• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "1D"에 대한 통합 검색 내용이 1,057개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
CONTACT Elements로 여는 AI 혁신 - 서울 현장 라이브(11/13)
CONTACT Elements로 여는 AI 혁신 - 서울 현장 라이브 디지털 전환은 당신의 경쟁력을 결정합니다. 최신 기술을 빠르고 지속 가능하게 통합하는 기업만이 혁신적으로 성공할 수 있습니다. CONTACT Elements는 구조화된 데이터 기반과 독창적인 프레임워크를 제공하여, AI의 가치를 진정으로 실현할 수 있게 합니다. ​ 서울에서 열리는 CONTACT Elements Live Tour(CELT) 행사에서, 아이디어 단계부터 AS까지 AI가 어떻게 업무 프로세스를 혁신할 수 있는지 직접 경험하실 수 있습니다.   이번 서울 행사에서는 디지털 전환 전문가들과 1:1로 직접 의견을 나누고, 파트너 및 고객들과 교류할 수 있는 소중한 기회가 마련됩니다.     Agenda 2025년 11월 13일(목) 시간 내용 13:30 환영 인사 13:50 패스트 포워드 - 디지털 전환 l  Top Floor → Shop Floor l  AI 혁신 14:20 패스트 포워드 - 제품 개발 l  요구사항 관리: 애자일 방식 관리, 새로운 요구사항의 원할한 통합, 개선 방안 자동 도출 l  애자일 엔지니어링: 효율적인 프로젝트 조직과 원할한 협업으로 더 빠른 구현을 실현 l  효울적 팀워크: 3D 모델 통합 및 PLM 인터페이스 기반의 실시간 협업 14:45 패스트 포워드 - 설계변경 관리 l  스마트 변경: 자동화된 실행 권장사항과 투명한 변경 이력 추적 l  원할한 프로세스: 익숙한 환경에서 직접 설계변경 실행 l  엔트투엔드 연결: PLM에서 생산 현장까지 - 끊김 없는 연속 프로세스 l  자동화 워크플로: 지능형 BOM 생성과 매끄러운 생산 계획 지원 15:10 커피 브레이크(휴식 및 토론) 15:40 패스트 포워드 - 의사 결정 l  PLM on the Go: 빠른 정보 수집을 위한 AI 어시스턴트 l  지속 가능한 혁신: 탄소 모니터링과 소재 최적화로 효율 극대화 l  빠른 의사 결정: 연결된 데이터와 AI로 지원되는 투명한 의사 결정 프로세스 16:05 패스트 포워드 - 제조 분야 l  현장 관리: 실시간 데이터로 전체 생산 과정 투명하게 확인 l  제조 추적: 편차를 즉시 감지하고 선제적으로 대응 l  서비스 관리: 전체 서비스 팀이 모바일 기기를 통해 언제 어디서나 정보 활용 가능 16:30 고객 사례 발표 17:00 커피 브레이크(휴식 및 자유 토론) 17:30 파트너 인사이트 l  세원에스텍 l  SLEXN 18:00 AI - 게임 체인저 l  세계 최고의 디지털화 플랫폼에서 실현되는 엔드투엔드 AI 통합 환경 18:30 만찬 및 네트워킹 ※ 상기 아젠다는 사정에 따라 변동 될 수 있습니다 ​
작성일 : 2025-10-30
IBM, AI 가속기 ‘스파이어 엑셀러레이터’ 정식 출시
IBM은 자사의 메인프레임 시스템 IBM z17 및 IBM 리눅스원 5(IBM LinuxONE 5)에 적용 가능한 인공지능(AI) 가속기 ‘스파이어 엑셀러레이터(Spyre Accelerator)’를 정식 출시한다고 밝혔다. 스파이어 엑셀러레이터는 생성형 및 에이전트 기반 AI 업무를 지원하는 빠른 추론 기능을 제공하며, 핵심 업무의 보안과 복원력을 최우선으로 고려해 설계되었다. 12월 초부터는 파워11(Power11) 서버용 제품도 제공될 예정이다. 오늘날 IT 환경은 기존의 논리 기반 업무 흐름에서 에이전트 기반 AI 추론 중심으로 전환되고 있으며, AI 에이전트는 저지연(low-latency) 추론과 실시간 시스템 반응성을 요구한다. 기업은 처리량의 저하없이 가장 까다로운 엔터프라이즈 업무와 AI 모델을 동시에 처리할 수 있는 메인프레임과 서버 인프라를 필요로 한다. IBM은 이러한 수요에 대응하기 위해서 생성형 및 에이전트 기반 AI를 지원하면서도 핵심 데이터, 거래, 애플리케이션의 보안과 복원력을 유지할 수 있는 AI 추론 전용 하드웨어가 필수적이라고 판단했다. 스파이어 엑셀러레이터는 기업이 중요한 데이터를 사내 시스템(온프레미스, on-premise) 내에서 안전하게 관리할 수 있도록 설계되었으며, 운영 효율성과 에너지 절감 효과도 함께 제공한다.     스파이어 엑셀러레이터는 IBM 리서치 AI 하드웨어 센터의 혁신 기술과 IBM 인프라 사업부의 개발 역량이 결합된 결과물이다. 시제품으로 개발된 이후 IBM 요크타운 하이츠 연구소의 클러스터 구축과 올버니대학교 산하 ‘신흥 인공지능 시스템 센터(Center for Emerging Artificial Intelligence Systems)’와의 협업을 통해 빠른 반복 개발 과정을 거쳐 완성도를 높였다. 이렇게 기술적 완성도를 높여 온 시제품 칩은 현재는 IBM Z, 리눅스원, 파워 시스템에 적용 가능한 기업용 제품으로 진화했다. 현재 스파이어 엑셀러레이터는 32개의 개별 가속 코어와 256억 개의 트랜지스터를 탑재한 상용 시스템온칩(SoC, system-on-a-chip) 형태로 완성되었다. 5나노미터 공정 기술을 기반으로 제작된 각 제품은 75와트(Watt) PCIe 카드에 장착되며, IBM Z 및 리눅스원 시스템에는 최대 48개, IBM 파워 시스템에는 최대 16개까지 클러스터 구성이 가능하다. IBM 고객들은 스파이어 엑셀러레이터를 통해 빠르고 안전한 처리 성능과 사내 시스템 기반의 AI 가속 기능을 활용할 수 있다. 이는 기업이 IBM Z, 리눅스원, 파워 시스템 상에서 데이터를 안전하게 유지하면서도 AI를 대규모로 적용할 수 있게 되었음을 의미한다. 특히, IBM Z 및 리눅스원 시스템에서는 텔럼 II(Telum II) 프로세서와 함께 사용되어 보안성, 저지연성, 높은 거래 처리 성능을 제공한다. 이를 통해 고도화된 사기 탐지, 유통 자동화 등 예측 기반 업무에 다중 AI 모델을 적용할 수 있다. IBM 파워 기반 서버에서는 AI 서비스 카탈로그를 통해 기업 업무 흐름에 맞춘 종합적인 AI 활용이 가능하다. 고객은 해당 서비스를 한 번의 클릭으로 설치할 수 있으며, 온칩 가속기(MMA)와 결합된 파워용 스파이어 엑셀러레이터는 생성형 AI를 위한 데이터 변환을 가속화해 심층적인 프로세스 통합을 위한 높은 처리량을 제공한다. 또한 128개 토큰 길이의 프롬프트 입력을 지원하며, 이를 통해 시간당 800만 건 이상의 대규모 문서를 지식 베이스에 통합할 수 있다. 이러한 성능은 IBM의 소프트웨어 스택, 보안성, 확장성, 에너지 효율성과 결합되어, 기업이 생성형 AI 프레임워크를 기존 업무에 통합해 나가는 여정을 효과적으로 지원한다. IBM 인프라 사업부 최고운영책임자(COO)이자 시스템즈 사업부 총괄 배리 베이커(Barry Baker) 사장은 “스파이어 엑셀러레이터를 통해 IBM 시스템은 생성형 및 에이전트 기반 AI를 포함한 다중 모델 AI를 지원할 수 있는 역량을 갖추게 됐다. 이 기술 혁신은 고객이 AI 기반 핵심 업무를 보안성과 복원력, 효율성을 저해하지 않고 확장할 수 있도록 돕는 동시에, 기업 데이터의 가치를 효과적으로 끌어낼 수 있도록 지원한다”고 말했다. IBM 반도체 및 하이브리드 클라우드 부문 무케시 카레(Mukesh Khare) 부사장은 “IBM은 2019년 AI 리서치 하드웨어 센터를 설립해, 생성형 AI와 대규모 언어 모델(LLM)이 본격적으로 확산되기 이전부터 AI의 연산 수요 증가에 대응해 왔다. 최근 고도화된 AI 역량에 대한 수요가 높아지는 가운데, 해당 센터에서 개발된 첫 번째 칩이 상용화 단계에 진입해 자랑스럽다”면서, “이번 스파이어 칩의 정식 출시로 IBM 메인프레임 및 서버 고객에게 향상된 성능과 생산성을 제공할 수 있게 되었다”고 설명했다.
작성일 : 2025-10-28
AI 팩토리 M.AX 얼라이언스, 2030 제조 AI 최강국 향한 혁신 가속화
산업통상부는 10월 1일 AI 팩토리 M.AX 얼라이언스 전략 회의를 개최하고, 대한민국 제조업의 인공지능 전환(M.AX)을 통한 2030 제조 AI 최강국 도약을 위한 성과와 전략을 점검했다. 삼성전자, 현대자동차, LG엔솔, 삼성중공업 등 국내 대표 제조 기업들이 한자리에 모여 제조 혁신의 의지를 다졌다. 김정관 장관은 "AI 시대는 속도와의 전쟁이다. AI 팩토리는 빠르게 세계 1위를 도전할 수 있는 분야"라며, "정책과 자원을 집중해 순풍을 만들겠다"고 밝혔다.   AI 팩토리 선도사업, 2030년까지 500개로 대폭 확대 AI 팩토리 선도사업은 제조 공정에 AI를 접목해 생산성을 획기적으로 높이고 제조 비용과 탄소 배출 등을 감축하는 핵심 프로젝트이다. 이날 회의를 계기로 삼성전자, 현대자동차, LG전자, LG엔솔, SK에너지, HD현대중공업, 농심 등 업종 대표 기업들이 신규 참여를 확정했다. 이에 따라 현재 102개인 AI 팩토리 선도 사업은 2030년까지 500개 이상으로 확대될 계획이다. 주요 기업들은 AI 팩토리를 통해 혁신적인 성과를 목표로 했다. 삼성전자는 AI를 통해 HBM(고대역폭메모리반도체)의 품질을 개선한다. HBM은 ’28년까지 연평균 100% 이상 급성장이 기대될 정도로 각광받는 AI 반도체이다. 삼성전자는 현재 전반적으로 사람이 수행중인 HBM 불량 식별 공정에 AI를 도입할 계획이다. AI가 발열검사 영상, CT 이미지 등을 분석해 품질검사의 정확도를 99% 이상 높이고, 영상·이미지 등의 비파괴 검사를 통해 검사시간도 25% 이상 단축할 것으로 기대된다. HD현대중공업은 함정 MRO용(Maintain 유지보수, Repair 수리, Overhaul 정비) 로봇 개발을 추진한다. 보통 선체의 10% 면적에 따개비·해조류 등의 오염물질이 부착되면 연료소비가 최대 40%까지 증가한다. HD현대중공업은 숙련공에 의존하던 해양생물 제거, 재도장 등의 작업을 AI 로봇에 맡겨, MRO효율을 80% 이상 향상시키고 작업자 안전사고 등을 방지할 계획이다. 현대자동차는 셀방식 생산방식에 핵심이 되는 AI 다기능 로봇팔을 개발한다. 자동차산업은 소품종 대량생산의 컨베이어벨트 방식에서, 제품별로 공정을 다르게 적용해 유연생산이 가능한 셀기반 방식으로 전환되고 있다. 현대차는 힌지·도어 조립, 용접품질 검사 등 다양한 공정을 자율적으로 수행가능한 AI 로봇팔을 공정에 도입하여, 시장수요 변화에 신속히 대응하고 생산성을 30% 이상 높일 계획이다. 농심은 라면 제조설비에 AI 기반 자율정비 시스템을 도입한다. 원료공급, 제면, 포장 등의 라면 제조공정은 연속작동 설비가 많아 한 부분의 예기치 못한 고장으로 생산라인 전체가 중단될 수 있다. 이에 각 공정별로 다양한 이상 징후를 조기에 탐지하는 자율정비 시스템을 도입해 설비 효율성을 10% 이상 제고하고, 유지보수 비용은 10% 이상 절감할 계획이다. 현재까지 AI 팩토리 선도사업에 참여중인 업종별 주요기업 자동차 반도체 전자(가전 등) 철강 조선 현대차, LG이노텍, 한국타이어, 기아 삼성전자, 케이씨텍, 이수페타시스 LG전자, 쿠첸, LS전선 포스코, KG스틸, 대한제강 삼성중공업, HD현대삼호 항공·방산 식품·바이오 이차전지 석유화학·섬유 기계·건설 대한항공, KAI. 한화시스템 농심, 삼양식품, 한국콜마 LG에너지솔루션, 삼성SDI SK에너지, GS칼텍스, 코오롱 HD현대건설기계, 코넥 휴머노이드 로봇, 금년부터 제조 현장 실증 본격 투입 AI 팩토리 전략의 한 축으로, 제조 현장 휴머노이드 로봇 투입을 위한 실증 계획도 공개되었다. 금년에는 디스플레이, 조선, 물류 등 6개 현장에 휴머노이드가 투입된다. 분야 수요기업 공급기업 휴머노이드 주요 과업 디플 삼성디스플레이 레인보우로보틱스 레이저 장비내 렌즈교체, 검사 JIG 교체 작업 등 조선 HD현대미포 에이로봇 각종 상황과 이음 형태에 맞는 용접 작업 수행   삼성중공업 에이로봇 다양한 장애물, 협소 공간, 비평탄면 등 극복을 통해 자율 이동하며 용접·청소 등 가전 LG전자 로브로스 인간 수준 핸들링 작업 및 보행을 바탕으로 가전제품 공장 내 조립·운송 화학 SK에너지 홀리데이로보틱스 석유화학 제품 검사, 유압/가스 밸브 등 조작, 시료 제조, 검사 시료 운송 등 수행 유통 CJ대한통운 레인보우로보틱스 피킹·분류·검수·포장 등 복잡한 물류 작업 동작을 다양한 상품에 맞게 자율적으로 수행 산업부는 올해부터 2027년까지 100개 이상 휴머노이드 실증 사업을 통해 핵심 데이터와 기술을 확보하고, 2028년부터는 본격적인 양산 체계에 돌입할 계획이다. 선도사업 성과 가시화, 세계 최고 업종별 제조 AI 모델 개발 착수 현재까지 진행된 AI 팩토리 선도 사업에서는 이미 가시적인 성과가 도출되고 있다. GS칼텍스는 AI를 통해 정유 공정 데이터를 분석해 연료 비용을 20%가량 감축했으며, 온실가스 배출 저감 효과도 달성했다. HD현대미포는 AI 로봇을 투입해 용접 검사·조립 작업시간을 12.5% 단축했다. 반도체 기업인 대덕전자와 신한다이아몬드는 AI 도입으로 기존 육안 품질 검사 시간을 각각 90%, 30% 단축하는 성과를 보였다. 이러한 성과를 바탕으로 AI 팩토리 M.AX 얼라이언스는 세계 최고 수준을 목표로 하는 업종별 특화 제조 AI 모델 개발에 착수했다. 제조 AI에 특화된 전문가를 비롯해 뉴욕대 조경현 교수, 멜버른대 한소연 교수 등 초거대 AI 모델 전문가 23명이 공동으로 참여한다. 개발된 모델은 2028년 완료를 목표로 하며, 제조 현장 배포 시 기업들은 개발 비용 50%, 개발 시간 40%를 줄일 수 있을 것으로 기대했다. '다크 팩토리' 구현 위한 AI 팩토리 사업 확대 전략 산업부는 AI 팩토리 사업을 확대·개편해 내년부터 완전 자율형 AI 공장인 AI 팩토리(다크 팩토리) 건설에 필요한 기술 개발과 실증 사업을 추진한다. 제조 공정뿐 아니라 공장 설계, 시생산, 공급망 관리, 물류, A/S 등 제조 전 단계를 아우르는 AI 모델을 개발·확산할 계획이다. 특히 엔비디아 CEO 젠슨 황이 강조한 디지털 트윈을 활용한 '가상공장(Virtual Factory)' 구현을 전략의 한 축으로 삼았다. 가상공장을 통해 기업은 시스템 변경, 설비 고장, 공급망 변동 등 다양한 상황에서 공정 가동을 미리 테스트하고, 실제 공장과 연동해 모니터링, 예지 보전, 원격 제어 등에 활용할 수 있게 된다. 이러한 기술을 바탕으로 2030년까지 우리나라가 세계 최고의 AI 팩토리 수출국으로 발돋움하는 것을 목표로 관련 전략을 수립했다.
작성일 : 2025-10-11
고충실도 제트 유동 시뮬레이션으로 항공우주 산업 혁신
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (26)   이번 호에서는 고속 제트 유동 시뮬레이션에서 마주하게 되는 주요 도전 과제를 설명한다. 또한 피델리티 LES 솔버(Fidelity LES Solver)의 기능을 소개하고, 이를 활용한 사례 연구를 통해 그 잠재력을 강조하고자 한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   초고속 제트 유동을 시뮬레이션하는 것은 기술적으로 매우 도전적인 과제이자 유체역학 분야의 흥미로운 최전선이다. 특히 초음속 및 극초음속 비행 기술이 발전함에 따라, 이러한 극한 속도에서의 복잡한 유동 거동을 이해하는 것은 점점 더 중요해지고 있다. 마하 1 이상의 속도에서는 공기역학적 힘의 성질이 크게 변하며, 충격파가 발생한다. 이 충격파는 특정한 유동 패턴을 만들어내며, 이는 항공기의 성능, 안정성 및 기동성에 큰 영향을 미칠 수 있다. 비행 속도가 마하 3을 넘어 특히 스크램제트 엔진이 작동하는 구간에 이르면, 마찰 및 압축으로 인해 발생하는 온도 변화가 섭씨 1500도 이상에 달할 수 있다. 이러한 극한의 열 환경은 설계 시 제대로 고려되지 않으면 재료 피로와 파손을 초래할 수 있다. 하지만 피델리티 LES 솔버(구 Cascade CharLES)와 같은 전산 유체역학(CFD) 도구의 발전으로, 연구자는 이제 고속 비행의 물리 현상을 과거에는 불가능했던 수준의 정밀도로 탐구할 수 있게 되었다. 그러나 이러한 극한 조건을 정확히 시뮬레이션하려면 무엇이 필요할까? 수많은 시뮬레이션 과제를 어떻게 해결할 수 있을까?     고속 제트 유동 시뮬레이션의 도전 과제 고속 제트 유동을 시뮬레이션하는 것은 온도, 압력, 난류 간의 복잡한 상호작용으로 인해 상당한 어려움을 동반한다. 높은 레이놀즈 수에서는 난류가 매우 불규칙하게 변하기 때문에, 정확한 결과를 얻기 위해서는 강력한 알고리즘과 고성능 컴퓨팅 자원이 필수이다. 가장 큰 과제 중 하나는 압축성 효과를 포착하는 것이다. 고속 유동에서는 밀도 변화 및 충격파와의 상호작용이 유동의 거동을 극적으로 변화시키므로, 이를 정확히 모델링하는 것이 매우 중요하다. 또한 고속 제트 내부의 복잡한 유동 구조를 고려할 때 효과적인 난류 모델링이 필수이며, 정확성과 계산 효율 간의 균형을 찾는 것은 여전히 큰 도전 과제이다. 또 다른 핵심 요소는 열 전달과 수치적 안정성이다. 급격한 온도 구배(gradient)는 경계 조건의 정교한 정의를 요구하며, 그렇지 않으면 시뮬레이션 내에서 반사 오류(artifact)가 발생할 수 있다. 고해상도 수치 기법은 이러한 구배를 포착하는 데 필수이지만, 그만큼 계산 비용도 증가한다. 소음 예측 역시 중요한 과제이다. 제트 소음을 정확하게 예측하려면 유동 시뮬레이션과 함께 공력음향 모델을 통합하여, 다양한 환경에서의 음파 전파를 효과적으로 재현해야 한다. 여기에 연료 분사를 포함하면 혼합(mixing) 모델링이 추가로 필요하며, 이는 전체 제트 성능에 영향을 주는 핵심 요소로 작용한다. 또한, 실험 데이터와의 검증 문제도 간과할 수 없다. 실험적 기준이 제한적인 경우가 많기 때문에 시뮬레이션은 불완전한 데이터와 상이한 가정을 기반으로 진행되어야 하며, 이는 결과 검증을 어렵게 만든다. 이러한 모든 문제는 정교한 전산 도구와 안정적인 고성능 컴퓨팅 인프라가 필수임을 보여준다. 이를 통해 고속 제트 유동 시뮬레이션의 정확도와 효율을 동시에 향상시킬 수 있다.   해결책 : 피델리티 LES 솔버 피델리티 LES 솔버는 극초음속 및 초음속 유동 시뮬레이션을 위해 개발된 고충실도 전산 유체 역학(CFD) 분석 도구이다. 이 도구는 Large Eddy Simulation(LES)을 고속 항공우주 분야에 확장하여, 극한 유동 환경에서의 고유한 과제를 해결하도록 설계되었다. 고급 수치 기법, 고품질 격자 생성, 뛰어난 병렬 확장성을 결합하여 복잡한 유동을 정밀하게 예측할 수 있다. 다면체 격자 생성(polyhedral mesh generation) : 고급 클리핑 보로노이 다이어그램(clipped Voronoi diagrams)을 활용하여 복잡한 형상에서도 강력하고 효율적인 격자 생성을 지원한다. 이를 통해 정밀하고 확장 가능한 시뮬레이션이 가능하다. 확장성(scalability) : CPU 및 GPU 기반 고성능 컴퓨팅 환경 모두에서 원활하게 작동하도록 설계되어, 고해상도 결과를 빠르고 효율적으로 제공한다. 예측 중심 고충실도 시뮬레이션 : 최신 알고리즘을 통해 충격파 상호작용부터 음향파 전파에 이르기까지 고속 제트 유동의 복잡한 물리 현상을 정밀하게 재현할 수 있다.   사례 연구 : 비선형 음향파형 분석 피델리티 LES 솔버의 성능을 입증하기 위해, 고속 제트 유동을 시뮬레이션하고 그 음향 특성을 분석하는 사례 연구가 수행되었다. 이 연구의 주요 목적은 출구 마하수 3(Mach 3)의 제트 노즐에서 방출된 비선형 음향파형의 전파 현상을 분석하고, 그 결과를 실험 데이터와 비교·검증하는 데 있었다.   ▲ 고속 제트 유동에서의 누적 비선형 음향파형 왜곡 분석     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
AI로 더욱 똑똑해진 CAD 어시스턴트, A3
데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (7)   DWG 호환 CAD로 잘 알려진 독일 그래버트(Graebert)의 아레스 캐드(ARES CAD)는 PC 기반의 아레스 커맨더(ARES Commander), 모바일 기반의 아레스 터치(ARES Touch), 클라우드 기반의 아레스 쿠도(ARES Kudo) 모듈로 구성되어 있으며, 이들 모듈은 상호 간 동기화되어 작동한다. 이러한 구성으로 인해 아레스 캐드는 삼위일체형(trinity) CAD로 불린다. 이번 호에서는 아레스 커맨더에 탑재된 AI 도우미 A3를 중심으로, 새롭게 추가된 주요 기능을 살펴보겠다.   ■ 천벼리 캐디안 3D 솔루션 사업본부 대리로 기술영업 업무를 담당하고 있다. 홈페이지 | www.arescad.kr 블로그 | https://blog.naver.com/graebert 유튜브 | www.youtube.com/GraebertTV   그림 1   아레스 AI 어시스트(ARES AI ASSIST : A3)는 사용자의 개인용 CAD 도우미이다. 아레스 커맨더가 현재 14개 언어를 지원하는 것과 달리, A3는 50개 이상의 언어를 지원하여 사용자에게 더욱 폭넓고 맞춤화된 경험을 제공한다. 올해 A3는 선택 및 수정 기능을 A3 팔레트를 통해 새롭게 추가하여, 작업 효율을 한층 높였다. 사용자는 팔레트 기반의 직관적인 인터페이스를 통해 원하는 객체를 빠르게 선택하고, 보다 간편하게 수정 작업을 수행할 수 있다.   A3의 CAD 지식 및 기능 A3는 소프트웨어 학습을 도와준다. 예를 들어, “PDF 가져오기 기능이 어디 있는지 보여줘”라고 물어보면(그림 2), A3는 리본 메뉴에서 해당 기능의 위치를 직접 표시한다.(그림 3~4)   그림 2   그림 3   그림 4   또 “보기 전용 링크를 생성하는 절차를 알려줘”라고 말하면(그림 5), A3는 단계별 사용 방법을 안내한다.(그림 6)   그림 5   그림 6   A3로 추가 제안 요청하기 A3는 업계 특화된 질문에도 답할 수 있다. 예를 들어 “DIN 933 표준이 무엇인가요?”라고 물어보면(그림 7), 전문적인 질문에도 대응할 수 있다.(그림 8)   그림 7   그림 8     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01