턴함 env = custom_env(train_data)  # 학습환경 생성. 관찰 데이터에 따른 보상을 계산함 model = AgentModel(env)      # 에이전트 학습 모델 정의. 보상을 극대화하도록 설계 model.learn()                       # 보상이 극대화되도록 학습 model.save('trained_model')    # 학습된 파일 저장 # 학습된 강화학습 모델 기반 시뮬레이션 및 성능 비교 env = custom_env(test_data)  # 테스트환경 생성 observed_state = env.reset() while not done:    action = model.predict(observed_state) # 테스트 관찰 데이터에 따른 극대화된 보상 액션    observed_state, reward, done, info = env.step(action)    # al1_reward = env.step(al1_action) # 다른 알고리즘에 의한 액션 보상값과 성능비교    # human_reward = env.step(human_action) # 인간의 액션 보상값과 성능비교   ■ 상세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-03-05
진동∙소음 해석 소프트웨어, VA One
진동∙소음 해석 소프트웨어, VA One   주요 CAE 소프트웨어 소개   ■ 개발 : ESI, www.esi-group.com ■ 자료 제공 : 한국이에스아이, 02-3660-4500, www.esi-group.com ESI의 구조음향 소프트웨어인 VA One은 규제, 제품 개선 요구 및 제한된 개발 일정으로부터 예상치 못한 소음·진동 문제에 대응하기 위해, 일정 지연이나 고비용의 시험기반 방법에 의존하지 않고 설계단계에서부터 소음·진동을 고려할 수 있다. VA One은 개발 과정에 앞서 예상되는 소음·진동 문제를 진단할 수 있는 모든 기능을 가지고 있다. 더 상세한 모델링이나 시험 기반의 개발을 필요로 하는 영역에서 예상되는 문제를 규명하여 위험을 관리함으로써, 제품의 경쟁력을 향상시킬 수 있다. 1. 제품의 주요 기능 및 특징 (1) 전 주파수 대역의 소음해석 기법 탑재 저주파수 대역을 위한 FEM, BEM, 고주파수 대역을 위한 SEA, Ray Method 및 중주파수 대역을 위한 FEM-SEA 연성 등의 다양한 해석 기법이 탑재되어 있다. (2) 다양한 연성과 유연한 소음해석 기법 주파수 대역, 모델링 편의성, 해석 시간 등을 고려하면서 FEM-BEM, FEM-SEA, BEM-SEA 등의 다양한 연성 기법 적용을 통한 유연한 모델링이 가능하다. (3) 흡차음재 모델링 소음 개선을 위해 사용되는 다층 흡차음재의 FEM, TMM 기법의 Biot 모델링을 통해 해석 모델에 용이하게 부여(기공성 흡음재의 물성치를 규명하기 위한 별도의 소프트웨어인 Foam-X와 연계 가능)할 수 있다. (4) 소음-진동 전달흐름 분석 수음점으로부터 음원까지의 소음-진동 에너지 흐름(SEA 모델링)을 분석하여 관심 주파수에 따른 용이한 소음 개선 대책이 가능하다. (5) 공력 구조음향 연성 해석 난류 등 유동으로 인한 발생한 소음원을 CFD 해석 결과의 변동표면압력으로부터 규명하고, 구조물과의 연성 해석을 통해 전달 소음 예측이 가능하다. (6) 접촉소음(래틀) 해석 부품 간의 상대 진동에 의한 발생한 접촉소음을 공차 분석, 접촉 빈도, 접촉력 해석, 방사소음 및 라우드니스 해석 등의 체계적인 모델링 과정이 제공된다. (7) 맞춤식 기능 개발 내재된 Script 작성 언어인 QuickScript나 외부의 Matlab 또는 Python 프로그램으로 VA One의 모든 기능을 사용할 수 있고, 이로부터 사용자 환경에 맞는 맞춤식 기능 개발이 가능하다. (8) 실내소음 및 외부 방사소음 해석 자동차, 철도차량, 건설기계, 선박, 항공기, 발사체 등의 복잡하고 큰 대상체의 실내소음 및 외부 방사소음을 다양한 해석 기법을 적용하여 해석할 수 있다. 주파수 대역에 따라 FEM, BEM, SEA, FEM-BEM 연성, FEM-SEA 연성 등을 유연하게 적용하여 소음을 효과적으로 예측할 수 있다. 특히, 고주파수 대역에서의 SEA 해석은 산업계 표준으로 사용되고 있다. (9) 부품의 음향성능 해석 주파수 대역에 따른 다양한 모델링을 통하여 부품의 투과손실, 방사효율 등의 음향성능을 효과적으로 해석할 수 있어, 반복 시험으로 인한 비용과 시간을 최소화하여 부품 개선에 큰 도움을 준다. (10) 흡차음재 최적화 다층 흡차음재 모델링을 통해 흡차음재에 의한 소음 개선 효과를 해석할 수 있으며, 최적화 기법을 통해 흡차음재의 개선 및 선정에 효과적으로 사용될 수 있다. (11) 동적 응력 해석 랜덤 진동을 받고 있는 구조물의 동적 응력 해석을 통해 피로 예측을 위한 입력 데이터를 제공해 준다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-02-12
딥러닝 수치해석 데이터의 병렬처리를 지원하는 파이썬 넘바 라이브러리
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 GPU CUDA(쿠다) 병렬처리를 지원하는 넘바(Numba) 라이브러리를 간략히 소개한다. CUDA는 현재 딥러닝 기술의 기반처럼 사용되며, 사실상 산업 표준이다. 딥러닝은 모든 연산이 텐서 행렬 계산이므로, 엔비디아 GPU에 내장된 수많은 계산 유닛(실수 계산에 특화된 CPU)들을 사용한다. CUDA의 강력한 수치해석 데이터 병렬처리 기능은 딥러닝뿐 아니라 디지털 트윈의 핵심인 시뮬레이션, 모델 해석 등에 필수적인 수치계산 엔진으로 사용된다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast   CUDA는 내장된 수많은 계산 유닛에 입력 데이터를 할당하고, 행렬연산을 하여 출력된 데이터를 CPU 메모리가 접근할 수 있도록 데이터 고속 전송/교환하는 역할을 한다. 그러므로, 딥러닝 모델 학습 성능은 GPU CUDA 성능에 직접적 영향을 받는다. 이벙 호에서는 파이썬(Python)에서 CUDA를 이용해 수치해석 등 계산 성능을 극대화할 수 있는 방법과 간단한 예제를 살펴본다.   그림 1. CUDA 아키텍처(출처 : Multi-Process Service : GPU Deployment and Management Documentation)   GPU CUDA 소개 CUDA는 게임 화면에 렌더링되는 3차원 이미지를 2차원 픽셀에 매핑하기 위한 수많은 행렬을 실시간 처리할 수 있도록 개발되어 왔다. 이런 이유로, 행렬 고속 연산이 필요한 딥러닝 학습에 적극 사용된 것이다.   그림 2. CUDA 기반 실시간 텐서 행렬 연산 결과   CUDA는 오랫동안 개발자의 요구사항을 반영해 발전되어, 개발 플랫폼으로서 탄탄한 생태계를 구축했다.   그림 3. 엔비디아 개발자 사이트   그림 4. CUDA 기반 레이트레이싱 렌더링 결과(출처 : Ray Tracey's blog : GPU path tracing tutorial 3 : GPU)   사실, 많은 스타트업이 이런 기능을 지원하는 딥러닝용 AI 칩을 FPGA 기법 등을 이용해 개발, 홍보하고 있으나, 이런 개발자 지원도구와 플랫폼 생태계 없다면 산업계에서는 의미가 없다고 볼 수 있다.   넘바 소개 넘바는 파이썬 기반 CUDA GPU 프로그래밍을 지원한다. 넘바는 컴파일 기술을 지원하여 CPU와 GPU 모드에서 코딩되는 데이터 구조, 함수 호출을 추상화한다. 넘바는 엔비디아의 CUDA 함수와 설정을 래핑한 고수준의 함수 API를 제공한다. 이를 통해 개발자가 CUDA의 세부 설정에 신경쓸 필요 없이, 데이터 병렬 처리 개발에만 집중할 수 있다.   개발 환경 넘바의 개발 환경은 다음과 같다. NVIDIA Compute Capability 5.0 이상 CUDA 지원 GPU 장착 PC(2023년 12월 시점) NVIDIA CUDA 11.2 이상 NVIDIA TX1, TX2, 자비에, 젯슨 나노 GTX 9, 10, 16 시리즈. RTX 20, 30, 40 시리즈. H100 시리즈 CONDA 환경의 경우, 다음과 같이 터미널을 이용해 CUDA 툴킷을 자동 설치할 수 있다. conda install cudatoolkit 넘바는 cuda python을 이용해 엔비디아 GPU CUDA와 바인딩한다. conda install nvidia::cuda-python 설치 방법은 다음과 같다. conda install numba   ■ 상세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-02-02
[무료다운로드] 생성형 AI 코딩으로 프로그램 만들어보기
BIM 칼럼니스트 강태욱의 이슈 & 토크    이번 호에서는 트랜스포머(transformer) 기반 생성형 AI 모델로 다국어 번역기, 문장 분류, 이미지 설명 텍스트 생성 프로그램의 개발 방법을 간략히 살펴본다. 트랜스포머는 텍스트, 이미지 등 데이터를 숫자로 표현한 토큰으로 인코딩한 후, 목표 라벨 데이터 결과와 차이가 적은 방향으로 가중치인 어텐션(attension) 벡터를 갱신하여 학습 모델을 만드는 기술이다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 이메일 | laputa99999@gmail.com 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast   트랜스포머는 현재 문장 성격 및 특징 분류, 다국어 번역, 비전 이미지 설명 및 생성, 음성인식, Voice to Text, 음악 작곡, 글 분류, 글 자동 요약 등 다양한 영역에서 사용된다. 이번 호에서는 관련 기능을 트랜스포머로 간단히 구현해 본다.    그림 1. 트랜스포머 개념 및 아키텍처   트랜스포머의 이론적 개념 등은 다음의 링크를 참고한다. 머신러닝 딥러닝 신경망 개념, 종류 및 개발 : https://daddynkidsmakers.blogspot.com/2017/02/blog-post_24.html 어텐션 기반 트랜스포머 딥러닝 모델 이해, 활용 사례 및 파이토치(Pytorch)를 통한 간단한 사용방법 소개 : https://daddynkidsmakers.blogspot.com/2021/10/blog-post.html 간단한 트랜스포머 동작 원리와 파이토치 기반 비전 트랜스포머 ViT 소개 : https://daddynkidsmakers.blogspot.com/2023/02/pytorch-vit.html 오디오, 영상, 텍스트, 센서, 3D깊이맵 멀티모달 딥러닝 모델 페이스북 이미지바인드(imagebind) 설치 및 사용기 : https://daddynkidsmakers.blogspot.com/2023/05/imagebind.html   개발 준비 파이썬(Python), 쿠다(CUDA) 등이 설치되어 있다는 가정 하에, 다음 명령어를 이용해 관련 패키지를 설치한다. pip install transfomers sentencepiece   간단한 텍스트 생성형 AI 개발 다음과 같이 트랜스포머 모델에서 사전학습된 distilgpt2를 사용해 간단한 텍스트 생성형 AI 코드를 개발해 본다. from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("distilgpt2") model = AutoModelWithLMHead.from_pretrained("distilgpt2") input_ids = tokenizer.encode("I like gpt because it's", return_tensors='pt') greedy_output = model.generate(input_ids, max_length=12) print(tokenizer.decode(greedy_output[0], skip_special_tokens=True)) 실행 결과 <그림 2>와 같이 ‘I like gpt because it's’ 이후 문장을 자연스럽게 생성한다.   그림 2   텍스트의 빈칸 단어 예측 다음은 MLM(Mask Language Model) 방식으로 학습된 모델을 이용해, [MASK] 토큰으로 정의된 단어를 문장 맥락을 고려해 예측하는 코드이다.  from transformers import pipeline unmasker = pipeline('fill-mask', model='albert-base-v2') unmasker("mlm and nsp is the [MASK] task of bert.") 결과는 <그림 3>과 같다. 빈칸의 단어가 잘 예측된 것을 확인할 수 있다.   그림 3   이미지 설명 텍스트 생성 이제 주어진 이미지를 설명하는 텍스트를 생성해 본다. 목표는 입력 이미지에 대해 두 마리의 고양이가 누워있음을 표현하는 텍스트를 얻는 것이다.   그림 4     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-01-04
[피플&컴퍼니] 산업 디지털 트윈/메타버스 플랫폼 기업, 녹원정보기술
실시간 3D 관제 위해 유니티로 디지털 트윈 구현   2011년에 설립한 녹원정보기술은 3D 항만 관제를 시작으로, 현재는 다양한 산업 분야를 위한 디지털 트윈 및 메타버스 플랫폼을 개발·공급하고 있다. 최근에는 유니티 엔진을 활용해 건물 에너지 관리와 최적화를 위한 디지털 트윈 플랫폼을 개발했고, 유니티가 주최한 ‘MWU 코리아 어워드 2023’에서 인더스트리 부문 최우수상을 받았다. ■ 정수진 편집장    ▲ 건물 내 쾌적도 유지를 위한 에너지 부하를 디지털 트윈으로 모니터링한다.   가상 환경에서 기업의 업무 효과 높이는 디지털 트윈 개발 녹원정보기술이 처음 개발했던 기술은 항만의 컨테이너나 트럭 등 관제에 3D를 활용하는 것이었다. 2010년대 후반 ‘디지털 트윈’이라는 용어가 본격 등장하면서 그간 개발해 온 기술이 디지털 트윈과 크게 다르지 않다는 점에 주목한 녹원정보기술은 항만뿐 아니라 더 넓은 산업 분야에 디지털 트윈과 메타버스를 접목하는 방향으로 기술 개발과 비즈니스를 전개하고 있다. 디지털 트윈과 메타버스라는 단어는 더 이상 낯설지 않다. 많은 사람들이 디지털 트윈과 메타버스에 관심을 갖고 있으며 이와 관련한 기술 개발이 여러 곳에서 진행 중이다. 녹원정보기술도 항만, 조선, 자동차, 건설, 방송 등 다양한 산업에서 B2B 비즈니스에 주력하고 있다. 녹원정보기술 디지털트윈사업부의 홍성범 상무는 “큰 의미에서 디지털 트윈이나 메타버스는 비즈니스 용어라고 볼 수도 있다. 중요한 것은 ‘어디에 적용하고 어떻게 활용할 것인가’이다. 녹원정보기술은 물리적인 기업의 활동을 가상으로 옮겨서 업무 효과를 높이는 데에 디지털 트윈의 무게중심을 두고 있다”고 소개했다.    ▲ 디지털 트윈으로 HVAC 설비의 실시간 모니터링 및 공조 제어가 가능하다.   건물 에너지 관리 플랫폼으로 MWU 어워드에서 수상 MWU 코리아 어워드 2023에서 인더스트리 부문 최우수작으로 선정된 ‘베모스(BEMOS)’는 건물의 에너지를 관리하고 최적화하기 위한 디지털 트윈 플랫폼이다. 센서, 인공지능, 시뮬레이션 등 다양한 기술이 쓰인 이 플랫폼의 개발에서 녹원정보기술은 다양한 데이터를 디지털 트윈으로 시각화하는 역할을 맡았다. 탄소중립이 이슈가 되면서 많은 건물에서 에너지를 효과적으로 모니터링하고 관리해야 하는 필요성이 커지고 있다. 베모스는 세 가지 유형의 건물에 대한 에너지 관리 기능을 제공한다. 많은 사람이 움직이는 백화점의 경우 고객이 느끼는 쾌적도를 유지하기 위한 에너지 관리가 필요하다. 대학교 캠퍼스는 기계실에서 여러 동의 건물에 대해 공조를 관리할 필요성이 있다. 데이터센터는 열을 발생시키는 서버의 냉각을 위해 적정 온도를 유지하는 데에 많은 에너지가 필요하다. 베모스는 이런 세 가지 유형의 건물을 디지털 트윈으로 구성하고, 그 위에 온도/습도/풍향 등의 센서 데이터 및 쾌적도와 공조 최적화를 위한 AI 기반의 시뮬레이션을 포함하는 동적 에너지 관리 솔루션을 구현했다. 건물의 유형이나 위치, 구조에 따라 달라지는 시뮬레이션의 결과를 시각화하는 데에 디지털 트윈의 초점을 맞추었다. 베모스는 센서 데이터를 입력값으로 하는 시뮬레이션 결과를 시각화하는 데에 유니티를 활용함으로써 직관적인 운영이 가능하도록 한 것이 특징이다. 건물 전체 및 각 층별로 에너지 부하를 확인하고, 쾌적도 지표를 아이콘으로 표시하며, 이벤트가 발생한 위치를 실시간으로 확인하는 등의 기능을 유니티로 구현했다.    ▲ 항만 인프라 관리를 위한 디지털 트윈   디지털 트윈과 메타버스 위해 적절한 기술 고민해야 홍성범 상무는 디지털 트윈과 메타버스에서 중요한 것은 기술 자체가 아니라고 짚었다. 디지털 트윈/메타버스를 위한 요구사항이 무엇인지 그리고 어떤 과제에 대응해야 하는지에 따라서 적절한 기술을 선택할 필요가 있다는 뜻이다. 홍성범 상무는 “고객의 요구사항은 기술적이지 않으며 이를 효과적으로 구현할 수 있는 기술을 선택해야 한다”면서, 세 가지의 디지털 트윈을 예로 설명했다. 첫 번째는 지도를 위한 GIS 엔진 기반의 디지털 트윈이다. 전국의 택배 차량을 컨트롤하는 등 넓은 지역에 디지털 트윈을 적용하려면 GIS 엔진 위에서 작동하는 디지털 트윈이 필요하다. 두 번째는 CAD에서 출발하는 BIM 기반의 디지털 트윈이다. 건물,공장,교량 등을 설계하는 CAD 모델은 디테일한 정보를 갖고 있다. 그래서 이런 대상을 제어하거나 모니터링하는 데에는 BIM 기반의 디지털 트윈이 효과적이다. 세 번째는 게임 엔진 기반의 디지털 트윈이다. 게임 엔진의 주요한 특징은 다중 사용자와 실시간성 그리고 시각효과이다. 이런 특징때문에 스마트 시티의 교통 환경을 모니터링하거나 실시간으로 발생하는 이벤트를 확인/처리하는 등에 유용하다. 이전에는 물리적인 객체에 대한 관제가 중심이었다면, 최근에는 장애 처리 절차와 같은 논리적인 프로세스의 관제도 중요하게 여겨진다. 이런 절차를 매뉴얼로 관리하는 경우가 많은데, 매뉴얼은 비숙련자가 필요한 내용을 빠르게 찾는 것이 불가능하다. 물리적 객체와 논리적인 프로세스를 3D로 시각화할 때의 장점은 사람이 이해하는 속도가 2D에 비해 훨씬 빠르다는 것이다. 특히 녹원정보기술이 주력하고 있는 B2B 분야에서 논리적인 부분을 표현하고 시각화하고자 하는 요구가 빠르게 늘고 있다. 전체적인 상황을 빠르게 파악하고 관제의 투명성을 높일 수 있다는 것도 3D 시각화의 장점으로 꼽힌다. 게임 엔진으로 출발한 유니티는 3D에 관한 노하우를 많이 갖고 있는 것이 장점이다. 유니티 사용자 및 엔지니어가 많아서 필요한 기술을 빠르게 확보할 수 있고 유지보수가 용이하다는 점도 유니티를 선택하는 데에 이점으로 작용했다. 홍성범 상무는 “유니티는 일반적인 시각화 쪽에 특화돼 있다 보니 색감이나 표현이 굉장히 좋다. 애셋 스토어가 활성화돼서 모든 애셋을 직접 만드는 수고를 덜 수 있는 점도 장점”이라면서, “시뮬레이션 데이터와 시각화의 연동, CAD 데이터의 최적화를 위한 컨버팅 등 B2B에서 필요로 하는 부분이 앞으로 더욱 향상되기를 바란다”고 전했다.   ▲ 녹원정보기술 홍성범 상무는 “다양한 산업에서 디지털 트윈에 대한 관심과 도입이 늘고 있어 향후 시장성이 높다”고 전망했다.   시각화 기술과 비즈니스 프로세스의 융합으로 시장 확대 추진 녹원정보기술은 디지털 트윈/메타버스 관련 B2B 시장의 전망을 긍정적으로 보고 있다. 현재의 관제 시스템은 CCTV가 메인인데 3D로 넘어가는 추세가 꾸준히 확산되고 있다는 것이다. 홍성범 상무는 “현재는 정부에서 관련 정책 지원 등을 통해 산업 분야에서 디지털 트윈을 적용하는 마중물을 마련하고 있는데, 산업 분야의 기업들이 본격 참여하는 단계로 넘어갈 것으로 보여 향후 더 큰 시장이 열릴 것으로 기대한다”고 밝혔다. 이렇게 시장이 확대되는 상황에 대응하기 위해 녹원정보기술은 ‘메타버스 허브’를 추진한다는 전략도 갖고 있다. 디지털 트윈 나아가 메타버스는 폭넓은 기술과 비즈니스가 요구되는데 현재 시장에 참여하는 기업들이 영세한 경우가 많다. 기술 플랫폼 기업과 산업별 공정에 관한 전문가, 비즈니스 역량을 가진 기업 등이 참여해 시장을 넓혀야 한다는 것이 녹원정보기술의 시각이다. 항만의 크레인/트럭/컨테이너의 실시간 트래킹 및 관제, 항공기 이착륙의 실시간 시각화 및 관제, 선거 개표 현황의 실시간 시각화, 자동차 공장의 로봇 공정 제어 등의 디지털 트윈 구축 사례를 소개한 홍성범 상무는 “녹원정보기술은 시각화 기술과 비즈니스 프로세스의 융합 측면에서 강점을 가지고 있다. 비용 절감과 프로세스 개선 등으로 고객의 업무에 도움을 줄 수 있는 지속가능한 비즈니스를 추진할 계획”이라고 설명했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-01-04
멀티피직스 해석, 안전 시뮬레이션, Simcenter 3D
멀티피직스 해석, 안전 시뮬레이션, Simcenter 3D   주요 CAE 소프트웨어 소개    ■ 개발 : 지멘스 디지털 인더스트리 소프트웨어, www.plm.automation.siemens.com/global/ko ■ 자료 제공 : 지멘스 디지털 인더스트리 소프트웨어, 02-3016-2000, www.plm.automation.siemens.com/global/ko / 델타이에스, 070-8255-6001, www.deltaes.co.kr / 스페이스솔루션, 02-2027-5930, www.spacesolution.kr   Simcenter 3D는 구조, 음향, 유동, 열, 모션, 전자기장, 재료 및 복합소재 해석을 지원하고, 최적화 및 다중 물리 시뮬레이션을 포함하는 시뮬레이션 솔루션이다.  솔버 및 전/후처리 기능은 시뮬레이션 기반의 통찰력을 시간 내에 얻기 위해 필요한 모든 도구를 제공한다. 또한, 1D/3D를 연동한 시뮬레이션 및 시험/시뮬레이션을 연계한 Hybrid 모델링 기능 덕분에 Simcenter 3D는 이전보다 현실적인 시뮬레이션 성능을 제공할 뿐만 아니라, 데이터 관리 기능을 갖춘 확장 가능한 개방형 CAE 통합 환경이다.  Simcenter 3D는 고성능의 지오메트리 편집, 연상 시뮬레이션 모델링 및 다분야 솔루션을 업계 전문 기술과 통합하여 시뮬레이션 프로세스 속도를 단축한다. Simcenter 3D는 모든 CAD 데이터와 함께 사용할 수 있는 독립형 시뮬레이션 환경을 제공하며, NX와 통합되어 원활한 CAD/CAE 경험을 제공한다. 1. 주요 기능 (1) CAE 전처리(Pre-Processing) 기능 CAD/CAE 단일 사용자 환경에서 설계자부터 전문 해석자까지 사용 가능한 CAE 전/후처리 도구를 제공하고, 높은 수준의 CAD 수정/편집 기능을 이용하여 더욱 효율적이고 빠르게 3D 시뮬레이션 모델을 생성할 수 있다. ■ 설계 검증을 위한 CAE/CAE 통합 사용자 환경지원 ■ 다분야, 다물리 해석을 위한 플랫폼 제공 ■ 동기화 기술로 직관적이고 빠른 CAD 수정 ■ CAD 형상 연계 유한요소 생성 ■ 복잡한 모델을 위한 유한요소 Assembly 구조 지원 ■ Simcenter Nastran 외 3rd Party Solver 지원 ■ 설계 검증 프로세스 구축 및 자동화 가능 (2) 구조 해석 Nastran Solver를 이용하여 정적, 모드, 좌굴 해석 등의 선형 구조 해석을 지원하고, 미소변형 및 거동하는 대형 제품의 구조 해석을 빠르게 수행하는 SMP, DMP 방식의 병렬계산을 지원한다. 기하 비선형, 접촉, 소성, 크립, 초탄성 거동 등 모든 비선형 모델을 지원할 뿐만 아니라, 대부분의 선형 비선형 문제를 순차적으로 수행할 수 있는 Multistep 솔루션을 제공한다.  특히 가스터빈, 펌프 등의 회전 시스템이 작동할 때 회전 RPM/Unbalance/Gyroscope 효과에 의해 공진주파수가 변화하여 진동을 유발하는 형상에 대해 예측하고 개선하는 Rotor Dynamics 솔루션과 3D Printing 형상의 제작 과정에서 열변형 등의 문제를 사전에 예측하여 변형된 보상 형상을 CAM에 내보냄으로써 실제로 출력하고자 하는 형상을 trial-and-error를 최소화하는 Additive Manufacturing 솔루션을 제공한다. (3) 음향 분석 음향 해석은 보다 조용한 제품, 소음 규제 준수, 음장 예측 작업 등 당면 과제를 해결하는 데에 도움이 될 수 있다. Simcenter 3D는 통합 솔루션 내에서 내부 및 외부 음향 해석을 제공하여 초기 설계 단계에서 정보에 기반한 의사 결정을 지원하여, 제품의 음향 성능을 최적화하도록 한다. 확장 가능한 통합 모델링 환경에는 효율적인 솔버와 해석이 용이한 시각화 기능이 통합되어 있어서 제품의 음향 성능을 신속하게 파악할 수 있다. ■ 경계요소법(BEM), 유한요소법(FEM), 기하 음향학(RAY) 기반의 음향해석 지원 ■ AML(Automatically Matched Layer)을 이용한 무한 방사조건 지원 ■ FEM AO(Adaptive Order)를 이용한 계산속도 향상 ■ 다양한 시뮬레이션을 이용한 소음해석 프로세스 → MBD/EM/CFD to NVH (4) NVH & FE-TEST Correlation 시스템 수준의 FE 및 테스트 결합 Hybrid 모델을 만들고 실질적 하중 조건 규명(TPA)과 소음 및 진동 반응을 시뮬레이션 하는데 필요한 도구가 결합되어 있다. 소음 및 진동 성능을 탐색하고 가장 중요한 원인을 정확히 파악하기 위한 여러 가지 시각화 및 해석 도구가 여기에 포함된다. 사용자에게 익숙한 도구를 통해 엔지니어는 설계를 신속하게 수정하고 소음 및 진동 성능의 영향을 몇 분 안에 평가할 수 있다.  Simcenter 3D는 시뮬레이션 모델의 신뢰성을 향상시킬 목적으로 측정된 동특성과 예측 모델 사이의 상관관계를 규명하고, Nastran SOL200 기반의 민감도 해석을 통해 시뮬레이션 모델의 신뢰성 향상 및 모델링 표준화를 지원하는 FE-TEST Correlation을 지원한다. (5) 모션 해석 복사기, 슬라이딩 선루프 또는 윙플랩 같은 복잡한 기계 시스템의 작동 환경을 이해하는 것은 어려울 수 있다. 모션 시뮬레이션은 기계 시스템의 반력, 토크, 속도, 가속도 등을 계산한다. CAD 형상 및 어셈블리 구속조건을 정확한 모션 모델로 즉시 변환하거나 처음부터 직접 모션 모델을 만들 수 있으며, 내장된 모션 솔버와 후처리 기능을 통해 제품의 다양한 거동을 연구할 수 있다. (6) 내구 해석 내구성 엔지니어에게 가장 어려운 작업은 가장 효율적인 방식으로 오류 방지 구성요소와 시스템을 설계하는 작업이라는 데에는 이견이 없다. 피로 강도가 충분하지 않은 시스템 부품은 영구적인 구조적 손상과 생명에 위협이 될 수 있는 상황을 초래할 수 있다. 실수는 제품 리콜을 초래해 제품뿐만 아니라 전체 브랜드 이미지에 부정적인 영향을 미칠 수 있다.  개발 사이클이 짧아지고 품질 요구사항이 계속 증가하면서 테스트 기반 내구성 방식은 그 한계를 드러내고 있다. 시뮬레이션 방법으로 내구성 성능을 평가하고 향상시키는 것이 유일하게 유효한 대안이다. Simcenter는 실제 하중 조건을 빠르고 정확하게 고려해 피로 수명 예측 해석을 수행할 수 있는 최첨단 해석 방법에 대한 액세스를 제공한다. (7) 열해석 Simcenter 3D Thermal은 열 전달 솔루션을 제공하고 복잡한 제품 및 대형 어셈블리에 대한 전도, 대류 및 복사 현상을 시뮬레이션할 수 있는 기본 기능 뿐만 아니라 정교한 복사 분석, 고급 광학 특성, 복사 및 전기가열 모델, 1차원 유압 네트워크 모델링 및 위상 변화, 탄화(Charring) 및 삭마(Ablation)와 같은 고급 재료모델을 위한 광범위한 방법을 제공한다. 사용자는 Simcenter 3D 통합 환경을 활용하여 신속한 설계변경 및 열 성능에 대한 신속한 피드백을 얻을 수 있고, 설계 및 엔지니어링 프로세스와 쉽게 통합되는 Simcenter 3D 열 해석 솔루션은 설계자와 해석자의 공동작업을 용이하게 하여 제품 개발의 생산성 향상을 지원한다. ■ 분리, 불일치 요소면, 형상의 자동 연결 ■ 모델링 자동화를 위한 유저 서브루틴, 유저 플러그인, 수식 및 API를 지원 ■ 통합된 환경에서 복합 열전달, 열-유동, 열-구조 등 연성해석 수행 가능 ■ ECAD와 연계로 반복작업과 모델링 에러 개선 (8) 유동해석 Simcenter 3D Flow는 복잡한 부품 및 어셈블리의 유체 유동을 모델링하고 시뮬레이션하기 위한 정교한 도구를 제공하는 CFD 솔루션이다. 잘 확립된 Control-Volume 공식의 성능과 정확성을 Cell-Vertex 공식과 결합하여 Navier-Stokes 방정식으로 설명된 유체 운동을 이산화하고 효율적으로 해결한다. 압축성(Compressible) 유체 및 고속(High Speed) 유동, non-Newtonian 유체, 무거운 입자추적(tracking of heavy Particles) 및 다중회전 기준 프레임(multiple rotating frames of reference)을 포함하는 내부 또는 외부 유체의 유동 시뮬레이션을 지원한다. ■ 단일 환경에서 Multi-Physics 시뮬레이션 기능 지원, 열-구조-유동 연성해석 ■ ECAD와 연동하여 전자장치의 냉각을 위한 최적화된 열-유동 해석 도구를 제공 (9) Material Engineering 오늘날 다양한 분야에서 첨단 소재를 사용함으로써 제품을 혁신하고 있으며, 이러한 이유로 새로운 소재들이 시장에 빠른 속도로 도입되고 있다. 첨단 소재를 제품에 적용할 때 균열은 매우 중요한 고려 사항이지만, 첨단 소재의 마이크로(micro) 및 메조(meso) 균열은 기존의 유한 요소법으로 모델링 및 해석하기가 어렵다.  하지만 Simcenter 3D는 완전한 대표 체적요소(RVE : Representative Volume Element) 분리, 소재 내부의 균열 또는 응집 영역(cohesive zones) 등 마이크로 레벨의 재료 특성을 고려할 수 있으며, 이를 통해 매크로(macro) 구조 모델과 마이크로 구조 모델이 전체 격자가 분리된 상태에서 균열이 소재를 통해 전파되는 현상을 해석할 수 있다.  (10) 저주파 전자기장 해석 Simcenter 3D LFEM은 모터, 변압기, 스피커 등의 전기기기에 대한 성능, 열에 의한 에너지 손실과 같은 전자기적 특성을 예측하는 솔루션을 제공한다. 3D CAD 모델로부터 전자기장 해석 모델을 구축하여 정교한 자성 재료 정의하고 속성, 경계 조건 및 통합 1D 회로 모델링 도구를 사용하는 부하를 정의할 수 있으며, 결과의 정교한 후처리를 수행하는 전자기장 해석 전과정을 지원한다. ■ 전자기장 해석에 필요한 고급 재료물성 지원 ■ 6자유도 운동을 고려한 전자기장 해석 ■ 해석 시간을 절감하는 고급 격자생성 기능 및 경계조건 지원(Smart Meshing & BC) ■ 전자기-열 연성해석 ■ 전자기장 해석결과로부터 열/유동/소음진동 해석을 진행하는 프로세스 제공 (11) 고주파 전자기장 해석 Simcenter 3D HFEM은 항공우주 산업의 전자기 호환성(EMC) 관련 인증의 핵심 주제인 번개(IEL) 및 고강도 복사장(HIRF)의 간접 효과를 검증하는 시뮬레이션을 지원한다. 또한 자동차 산업에서 ADAS(Advanced Driver Assistance System) 및 센서뿐만 아니라 EV 파워 트레인의 EMC 및 전자기 간섭(EMI) 성능을 검증하고 개선하는 고주파 시뮬레이션을 지원한다. Simcenter 3D에 탑재된 Simcenter 고주파수 EM 솔버는 Maxwell의 전자기 방정식을 풀기 위한 적분방(MoM 및 MLFMA)을 기반으로 하는 전파 솔버를 지원한다. 또한 UTD 및 IPO를 기반으로 점근법(asymptotic methods)을 사용할 수 있고, 2.5D 및 전체 3D 필드 문제를 효율적으로 해결하기 위해 다양한 솔버가 통합되었다. 솔버 가속 옵션(MLFMA, DDM, 다중 경계 조건 MoM기반 알고리즘)이 내장되어 대규모 시스템의 계산 시간을 단축한다. (12) 안전 시뮬레이션  Simcenter 3D Safety(Madymo)는 자동차 안전 시뮬레이션에 광범위하게 사용되고 있으며, 엔지니어가 고급 통합 안전 시스템을 생성하는 데에 필요한 기능을 제공한다. Simcenter 3D Safety는 탑승자 및 보행자 안전 개발을 위한 전용 사용자 환경을 제공하며, 빠르고 정확한 솔버는 광범위한 DOE 및 최적화 연구를 가능하게 한다.  Simcenter 3D Safety는 다물체 동역학(MBD), 유한요소(FE) 및 전산유체역학(CFD) 기술을 단일 솔버에 통합하여, 엔지니어에게 정확성과 속도 간의 적절한 균형을 유지하면서 안전 시스템을 모델링할 수 있는 유연성을 제공한다. 또한 활성 인체 모델은 모든 뼈, 근육 및 연부조직 재료로 인체를 모델링할 수 있어, 충돌 안전 시뮬레이션 시 차량 탑승자 및 보행자의 골격, 근육, 관절 등의 상세 상해정도 분석 및 평가를 지원한다. (13) 타이어 시뮬레이션 Simcenter 3D Tire는 차량의 동적 시뮬레이션을 위해 타이어의 거동을 모델링하는 플랫폼과 서비스를 제공한다. Simcenter 3D Tire를 통해 차량 제조 업체와 공급 업체는 실질적인 타이어 특성을 고려할 수 있고, 모든 동역학 시뮬레이션 툴 및 연산 시스템과 연동될 수 있는 타이어 모델을 변수화 및 표준화하기 위해 필요한 타이어 테스트를 최소화할 수 있다.  MF-Tyre는 모든 주요 차량 동적 시뮬레이션 툴에서 사용할 수 있는 Pacejka Magic Formula 기반 타이어 모델이다. MF-Swift는 승차감, 도로 하중 및 진동 분석을 위한 MF-Tyre의 확장 모듈이다. MF-Swift는 MF-Tyre 기능에 일반적인 3D 장애물 포위(obstacle enveloping) 및 타이어 벨트 동역학을 추가 지원한다. 이러한 접근 방식을 통해 모든 관련 차량 동적 시뮬레이션을 수행할 수 있는 올인원(all-in-one) 타이어 모델의 생성을 지원한다.      좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-31
구조 해석 소프트웨어, LS-DYNA
주요 CAE 소프트웨어 소개 ■ 개발 : Livermore Software Technology, www.lstc.com ■ 자료 제공 : 한국시뮬레이션기술, 031-903-2061, www.kostech.co.kr LS-DYNA는 대변형(Large deformation)이 발생하고 복잡한 비선형 소재특성(Non-linear Material)과 복잡한 접촉(Complex Contact) 조건의 구조 역학 문제에 대한 동적 거동 물리현상을 해석하는데 적합한 프로그램이다.  이러한 복잡한 문제를 매우 짧은 시간에 해결할 수 있도록 데스크톱 컴퓨터 및 클러스터의 리눅스, 윈도우 및 유닉스 환경에서 실행되는 SMP(Symmetric Multi Processing) 및 MPP(Massively Parallel Processing) Solver를 제공하고 있다. 1. 주요 특징 LS-DYNA의 ‘One model’ 및 ‘One Code’ 개념과 기능을 통해 사용자는 하나의 시뮬레이션 모델을 구조, 유체, 충돌 및 고유값 시뮬레이션을 비롯한 여러 유형의 시뮬레이션에 적용할 수 있다. 뿐만 아니라 ‘Multi-Physics’, ‘Multi-Processing’, ‘Multiple Stages’, ‘Multi-Scale’이 필요한 문제를 하나의 코드로 결합하여 원활하게 해결할 수 있는 기능을 제공하고 있다.  LS-DYNA는 explicit와 explicit의 시간 증분 방식 간의 상호 호환이 가능하며 열연성해석(coupled thermal analysis), CFD(Computational Fluid Dynamics),FSI(fluid-structure interaction) SPH(Smooth Particle Hydrodynamics), EFG(Element Free Galerkin), CPM(Corpuscular Method), BEM(Boundary Element Method)과 같은 이질적인 분야를 결합할 수 있다.   2. 주요 활용 분야 LS-DYNA에서 제공하는 이러한 다양한 솔루션 및 기능은 여러 분야에서 활용되고 있으며, 대표적인 해석 분야는 다음과 같다. ■ Crashworthiness/ Driver Impact / Drop test simulation ■ Mesh Free Method : ALE, EFG, SPH, Airbag particle ■ Heat Transfer Analysis ■ Metal Forming Analysis ■ Earthquake Engineering ■ Acoustic / Vibration / Fatigue ■ Discrete element method ■ CFD(incompressible, compressible) ■ EM(Electromagnetism)   3. 제품 구성 (1) LS-DYNA Solver LS-DYNA는 사용자의 다양한 사용환경에 맞추어 LS-DYNA Solver를 사용할 수 있도록 여러 플랫폼의 Solver를 제공하고 있다. 윈도우의 경우 기존의 LS-DYNA Manager뿐만 아니라 MPP 환경도 제공하는 Winsuit을 제공하고 있으며, 리눅스와 유닉스의 경우 OS와 MPI 플랫폼 환경에 따라 각각 별도의 Solver를 제공하고 있다. (2) LS-PrePost  LS-PrePost는 키워드 입력 파일을 기반으로 LS-DYNA 모델을 가져오고 편집하고 내보내는 등의 기능을 통하여 LS-DYNA의 입력 파일을 편집하는 Preprocess 전문 툴이다. 동시에 LS-DYNA의 해석 결과를 불러들여 3차원 애니메이션, 응력과 변형류의 시간 이력, XY Plot 등등 LS-DYNA의 해석 결과를 다양한 방법으로 확인할 수 있는 GUI를 제공하고 있다.  (3) LS-OPT LS-OPT는 LS-DYNA의 최적화 도구로서 디자인 스페이스를 쉽게 조사하고 최적 디자인을 찾는 환경을 제공한다. 또한, 문제 정의 시스템을 위한 솔루션도 함께 제공한다. LS-OPT는 SRSM(Successive Response Surface Method)과 통계학적인 접근(Robustness analysis)에 기반하고 있다.    (4) LS-TaSC LS-TaSC는 토폴로지 및 형상 계산 툴이다. LS-TaSC는 동적 하중 및 접촉 조건이 관련되어 있는 비선형 문제들의 토폴로지 최적화를 가능하게 한다. (5) LSTC Dummy / Barrier Model LS-DYNA 개발사에서는 LS-DYNA 사용자의 비용 절감을 위해서 다양한 종류의 Dummy Model과 Barrier Model을 제공하고 있다. 이들 모델은 주기적으로 업데이트되어 기존 모델의 변경 사항을 반영하고 새로운 모델을 출시하고 있다.   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-25
유니티, MWU 코리아 어워드 2023의 산업 및 게임 분야 수상작 발표
유니티 코리아가 우수 콘텐츠 선발 공모전인 ‘메이드 위드 유니티 코리아 어워드 2023(Made with Unity Korea Award 2023, 이하 MWU 코리아 어워드 2023)’ 시상식을 개최했다. MWU 코리아 어워드는 국내 유니티 크리에이터 발굴 및 우수한 작품을 지원하기 위해 기획된 행사로 지난 2017년부터 이어오고 있다. 최근에는 게임 분야를 넘어 산업계 다양한 분야까지 공모 영역을 확장했다. MWU 코리아 어워드 2023의 최종 수상작은 온라인 대중 투표와 유니티 내부 평가 위원단의 심사를 통해 결정됐으며, 게임과 인더스트리 부문 각 6개 분야, 특별상 2개 분야, 최우수작 2개 분야 총 16개 부문에 걸쳐 상이 수여됐다. 올해 최우수작(Best of 2023)은 산업 분야에서는 녹원정보기술의 ‘베모스(BEMOS) : 건물 에너지 관리 및 최적화를 위한 디지털 트윈’, 게임 분야에서는 스튜디오킹덤의 ‘브릭시티(BRIXITY)’가 선정됐다. 최우수작 수상 팀에게는 상금 500만 원이 지급되며, 유니티 전문가의 컨설팅 서비스와 다양한 혜택이 주어진다. 산업 분야 최우수작으로 선정된 디지털 트윈 플랫폼 베모스는 누구나 쉽고 효율적으로 에너지 사용과 관리를 할 수 있다는 점에서 높은 평가를 받았다. 녹원정보기술의 홍성범 상무는 “탄소중립, 4차 산업혁명 기술 등을 배경으로 한 새로운 개념의 차세대 건물 에너지 관리 시스템을 개발해 고도화된 디지털 트윈에 반영했다”면서, “직관적인 화면을 제공해 누구나 쉽게 실시간으로 데이터를 조회하고 사용자가 원하는 조건에 대한 시뮬레이션 결과를 확인할 수 있기 때문에 활용도가 높을 것”이라고 소개했다. 산업 분야에서는 독특한 아이디어를 통해 높은 실용성을 확보한 작품들이 눈길을 끌었다. ▲베스트 학생 부문은 커빙 포인트의 ‘튜닝(Tuning) : 거대 악기, 오케스트라의 세계로’ ▲베스트 미디어 & 엔터테인먼트 부문은 안드로메다스튜디오의 ‘타이니즈’ ▲베스트 시뮬레이션 부문은 연세대학교 일반대학원 건축공학과의 ‘Real:(un)ity’ ▲베스트 시각화 부문은 아이엠파인의 ‘다이브 아트(Dive Art)’ ▲베스트 이머시브 부문은 유비씨 XR팀의 ‘협동 로봇 3D 디지털 트윈 및 AR 관제’ ▲베스트 기대작은 주식회사 아키핀의 ‘매일 만나는 원어민 친구들 헬로루디’ ▲특별상인 베스트 소셜 임팩트 부문은 하이퍼클라우드의 ‘AR Earth Savers’가 수상했다.     한편, 올해 게임 분야에서는 유니티의 다채로운 기술을 활용해 과감한 시도를 펼친 작품들이 돋보였다는 것이 유니티의 설명이다. 게임 분야 최우수작을 수상한 스튜디오킹덤의 김지인 PD는 “배치와 꾸미기로 제한되었던 기존의 시티 빌딩 경험과 달리 100%에 가까운 자유도를 유저들에게 선사하여 창작의 재미를 주고자 하였으며, 더 나아가 유저들이 직접 놀거리를 만드는 멀티플레이 모드를 제공하며 함께하는 재미를 강화하고자 했다”고 설명했다. 올해 MWU 코리아 어워드 심사위원을 맡은 유니티 코리아의 김범주 애드보커시 리더는 “MWU 코리아 어워드는 매년 역대 최다 출품작 수를 갱신하며 국내 대표 개발자 공모전으로 자리매김했다”면서, “완성도 높은 작품들이 다수 출품된 만큼 심사에도 심혈을 기울였으며, 각 부문별 전문성과 창의성을 기준으로 우수작을 선정했다. 앞으로도 유니티는 크리에이터들의 창작 환경 개선을 위해 최선을 다할 것”이라고 말했다.
작성일 : 2023-11-27