• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " rom"에 대한 통합 검색 내용이 130개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
하이퍼웍스 2025 / HPC웍스 2025 : AI로 제품 개발 및 HPC 스케줄링 효율 향상
개발 및 공급 : 알테어 주요 특징 : 하이퍼웍스 2025 – AI와 머신러닝으로 더욱 정밀하고 빠른 시뮬레이션 구현, 통합 해석 기술로 설계 효율성과 정확도 극대화, 클라우드 및 자동화 도구로 협업과 생산성 향상 등. HPC웍스 2025 – AI 기반 스마트 작업 스케줄링 도입으로 작업 운영 최적화, 유연한 클라우드 확장성과 자동화 엔진으로 운영 효율성 강화, GPU 및 쿠버네티스 지원 확대로 AI 및 머신러닝 워크로드 성능 향상 등   ▲ 이미지 출처 : 알테어 웹사이트 캡처   AI·자동화로 설계 효율 높인 하이퍼웍스 2025 설계 및 시뮬레이션 플랫폼인 알테어 하이퍼웍스 2025(Altair HyperWorks 2025)는 인공지능(AI)과 머신러닝 기반의 해석 및 최적화 기술을 강화해, 시제품 제작 과정을 최소화하고 설계 프로세스를 혁신했다. 새 버전은 트랜스포머 아키텍처 기반의 AI 물리 예측 모델을 적용해 적은 데이터로도 정밀한 시뮬레이션이 가능하며, 머신러닝 기반 솔버는 해석 속도와 신뢰성을 동시에 향상시켰다. AI 기반 차수 축소 모델링(ROM)은 비선형 시스템을 빠르게 해석해 설계 초기 단계에서 중요한 통찰력을 제공한다. 시뮬레이션 해석 성능 역시 개선됐다. 알테어 옵티스트럭트(Altair OptiStruct)는 기존에 사용하던 기계 충격 해석, 열 충격 해석, 진동 해석 등을 하나의 설루션에서 수행할 수 있다. 이를 통해 해석 시간이 단축되고 모델 관리가 용이하며 설계 효율성과 신뢰성을 높일 수 있다. 또한 알테어 피직스AI(Altair physicsAI)는 기존 수치 해석 솔버를 AI 기반 솔버로 대체해 정확도를 유지하면서도 해석 속도를 높였다. 알테어는 자사의 클라우드 플랫폼인 알테어 원(Altair One)을 통해 HPC(고성능 컴퓨팅) 및 시뮬레이션 데이터에 즉시 접근할 수 있는 협업 환경도 마련했다. 또한 알테어 하이퍼메시(Altair HyperMesh)의 파이썬 API 지원으로 반복 작업을 자동화하고 대규모 모델의 해석 준비 시간을 단축할 수 있다. 베타 버전으로 출시된 AI 설계 도우미 알테어 코파일럿(Altair Copilot)은 실시간 Q&A와 워크플로를 지원한다. 소재 설루션은 복합소재, 폴리머, 적층 제조 등 첨단 소재의 데이터를 수집 및 표준화하고, AI 기술로 불완전한 데이터를 보완해 시뮬레이션 정확도를 높였다. 알테어의 짐 스카파 CEO는 “알테어 하이퍼웍스 2025는 40년간 축적한 알테어의 시뮬레이션, 설계, 최적화 역량이 집대성된 결과물”이라면서, “AI와 머신러닝, 자동화, 개방형 아키텍처를 통합해 단순한 시뮬레이션 플랫폼을 넘어선 통합 엔지니어링 설루션을 제공할 것”이라고 말했다.   ▲ 이미지 출처 : 알테어 웹사이트 캡처   AI 기반 작업 스케줄링 및 클라우드 확장성 강화한 HPC웍스 2025 고성능 컴퓨팅(HPC) 및 클라우드 플랫폼인 ‘알테어 HPC웍스(Altair HPCWorks) 2025’는  AI 기반 작업 스케줄링, GPU 및 쿠버네티스 지원 확대, 클라우드 확장성 강화를 비롯해 기업의 대규모 AI 학습과 데이터 분석 작업을 안정적으로 지원한다. 최신 버전은 AI 기반 스마트 작업 스케줄링을 통해 작업 제출을 간소화하고 대기 시간을 줄였으며, GPU 및 쿠버네티스와의 호환성을 강화해 AI 및 머신러닝 워크로드의 성능을 최적화했다. 클라우드 리소스 활용 효율성을 높인 것도 특징이다. 사용자는 클라우드 작업과 하이브리드 컴퓨팅 환경을 손쉽게 최적화할 수 있으며, 피크 타임의 워크로드도 유연하게 처리할 수 있다. 서드파티 스케줄러와의 연동도 가능해 확장성과 호환성도 높였다. 또한, 통합된 클라우드 자동화 엔진을 사용하면 필요할 때 클러스터를 빠르게 늘리고 사용량이 줄어들면 자동으로 줄일 수 있어, 운영 비용과 시간을 절감할 수 있다. 멀티 클라우드나 여러 클러스터를 동시에 사용하는 환경에서도 HPC 및 클라우드 관리를 한 곳에서 할 수 있어 운영이 편리하다. HPC웍스 2025는 알테어의 데이터 분석 및 AI 플랫폼인 알테어 래피드마이너와 연계해 더욱 효율적인 작업 스케줄링을 구현했다. 이 외에도 모든 알테어 워크로드 관리자에 HPC 및 클라우드 모니터링과 리포팅 기능을 통합해 IT 관리자들의 데이터 기반 의사 결정과 컴퓨팅 자원 최적화를 돕는다. 한편 HPC웍스는 알테어 유닛(Altair Units) 라이선스 시스템을 기반으로 운영되며, 클라우드 기반의 알테어 원(Altair One)과 연계해 추가 비용 없이 알테어의 다양한 기술을 활용할 수 있다. 알테어의 샘 마할링엄 최고기술책임자(CTO)는 “데이터와 AI 중심 환경에서 차세대 HPC 및 클라우드 기술은 필수”라면서, “HPC웍스를 통해 기업은 인프라를 최적화하고 경쟁력을 높일 수 있을 것”이라고 말했다.    ▲ 이미지 출처 : 알테어 웹사이트 캡처     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-03-06
알테어, AI·자동화로 설계 효율 높인 ‘하이퍼웍스 2025’ 출시
알테어가 설계 및 시뮬레이션 플랫폼인 알테어 하이퍼웍스 2025(Altair HyperWorks 2025)를 출시했다. 이번 버전은 인공지능(AI)과 머신러닝 기반의 해석 및 최적화 기술을 강화해, 시제품 제작 과정을 최소화하고 설계 프로세스를 혁신했다.   새 버전은 트랜스포머 아키텍처 기반의 AI 물리 예측 모델을 적용해 적은 데이터로도 정밀한 시뮬레이션이 가능하며, 머신러닝 기반 솔버는 해석 속도와 신뢰성을 동시에 높였다. AI 기반 차수 축소 모델링(ROM)으로 비선형 시스템을 빠르게 해석해 설계 초기 단계에서 중요한 통찰력을 제공한다.   시뮬레이션 해석 성능 또한 개선됐다. 알테어 옵티스트럭트(Altair OptiStruct)는 기존에 사용하던 기계 충격 해석, 열 충격 해석, 진동 해석 등을 하나의 설루션에서 수행할 수 있다. 이를 통해 해석 시간이 단축되고 모델 관리가 용이하며 설계 효율성과 신뢰성을 높일 수 있다. 또한 알테어 피직스AI(Altair physicsAI)는 기존 수치 해석 솔버를 AI 기반 솔버로 대체해 정확도를 유지하면서도 해석 속도를 높였다.     알테어는 자사의 클라우드 플랫폼 알테어 원(Altair One)을 통해 HPC(고성능 컴퓨팅) 및 시뮬레이션 데이터에 즉시 접근할 수 있는 협업 환경도 마련했다. 또한 알테어 하이퍼메시(Altair HyperMesh)의 파이썬 API 지원으로 반복 작업을 자동화하고, 대규모 모델의 해석 준비 시간을 줄일 수 있다.   베타 버전으로 출시된 AI 설계 도우미인 알테어 코파일럿(Altair Copilot)은 실시간 Q&A와 워크플로를 지원한다. 소재 설루션은 복합소재, 폴리머, 적층 제조 등 첨단 소재의 데이터를 수집 및 표준화하고, AI 기술로 불완전한 데이터를 보완해 시뮬레이션 정확도를 높였다.   알테어의 짐 스카파 CEO는 “알테어 하이퍼웍스 2025는 40년간 축적한 알테어의 시뮬레이션, 설계, 최적화 역량이 집대성된 결과물”이라면서, “AI와 머신러닝, 자동화, 개방형 아키텍처를 통합해 단순한 시뮬레이션 플랫폼을 넘어선 통합 엔지니어링 설루션을 제공할 것”이라고 전했다.
작성일 : 2025-02-20
[포커스] CAE 컨퍼런스 2024, 제조 혁신을 위한 CAE와 AI의 융합 전략 소개
‘AI와 CAE 융합을 통한 차세대 제조 혁신 전략’을 주제로 한 ‘CAE 컨퍼런스 2024’가 지난 11월 8일 수원컨벤션센터에서 진행됐다. 스마트공장구축 및 생산자동화전(SMATEC 2024) 전시회와 함께 치러진 이번 행사에서는 제품 개발 과정에서 필수로 여겨지는 CAE 기술의 발전과 함께, 제조산업에서 AI(인공지능)의 방향성을 짚는 기회가 마련됐다. ■ 정수진 편집장      CAE 컨퍼런스 2024 준비위원회의 위원장인 KAIST 강남우 교수(나니아랩스 대표)는 개회사에서 “사전 학습된 대규모 모델의 활용이 활발해지면서, AI로 할 수 있는 일이 무궁무진해지고 있는 것 같다. 한편으로 CAE와 제조 분야에서는 어떻게 AI를 활용해야 할 것인지에 대해 아직 의문점이 많다”면서, “최고 전문가들이 현장의 소리를 전하는 CAE 컨퍼런스 2024에서 이런 의문을 풀고 AI와 제조 혁신을 위한 인사이트와 아이디어를 얻을 수 있기를 바란다”고 전했다.   제조 혁신을 위한 통섭의 중요성 에스엔에이치의 민태기 연구소장은 ‘기술독립과 통섭에서 배우는 CAE 엔지니어를 위한 판타레이’를 주제로 기조연설을 진행했다. 그는 “애플이 ‘기술과 리버럴 아트의 교차점’을 강조한 이후, 우리나라에서는 ‘리버럴 아츠’를 인문학으로 해석해 인문학 열풍이 일었다. 하지만 ‘리버럴 아츠’는 중세 대학의 교양 과목인 문법, 수사학, 논리학, 산술, 기하학 등을 포함하며, 단순히 인문학에 국한되지 않는다. 기술 혁신에 대한 이러한 오해를 바로잡을 필요가 있다”고 강조했다. 기술 혁신의 목적은 생산성 향상이며, 이는 공정의 변화를 통해 이루어졌다. 석기 시대에서 청동기, 철기 시대로의 변환, 증기기관을 활용한 대형 철갑선과 방적기의 등장 등은 모두 생산성 차이에 따른 제조 공정의 혁신이 사회와 역사를 근본적으로 변화시킨 사례이다. 민태기 연구소장은 “우리 중소기업에게 제조 혁신은 생존의 문제이기도 하다. AI를 활용하는 것은 기존 편견을 극복하고 새로운 영역을 개척하는 데 초점을 맞춰야 한다”며, “우리 제조산업의 미래는 디지털 기술을 활용한 제조 혁신에 달려 있다. 이를 위해 정밀 공학과 창의적 사고의 융합으로 새로운 성장 동력을 만들어야 한다”고 전했다.    ▲ 에스엔에이치 민태기 연구소장   AI/ML과 디지털 플랫폼을 통한 CAE 혁신 헥사곤 매뉴팩처링 인텔리전스의 전완호 본부장은 ‘AI/ML과 디지털 리얼리티 플랫폼을 통한 CAE 혁신 전략’을 주제로 기조연설을 진행했다. 그는 디지털 전환을 “데이터와 프로세스를 디지털화하여 생산성과 창의성을 극대화하는 과정”으로 정의하며, “센서 기반의 실제 데이터를 활용하는 것이 해석 데이터만 사용하는 것보다 더 정확하고 유용하다”고 강조했다. 헥사곤은 센서를 통해 실제 세계의 형상을 디지털 환경으로 가져와 설계와 시뮬레이션을 거쳐 다시 실제 세계로 반영하는 ‘디지털 리얼리티 설루션’을 내세운다. 전완호 본부장은 AI와 머신러닝을 활용한 축소 차수 모델(ROM)을 이용해 데이터를 실시간으로 예측하고 활용함으로써 디지털 트윈의 운영 효율을 높이는 기술과 사례를 소개했다. 그리고 “헥사곤은 다양한 데이터를 통합하는 넥서스(Nexus) 플랫폼을 통해 CAE, 제조, 품질 관리 등 여러 팀이 협업할 수 있는 환경을 제공한다”고 전했다. 통합 플랫폼과 AI/머신러닝을 결합해 실시간 시뮬레이션과 디지털 트윈을 운영하고, 데이터의 수집부터 해석, 최적화, 협업까지 모든 과정을 하나의 플랫폼에서 관리함으로써 디지털 전환을 더욱 효과적으로 추진할 수 있다는 것이 전완호 본부장의 설명이다.    ▲ 헥사곤 매뉴팩처링 인텔리전스 전완호 본부   SDV 전환과 소프트웨어 품질 강화 전략 현대오토에버의 박경훈 실장은 ‘SDV 체계 전환 및 차량 소프트웨어 품질 경쟁력 강화 방안’을 주제로 기조연설을 진행했다. 자동차는 이동 수단에서 벗어나 소프트웨어 중심의 차량(SDV)으로 변화하고 있다. 차량의 전자화와 함께 서비스와 사용자 경험을 중시하게 되면서 소프트웨어의 중요성이 더욱 부각되고 있다. 자동차 업계는 소프트웨어의 품질을 높이고, 출시 시간을 줄이면서, 시장 점유율을 확보하기 위해 핵심 기능을 빠르게 구현하고 테스트하는 애자일(agile) 방식의 개발 체계로 전환하고 있으며, OTA 업데이트를 통해 지속적으로 소프트웨어를 개선하고 있다. 박경훈 실장은 “오토에버는 이러한 산업 변화에 따라 국제 표준 및 컴플라이언스를 준수하는 개발 환경을 구축하고, 가상 검증 및 지속적인 테스트 체계를 도입하고 있다”고 소개했다. 가상 검증은 제어기를 가상화하여 테스트를 앞당기고 품질을 높이는 방식으로, 전통적인 개발 뒷단에서의 문제를 앞단에서 발견하여 해결하는 데에 중점을 두고 있다. 이를 위해 오토에버는 클라우드 기반의 검증 체계를 구축했고, 클라우드 컴퓨팅을 활용한 다양한 테스트 시나리오의 자동화를 통해 시간과 비용 절감을 추진하고 있다는 것이 박경훈 실장의 설명이다.    ▲ 현대오토에버 박경훈 실장   타이어 개발의 디지털 트윈 시스템과 생산 최적화 금호타이어의 김기운 전무는 ‘타이어 개발 프로세스에 대한 디지털 트윈 시스템 구축’에 대해 기조연설을 진행했다. 그는 4차 산업혁명 시대 타이어의 기술 진화 방향으로 IoT 센서, 빅데이터 분석, AI 예측 모델, 로보틱스를 활용한 공장 자동화를 짚으면서, 이를 통해 타이어 개발과 생산 과정을 디지털화하고 최적화하는 것이 목표라고 짚었다. 금호타이어는 설계부터 성능 평가, 최적화까지 전체 과정을 디지털화하고 자동화하는 타이어 디지털 트윈 시스템을 구축 중이다. 이 시스템은 ▲타이어 단면 및 트레드 패턴의 자동 설계 ▲빅데이터와 CAE 기술을 이용한 타이어 성능 예측 ▲AI와 유한 요소 해석(FEM)을 통한 설계 최적화 그리고 ▲시뮬레이션을 통한 타이어 성능 가상 평가 등 네 가지 모듈로 구성된다.김기운 전무는 “디지털 트윈을 통해 개발자가 쉽게 성능 평가 결과를 확인하고 빠르게 제품 개발을 진행할 수 있어, 개발 시간 단축과 비용 절감을 기대할 수 있다”고 설명하며, “앞으로 제조 공정에도 디지털 전환을 적용하고, 차량 동역학 해석을 업그레이드하여 드라이빙 시뮬레이터까지 예측하고자 한다”고 전했다.   ▲ 금호타이어 김기운 전무   ■ 이어 보기 : [포커스] CAE 컨퍼런스 2024 발표 내용 정리     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-12-04
[기고] 모델링 및 시뮬레이션을 사용한 안전한 전기차 배터리 관리 시스템 설계
안전은 전기자동차(EV)에서 가장 중요한 관심사이다. EV에 일반적으로 사용되는 리튬 이온 배터리는 높은 에너지 밀도로 인해, 배터리 설계 시 상정된 작동 조건에서 벗어날 경우 고장이 날 위험이 있다. 배터리 관리 시스템(BMS)은 배터리 파괴로 이어지는 통제할 수 없는 발열 반응인 열폭주를 비롯한 부정적인 결과를 방지하는 데에 핵심 역할을 한다. BMS의 주요 기능으로는 전류, 전압 및 온도 모니터링, 과충전 및 과방전 방지, 셀 간 전하 밸런싱, 배터리의 충전 상태(SOC) 및 성능 상태(SoH) 추정, 배터리팩의 온도 제어 등이 있다. 이러한 기능은 전기자동차의 성능, 안전성, 배터리 수명, 사용자 경험에 영향을 미치므로 매우 중요하다. 예를 들어, BMS는 전압 한계를 넘는 과충전 및 과방전을 방지함으로써 배터리의 조기 노화를 방지하고, 차량이 수명 기간 동안 성능을 유지할 수 있도록 한다.    그림 1. EV에 일반적으로 사용되는 리튬 이온 배터리의 높은 에너지 밀도는 배터리 설계 시 상정된 동작 조건에서 벗어나는 경우 고장이 날 위험이 있다.   BMS 개발에서 시뮬레이션의 이점 엔지니어는 거동 모델을 사용해 데스크톱 컴퓨터에서 배터리 플랜트 모델, 환경 및 BMS 알고리즘을 시뮬레이션한다. 그리고 하드웨어 프로토타입을 제작하기 전에 데스크톱 시뮬레이션을 통해 새로운 설계 아이디어를 탐색하고 여러 시스템 아키텍처를 테스트한다. 데스크톱 시뮬레이션을 통해 엔지니어는 BMS 설계의 기능적 측면을 검증할 수 있다. 예를 들어, 다양한 밸런싱 구성을 탐색해 적합성과 구성 간의 균형을 평가할 수 있다. 시뮬레이션은 요구사항 테스트에도 중요하게 작용한다. 엔지니어는 절연 이상이 있는 상황에서 올바른 접촉기의 거동을 검증할 수 있고, 하드웨어 테스트를 대체하기 위해 시뮬레이션을 통해 결함이 발생한 동안 시스템의 거동을 평가한다.    그림 2. 엔지니어는 거동 모델을 사용해 데스크톱 컴퓨터에서 배터리 플랜트 모델, 환경 및 BMS 알고리즘을 시뮬레이션한다.   데스크톱 시뮬레이션을 사용해 설계가 검증되면, 엔지니어는 신속 프로토타이핑(RP)이나 HIL(Hardware-in-the-Loop) 테스트를 위해 자동으로 C 코드나 HDL 코드를 생성하고, 실시간으로 코드가 실행되는 BMS 알고리즘을 더욱 면밀히 검증할 수 있다. RP를 통해 BMS 알고리즘 모델에서 코드가 생성되며, 이는 프로덕션 마이크로컨트롤러의 기능을 수행하는 실시간 컴퓨터에 배포된다. 자동 코드 생성을 통해 모델에 적용된 알고리즘 변경 사항을 며칠이 아닌 몇 시간 안에 실시간 하드웨어에서 테스트할 수 있다. HIL 테스트의 경우 BMS 알고리즘 모델이 아닌 배터리 플랜트 모델에서 코드가 생성되어 배터리팩, 능동 및 수동 회로 소자, 부하, 충전기 및 기타 시스템 컴포넌트를 나타내는 가상의 실시간 환경이 제공된다. 이 가상 환경을 통해 엔지니어는 실제 하드웨어 프로토타입을 개발하기 전에 실시간으로 BMS 컨트롤러의 기능을 검증할 수 있다.  시뮬레이션을 통해 엔지니어는 설계부터 코드 생성까지의 시간을 획기적으로 단축하고, 향상된 속도와 효율로 다양한 기술을 빠르게 모델링할 수 있다. 알티그린 프로펄션 랩(Altigreen Propulsion Labs)의 엔지니어들은 칼만 필터링 및 전류 적산법 등의 SOC 추정을 위한 다양한 기술을 모델링하고 반복적으로 테스트하기 위해 시뮬레이션 기반 접근 방식을 사용했으며, 포괄적인 접근 방식을 설계했다.  알티그린의 제어 시스템 책임자인 프라타메시 파트키(Prathamesh Patki) 수석 엔지니어는 “임베디드 코더(Embedded Coder) 덕분에 개발 시간이 절반으로 단축되었다”면서, “그 어떤 것을 개념화하든, 실제 하드웨어에서 가장 짧은 시간 안에 그것을 실행할 수 있다”고 말했다.    BMS 개발에서 모델링 및 시뮬레이션 활용 사례 셀 특성화는 배터리 모델을 실험 데이터에 맞추는 과정이다. BMS 알고리즘은 배터리 모델을 사용해 SOC 추정을 위한 칼만 필터나 SOC에 따른 전력 제한, 과전압이나 저전압 조건을 피하기 위한 온도와 같은 제어 파라미터를 설정하기 때문에 정확한 셀 특성화가 필수이다. BMS 개발의 후반 단계에서는 엔지니어가 동일한 배터리 모델을 사용해 시스템 수준 폐순환(closed-loop) 데스크톱 및 실시간 시스템 시뮬레이션을 수행할 수 있다. 심스케이프 배터리(Simscape Battery)와 같은 툴은 등가 회로, 전기화학 및 차수 축소 모델링(ROM : Reduced Order Modeling)을 비롯한 배터리 모델링에 대해 신경망을 사용한 다양한 접근 방식을 제공한다.  충전 속도는 EV 설계 및 도입에 있어서 핵심 성과 지표이다. 고속 충전의 높은 전력 수준은 배터리 재료에 스트레스를 주고 수명을 단축시키기 때문에, 최대 충전 속도와 배터리에 가해지는 스트레스를 최소화하기 위해 고속 충전 중 전력 프로필을 최적화하는 것이 필수이다. 이는 시뮬레이션과 최적화를 통해 달성되며, 이로써 충전 시간이 최소화되고 스트레스 요인을 허용 범위 내로 유지할 수 있다.  양산용 코드 생성은 자동차 산업의 인증 표준을 준수하는 BMS 설계 워크플로를 보완한다. 예를 들어, LG화학(현 LG에너지솔루션)이 볼보 XC90 플러그인 하이브리드 자동차의 BMS를 개발했을 때 오토사(AUTOSAR)가 필수 표준이었다. LG화학은 BMS 알고리즘 및 거동을 설계 워크플로의 필수적인 부분으로 모델링하고 시뮬레이션하기로 결정했다. 각 소프트웨어 릴리스에서 발견된 소프트웨어 문제의 수는 약 22개에서 9개 미만으로 줄어 프로젝트 목표를 크게 웃돌았다. LG화학이 오토사를 사용하여 볼보를 위해 개발한 BMS는 ASIL C(Automotive Safety Integrity Level C)에 대한 ISO 26262 기능 안전 기반 인증을 취득했다.    맺음말 BMS 설계에서의 모델링과 시뮬레이션은 개발 주기를 단축하고, 비용을 절감하며, 더 안전하고 효율적인 EV를 실현할 수 있도록 지원한다. 엔지니어는 모든 가능한 동작 및 결함 조건에 대해 BMS 알고리즘을 실행함으로써, BMS 소프트웨어가 실제 시스템에서 해당 조건을 처리할 수 있다는 확신을 높이고 고비용 테스트의 필요성을 줄인다. 결국, 이러한 접근방식은 최종 제품이 업계 표준과 소비자 기대치를 뛰어넘도록 한다.    ■ 이웅재 매스웍스코리아의 이사이다. 홈페이지 | https://kr.mathworks.com     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-11-28
[포커스] 태성에스엔이, “CAE와 AI의 융합으로 제품 개발 혁신”
태성에스엔이는 9월 11일 서울 aT센터에서 'CAE×AI 세미나 2024'를 개최했다. 이날 세미나에는 300명 이상의 업계 전문가들이 참석한 가운데, 앤시스의 해석 프로그램과 AI의 접목을 통한 혁신적인 해석 기법들이 소개되었다. 참석자들은 최신 CAE 해석 기술과 AI의 융합을 통해 향후 제조업과 설계 분야의 발전 가능성에 대한 인사이트를 얻었다. ■ 박경수 기자      AI/ML을 활용한 해석 혁신 이번 세미나에서는 AI/ML 기술의 CAE 해석 적용을 주제로 앤시스 심AI(Ansys SimAI)와 앤시스GPT(AnsysGPT)를 포함한 다양한 AI 트렌드가 소개되었으며, 이를 활용해 더 빠르고 효율적인 해석 결과를 도출할 수 있는 방법이 논의되었다.  태성에스엔이 노은솔 매니저와 김도현 매니저는 ‘기초 이론과 사례로 살펴보는 인공지능’을 주제로, AI 도입으로 해석 부문이 어떤 변화가 생겼는지 설명했다. 이어 윤진환 이사는 '태성에스엔이와 Ansys의 AI 기술과 고객 서비스'를 소개하며, AI 기술이 CAE 해석에 어떻게 실질적으로 적용되고 있는지 설명했다. 권기태 수석매니저는 ‘태성에스엔이가 제공하는 시뮬레이션 데이터 기반 AI/ML 서비스’를 주제로, AI가 시뮬레이션 데이터를 활용해 성능을 최적화하는 방법에 대해 심도 깊은 논의를 진행했다.    Stochos와 AI 응용사례 CADFEM Germany GmbH의 다니엘 수쿠프(Daniel Soukup)는 Stochos라는 온프레미스 기반 AI 프로그램을 소개했다. Stochos는 신경망과 가우시안 프로세스를 결합한 Deep Infinite Mixture of Gaussian Processes(DIM-GP) 알고리즘을 통해 소량의 데이터로도 높은 예측 정확도를 제공하는 기술이다. 특히, 확률론적 머신러닝을 도입해 예측 결과의 신뢰도를 함께 제시하여 엔지니어들이 AI 결과를 더욱 신뢰할 수 있도록 만들어 준다. 이 기술은 복잡한 시뮬레이션 문제 해결에 있어 뛰어난 성능을 발휘하며 관심을 끌었다.   CAE와 AI 융합의 미래 이외에도 이번 행사에서는 앤시스의 최적화 전용 프로그램인 옵티스랭(optiSLang)에서 AI 사용 방법, 심AI, 앤시스GPT, 트윈AI(Ansys TwinAI) 등 AI를 접목한 앤시스의 최적화 기술이 차례로 소개되었고, 다양한 시각에서 AI 기술이 CAE에 어떻게 접목될 수 있는지 소개됐다.  태성에스엔이는 CAE와 AI의 결합을 통한 미래 산업의 변화 가능성에 대해 참석자들과 함께 토론하는 시간을 가지며 세미나를 마무리했다. AI 기반의 CAE 해석 기술은 향후 설계 및 제조 산업의 혁신을 주도할 중요한 요소로 자리잡을 것으로 기대된다.   ‘CAE×AI 세미나 2024’ 인터뷰  CAE×AI 세미나 2024 행사 관련해 태성에스엔이의 석진 영업본부 이사, 윤진환 기술본부 이사, 권기태 기술본부 AI 팀 수석매니저와 이야기를 나눴다. Q. 이번 세미나에서 발표된 AI/ML 기술 적용 사례 중, 특히 성공적인 사례를 하나 꼽는다면? 해당 사례에서는 어떤 방식으로 해석 프로세스를 개선했는지? ■ 윤진환 : 많은 분들이 AI/ML의 도입은 아직 시기상조이거나, 중견기업 이상의 대형 기업에서만 시험적으로 적용되고 있다고 생각할 수 있다. 하지만, 태성에스엔이의 AI 팀이 개발한 AI/ML 솔루션은 이미 국내 중소기업에서 실사용 되고 있는 사례를 보여드리고자 했다. 이 프로그램은 AI 모델 자동 생성 프로그램으로, 앤시스 일렉트릭 데스크톱(Ansys Electric Desktop)에서 계산된 시뮬레이션 결과를 기반으로 AI 모델을 자동으로 생성한다. 해석자가 앤시스 일렉트릭 데스크톱에서 설계 형상에 대한 변수만 지정해 두면, 본 프로그램은 자동으로 해당 변수를 추출해 실험계획법(DoE)을 기반으로 여러 번의 해석을 진행한 뒤, AI 모델을 구축한다.   ▲ 해석팀 : 해석 변수 자동 추출 및 AI모델 생성 자동화    이후, 설계자는 구축된 AI 모델을 기반으로, 임의의 설계 변수 값을 입력해 실시간으로 해당 설계안에 대한 예측 결과값을 확인할 수 있다.   ▲ 설계팀 : AI 모델을 통한 실시간 성능 예측   이후 설계자는 구축된 AI 모델을 바탕으로 임의의 설계 변수 값을 입력해 실시간으로 해당 설계안에 대한 예측 결과를 확인할 수 있다. 이 기능 덕분에 해석자는 설계팀으로부터 반복되는 동일 작업 요청을 줄일 수 있었고, 더 높은 수준의 분석이나 추가적인 AI 모델 구축에 시간을 투자할 수 있게 되었다. 설계팀 또한 실시간 예측을 통해 빠른 결과 분석을 반영해 작업 효율을 크게 향상시킬 수 있었다. 이 프로그램은 유사한 환경에서 구조해석, 열해석 등에도 적용 가능하며, 맞춤형 UI와 다양한 AI 기능을 구현할 수 있어 여러 기업으로부터 관심을 받고 있다.   Q. 심AI와 앤시스GPT와 같은 최신 기술 및 제품 트렌드가 CAE 해석 분야에서 어떤 변화를 가져올 것으로 기대하나? 이 기술들이 현장에서 어떻게 적용되고 있으며, 궁극적으로 해석 결과의 품질에 어떤 영향을 미칠 것으로 보는지? ■ 석진 : 심AI와 같은 AI 기반 도구는 반복적인 작업을 자동화하여 사용자가 모델링부터 해석에 이르는 전 과정을 보다 신속하게 수행할 수 있도록 지원한다. 설계 초기 단계에서 최적화를 진행할 수 있는 가능성이 높아지며, 이를 통해 설계 주기가 단축될 것이다. 또한, 인적 오류를 최소화함으로써 실험과 프로토타입 제작에 소요되는 비용과 시간을 절감하여 궁극적으로 시장 출시 주기를 획기적으로 단축시킬 것으로 기대된다. AI 기술을 활용해 대량의 해석 데이터를 분석하고 패턴을 인식함으로써 더 나은 설계 결정을 지원할 수 있으며, 앤시스GPT는 앤시스 공식 웹사이트 내에서 사용자 질문에 대한 정확하고 신뢰할 수 있는 답변을 제공하거나 최적의 설계 옵션을 제안하는 데 유용할 것이다. 이러한 기술은 CAE 도구의 사용을 더욱 쉽게 만들어 준다. 예를 들어, 복잡한 해석 과정이나 설정에 대한 자동 안내 및 추천 기능은 비전문가들도 손쉽게 접근할 수 있도록 도와준다. 또한, 다양한 팀과 부서 간 협업도 향상될 것이다. AI 기반 도구는 설계, 해석, 생산 팀 간의 원활한 커뮤니케이션을 지원하여 더 통합된 접근 방식을 가능하게 한다. 결론적으로, 심AI, 앤시스GPT, 앤시스 AI+ 등 앤시스의 AI 솔루션은 CAE 해석의 정확성, 효율성, 접근성을 크게 향상시킬 것으로 기대하며, 이는 산업 전반에 혁신적인 변화를 가져올 것이다.   Q. CAE 프로그램에 AI를 접목했을 때 해석 속도와 정확도는 얼마나 향상되었는지? 이런 기술적 통합이 실무 현장에서 얼마나 실질적인 성과를 보여주고 있다고 보는지? ■ 권기태 : 앤시스는 다음 그림과 같이 CAE 프로그램에 순차적으로 AI 기능을 추가하고 있다.  그 중 앤시스 CFD AI+ 기능을 하나의 사례로 소개하겠다. 플루언트(Ansys Fluent)에서 제공하는 Generalized k-ω Model(GEKO) 난류 모델은 사용자가 직접 계수를 설정해야 하며, 도메인 내에서도 각기 다른 계수를 설정해야 하는 어려움이 있다. 이러한 문제를 해결하기 위해 앤시스 CFD AI+는 Adjoint Solver와 Neural Network/Machine Learning 기법을 결합하여 GEKO 모델의 계수를 자동으로 조정하는 기능을 제공한다.  AI 기술의 효과를 확인하기 위해 S805 Airfoil 문제에 GEKO 모델 계수의 자동 튜닝 기능을 적용한 결과 GEKO 기본 계수를 사용할 때 오차는 기준값 대비 13.2%였지만, AI 기반 자동 튜닝 계수를 적용한 경우 오차가 0.2%로 크게 감소한 것을 확인할 수 있었다. 앤시스 AI+를 통해 CAE 프로그램과 AI 기술을 기술적으로 통합함으로써 해석 속도와 정확도를 개선하고 있다. 또한, 시뮬레이션 결과 데이터에 AI 기술을 적용하여 실무 현장에서 많은 성과를 보이고 있다. 심AI 프로그램은 형상과 시뮬레이션 필드 결과 데이터를 활용해 시뮬레이션 솔버를 대체할 수 있는 인공지능 모델을 제작할 수 있는 사례를 보여 준다. 이 모델을 사용하면 형상을 입력하여 기존 시뮬레이션 솔버에 비해 10배에서 최대 1000배 더 빠르게 필드 결과를 예측할 수 있다.  디지털 트윈 분야에서는 복잡한 물리 기반의 시뮬레이션 모델을 rom(축소 차수 모델)이라는 머신러닝 기법을 통해 시스템 수준의 해석 모델로 전환하여, 실시간 물리적 예측이 가능하며 빠른 속도와 높은 정확도를 제공한다.  향후 품질 및 생산 관리와 같은 측정 데이터 기반 인공지능 모델이 많이 사용되는 영역에서도 시뮬레이션 데이터 기반 인공지능 모델의 사용이 활발해질 것으로 기대된다. 이를 통해 시뮬레이션 기술은 설계 단계에만 머무르지 않고, 공정 및 품질 개발, 생산 및 품질 관리, 그리고 디지털 트윈과 같은 장치의 효율적인 운용 단계까지 그 활용 범위가 더욱 확장될 것이다.   Q. Stochos와 같은 온프레미스 기반의 AI 프로그램이 다른 클라우드 기반 AI 프로그램과 비교했을 때 어떤 차별화된 장점이 있다고 보나? 특히 보안성과 데이터 처리 측면에서 어떤 이점이 있는지? ■ 윤진환 : CAE 분야에서 클라우드 기반의 AI를 이용하는 이유는 사용자의 접근성을 높이기 위한 목적도 있지만, AI 학습을 위해서는 고가의 고성능 GPU가 필요하며 때로는 여러 대의 GPU를 묶어야 학습이 가능하기 때문에 장비 구축 비용이 매우 높다는 현실적인 이유도 있다. 다시 말해 온프레미스 환경에서 CAE에 대한 AI를 학습할 수 있다는 것은 기존의 AI 알고리즘과 달리 상대적으로 적은 계산 장비 리소스만으로도 정확하고 빠르게 학습할 수 있는 AI 기술을 보유하고 있다는 의미다.  Stochos는 일반적인 신경망 기반의 AI와 Gaussian Process기법을 결합한 DIM-GP 기법을 이용하여 적은 샘플수로도 높은 정확성의 AI모델을 만들어 내며, 저가의 GPU 또는 CPU만으로도 빠른 속도로 학습할 수 있다. 또한 Scalar, Signal, 이미지, 3D 형상, 정상상태, 과도상태 등의 다양한 해석 데이터와 일반 정보에 대한 AI 모델을 만들 수 있어서 활용도도 넓다. 특히 AI 모델 생성 시의 내부변수 설정(하이퍼파라미터)을 별도로 조절할 필요가 없으며, 자동으로 노이즈를 처리하는 기능이 있어 복잡한 AI 설정 과정이 필요 없는 것이 큰 장점이다.  보안성과 데이터 처리 부분에서는 클라우드 기반의 AI와 비교했을 때 사내 장비에서 모든 작업을 할 수 있어 데이터 유출이나 유실의 우려를 원천적으로 차단할 수 있으며, 사내망에서 구동되므로 데이터 전송 및 예측 속도가 빠르다는 장점이 있다. 따라서 보안 문제에 대한 우려가 있거나 사내 AI 장비 구축 비용에 부담을 느끼고 있다면, 이 솔루션이 훌륭한 대안이 될 수 있다고 생각한다.      Q. 태성에스엔이는 향후 AI 관련 기술을 어떻게 발전시켜 나갈 계획인지? 앞으로 예상되는 CAE 해석 관련 기술 발전 방향 및 비전에 대한 설명도 부탁드린다. ■ 윤진환 : 태성에스엔이는 열유동/구조/전기전장/시스템/광학/최적화 등의 분야에 대한 100여명의 전문엔지니어를 보유하고 있으며, 앤시스 AI+, 심AI, 앤시스GPT에 대해서는 모든 엔지니어가 각자의 해석분야와 산업분야에 대한 초기 대응을 수행하고 있다.  이에 더해 태성에스엔이에는 AI를 위한 전문 그룹이 구성되어 있다. 이 그룹은 기술 엔지니어 중에서 AI 분야의 전문성을 가진 인원들로 이루어졌으며, 다양한 산업군에서 필요로 하는 CAE AI 응용 방안을 고객과 논의하여 선제적이고 맞춤형 서비스를 제공하는 것을 목적으로 하고 있다.  그리고 상용 AI 프로그램인 Stochos과 오픈소스를 활용해 맞춤형 AI 환경을 구축하거나 AI 모델 생성 서비스를 제공하는 것도 주요 사업 중 하나이며, 엔비디아 옴니버스(Omniverse)와의 협업을 통해 3차원 실시간 그래픽 플랫폼에 CAE AI를 적용하는 작업도 병행하고 있다. 각종 학회, 기업체 연구소, 프로그램 개발 업체 등에서 CAE에 AI 기술을 접목하고 응용 방안을 연구하는 활동이 그 어느 때보다 활발히 진행되고 있다. CAE 자체의 해석 속도와 전후 처리 속도 향상, 그리고 편의성 증대는 전문 해석자의 업무 부담을 덜어줄 것이다. 또한, CAE AI 모델 구축을 통한 빠른 예측과 실시간 결과 도출은 설계자와 해석자 간의 협업을 더욱 긴밀하게 하여 해석이 실제 업무 현장에 더 활발하게 활용될 것으로 예상된다. 이에 따라 해석자는 CAE를 통해 AI 모델을 구축하고 배포하며, 이를 사내에서 쉽게 활용할 수 있도록 하는 플랫폼 환경 구축 업무가 꾸준히 증가할 것으로 예상된다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-10-04
알테어 최적화 대회에서 AI 기반 배터리 냉각 최적화 제안한 건국대팀이 대상 수상
알테어가 17회 알테어 최적화 대회(AOC)의 대상으로 건국대학교 김동현, 허준 학생팀을 선정했다고 밝혔다. 2008년부터 시작된 이 대회는 국내 대학생들의 소프트웨어 역량 강화와 우수 인재 발굴을 목표로 하는 소프트웨어 경진대회다. 올해 대회에는 전국의 37개 대학에서 132명(92팀)이 참가했으며, 5팀이 본선에 진출했다. 알테어는 합리성, 실용성, 독창성, 적용가능성, 최적화 결과 도출 등을 종합적으로 평가해 최종 수상팀을 선정했다. 알테어는 본선 진출 5개 팀에 총 390만원의 상금과 상장을 수여했다. 대상 200만원, 금상 100만원, 은상 50만원, 동상 20만원 이 지급됐다.   대상을 수상한 건국대학교 기계공학부 김동현, 허준 학생팀은 액체를 이용한 배터리 냉각 시스템의 압력 손실을 줄이기 위한 AI 기반 최적화 솔루션을 제시했다. 이들은 복잡한 물리적 시스템을 간소화하여 계산 시간을 단축하는 차수축소모델(ROM) 기법으로 AI 메타모델을 구축했다. 특히 약 700개의 데이터셋을 확보해 AI 모델의 신뢰성을 높인 점이 좋은 평가를 받았다.     건국대팀은 “공학 문제 해결에 AI 기술을 활용하여 새로운 가능성을 탐구할 수 있었다”며, “알테어의 romAI 솔루션이 AI를 활용하기 매우 용이했고, AI가 공학 연구에 미치는 영향력을 실감할 수 있었던 소중한 경험이었다”고 소감을 밝혔다. 알테어의 문성수 아시아태평양 수석 부사장은 “신선한 아이디어를 바탕으로 최적 설계안을 제안한 모든 학생들에게 깊은 감사의 인사를 전한다”며, “이 대회를 통해 학생들이 미래의 기술을 선도할 능력을 키우고, 최적 설계의 가치를 체득하길 바란다. 앞으로도 알테어는 학생들의 글로벌 경쟁력 강화를 위해 지속적으로 지원할 것”이라고 밝혔다.
작성일 : 2024-09-02
[포커스] 지멘스 DISW, “디지털 엔지니어링으로 자동차 개발을 혁신”
지멘스 디지털 인더스트리 소프트웨어(지멘스 DISW)는 지난 6월 4일 ‘오토모티브 엔지니어링 이노베이션 데이’를 진행했다. 이번 행사에서 지멘스 DISW는 최근 자동차 산업의 주요 이슈인 전기자동차(EV), 자율주행 자동차(AV), 소프트웨어 정의 자동차(SDV), 인공지능(AI) 등에 대한 자사의 비전과 솔루션, 사례 등을 소개했다. ■ 정수진 편집장     포괄적인 기술로 디지털 엔지니어링 구현 지멘스 DISW 코리아의 오병준 지사장은 “지멘스는 ECU(전자 제어 유닛) 칩부터 스마트 시티까지 아우르는 토털 아키텍처 및 솔루션으로 우리의 삶은 윤택하게 만든다는 ‘칩 투 시티’ 비전을 지향한다”면서, “디지털 엔지니어링 환경은 데이터의 흐름으로 직결된다. 데이터 환경 없이는 디지털 전환이 불가능하다. 지멘스는 통합 개발 환경으로 자동차 산업의 타임 투 마켓을 줄이는 동시에, 인공지능/머신러닝을 통한 자율주행의 완성까지 지원하고 있다”고 덧붙였다. 또한, 오병준 지사장은 NX, 팀센터, 심센터, 테크노매틱스, 폴라리온, 캐피탈, 멘딕스 등 지멘스의 솔루션 포트폴리오를 도입해 BOM을 통합하고 설계부터 생산까지 일관 프로세스 구축을 추진 중인 BYD 및 폴라리온 ALM(애플리케이션 수명주기 관리)을 통해 AI/ML 및 ECU의 통합 개발을 추진하고 있는 니오 등 자동차 업체 사례를 소개했다. 그리고, 자사의 포괄적인 솔루션 포트폴리오와 글로벌 엔지니어링 서비스를 통해 SDV, AI 등 자동차 산업의 이슈에 대응할 수 있는 역량을 제공한다고 전했다.   자동차 개발을 위한 시뮬레이션과 디지털 스레드 지멘스 DISW의 스티븐 돔(Steven Dom) 오토모티브 인더스트리 솔루션즈 디렉터는 ‘EV/AV 시대의 심센터 디지털 스레드 전략’에 대해 소개했다. 전기자동차와 SDV는 자동차 엔지니어링의 복잡성을 크게 늘렸다. 컴포넌트가 통합되고 하드웨어와 소프트웨어가 통합되면서 개발에 더 많은 시간과 리소스가 필요해진 것이다. 돔 디렉터는 “디지털화는 이런 복잡성의 문제를 해결할 수 있는 유효한 수단이며, 엔지니어링의 총체적인 전환을 통해 복잡성을 경쟁력으로 바꿀 수 있다”고 짚었다. 지멘스는 CAD 모델이나 해석 모델 기반의 디지털 트윈에 그치지 않고, 디지털 데이터의 연결된 흐름을 구현하는 디지털 스레드가 이런 문제를 해결할 수 있는 수단이 될 것으로 보고 있다. 특히 지멘스의 포괄적인 솔루션 포트폴리오인 엑셀러레이터(Xcelerator) 가운데 심센터(Simcenter)는 시뮬레이션과 테스트의 통합 및 다분야 엔지니어링을 통해 제품 혁신에 도움을 주고, 산업 전문성 및 베스트 프랙티스를 제공하면서 전체 제품 수명주기에 통합돼 프로세스 효율 향상을 지원하는 솔루션 라인업이다. 돔 디렉터는 이런 심센터가 제품 개발과 엔지니어링에 관한 자동차 업계의 문제를 해결할 수 있다고 소개했다. “심센터는 효율적인 협업 엔지니어링을 지원해 디지털 트윈에서 수명주기 전반의 가치를 창출할 수 있게 돕는다. 심센터가 제공하는 MBD(모델 기반 설계) 접근법은 가상 프로토타입 어셈블리(VPA)를 통해 차량의 NVH(소음 진동) 퍼포먼스를 예측할 수 있도록 한다. 또한 지멘스의 ‘실행 가능한 디지털 트윈(xDT)’은 스마트 버추얼 센서, 모델 기반의 시스템 테스트, 인 서비스 데이터 주도의 설계 등을 가능하게 한다”는 것이 그의 설명이다. 한편, 돔 디렉터는 디지털 트윈과 머신러닝의 결합 방법에 대해서도 소개했다. 인공지능/머신러닝은 더 빠른 의사결정을 지원하고, 물리 데이터 및 시뮬레이션 데이터의 품질을 높일 수 있으며, 사용자 경험(UX) 개선에도 활용이 가능하다. 지멘스의 심센터 스튜디오(Simcenter Studio)는 생성형 엔지니어링을 통한 제품의 개념 평가를 지원하며, 히즈 AI 시뮬레이션 프레딕터(HEEDS AI Simulation Predictor)는 물리 기반 시뮬레이션과 AI/ML을 결합해 설계 대안에 대한 평가와 의사결정을 더욱 빠르게 만들 수 있다.   ▲ 전동 파워트레인의 디지털 스레드 개발 워크플로   자동차 산업에서 AI와 가상 제품 개발의 활용 사례 소개 현대자동차의 한용하 연구위원은 “멀티피직스/멀티스케일/멀티레벨을 고려한 모델 기반의 자동차 개발 요구가 늘고 있으며, AI와 데이터 과학의 연계도 화두가 되고 있다”면서, 자동차 CAE 영역에서 현대자동차가 AI를 적용하고 있는 사례를 소개했다. 현대자동차는 프로덕트 AI/엔터프라이즈 AI/엔지니어링 AI 등 R&D를 위한 AI를 추진하고 있다. 그리고 AI 활용을 활성화하기 위한 핵심 요소로 R&D 데이터 허브 마련, AI 역량 강화, AI 활용 인프라 구축 등을 설정했다. 한용하 연구위원은 CAE/성능 예측 영역에서 AI가 성공하기 위한 요소로 데이터 정의 및 준비, 워크플로 구축, 도메인 지식을 꼽았다. 특히 “AI에서는 데이터가 핵심이다. 데이터의 준비 작업부터 데이터 재정의, 활용 시나리오를 고려한 체계적인 수집 방법론 등 폭넓은 고민이 필요하다”고 전했다. GM테크니컬코리아의 김태헌 상무는 물리 기반의 자동차 개발에서 가상 개발 환경으로의 변화에 대해 소개했다. 자동차 산업에서 가상 제품 개발의 한 가지 사례로는 ADAS(첨단 운전 보조 시스템)를 들 수 있다. ADAS의 개발 과정에서 도로의 데이터를 입력하는 데에 VR(가상현실)을 활용함으로써 개발 시간을 줄이고, 다양한 조건을 생성해 학습할 수 있도록 해 준다. 또한, 기존 데스트의 데이터와 CAE를 결합하면 풍동 실험을 대체할 수도 있다. 김태헌 상무는 “시뮬레이션은 눈으로 확인하기 어려웠던 것을 볼 수 있게 해 줘서 제품에 대해 더 잘 이해할 수 있는 기회를 제공하기도 한다”면서, “이전에는 테스트에 참고하기 위한 CAE 및 테스트 기반의 개발을 진행했다면, 이제는 전체 가상 차량을 만들어 다양한 시뮬레이션으로 자동차를 개발함으로써 프로토타입을 1/10로 줄일 수 있게 되었다. 가까운 장래에는 ‘제로 프로토타입’이 실현될 것”이라고 소개했다. 또한, “가상화의 종착점은 판매 가능한 완성도를 실현하고, 실물 테스트를 완전히 제거하며, 철저하고 엄격한 엔지니어링을 실현하는 것이 될 것”이라고 전했다. 한편, 지멘스 DISW는 이번 ‘오토모티브 엔지니어링 이노베이션 데이’에서 통합 디지털 개발 프레임워크, EV 전자장비의 열 문제 해결을 위한 시뮬레이션 전략, 자율주행 차량/모터의 설계와 검증 및 NVH 해석을 위한 솔루션과 사례, 모델 기반 개발과 AI rom(축소 차수 모델)의 활용, EV/AV 엔지니어링 서비스 등의 내용을 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-07-03
[포커스] 매스웍스, 디지털 제품 개발 위한 MBD 비전 제시
매스웍스코리아가 6월 11일 연례 기술 콘퍼런스인 ‘매트랩 엑스포 2024 코리아’를 진행했다. 이번 행사에서는 매트랩(MATLAB)과 시뮬링크(SIMULINK) 등 자사 솔루션을 활용한 제품 개발 향상 방안과 활용사례가 소개됐는데, 매스웍스는 디지털 엔지니어링과 MBD(모델 기반 설계)가 향후 제품 개발의 핵심이 될 것이라고 강조했다. ■ 정수진 편집장   디지털 엔지니어링의 중심, MBD 매트랩 엑스포는 매스웍스의 고객과 기술 전문가들이 인공지능, 전동화, 무선 및 신호처리 등 주요 기술 트렌드에 대한 모범 사례와 인사이트를 공유하는 종합 기술 콘퍼런스이다. 작년에는 온 . 오프라인 하이브리드 행사로 진행됐는데, 올해는 오프라인 행사로 진행하면서 규모를 키웠다는 것이 매스웍스코리아의 설명이다. 매스웍스의 아룬 멀퍼(Arun Mulpur) 인더스트리 디렉터는 이번 행사에서 ‘디지털 엔지니어링을 위한 MBD의 영향력과 방향’에 대해 소개하면서, “디지털 엔지니어링의 핵심은 모델 중심, 데이터 통합, 팀 문화의 변혁이며 이런 디지털 엔지니어링의 근간에는 MBD가 있다”고 짚었다.   ▲ 디지털 엔지니어링과 MBD의 가치를 설명한 매스웍스 아룬 멀퍼 디렉터   통합된 MBD 플랫폼으로 제품 개발의 복잡성 해결 매스웍스가 바라보는 MBD는 설계 데이터뿐 아니라 제품에 관련된 다양한 데이터를 디지털 모델로 활용하는 것이다. 폭넓은 데이터의 복잡성을 처리하기 위해 모델링과 시뮬레이션(M&S)을 활용하고, 물리 모델링/신호 처리/소프트웨어 등 다양한 영역을 통합 처리하는 것이 매스웍스가 바라보는 MBD의 역할이다. 멀퍼 디렉터는 “디지털 엔지니어링의 개념을 많은 기업에서 도입하고 있으며, 이를 실현하기 위한 수단으로 MBD에 주목하고 있다”고 설명했다.  개발해야 하는 제품 시스템이 복잡해지면서 다양한 엔지니어링 기술이 투입되는데, 여러 엔지니어링 분야 사이에는 요구되는 전문지식이 달라서 커뮤니케이션과 협업이 어려운 경우가 생긴다. MBD는 엔지니어링의 상위 단계에서 가상 플랫폼으로 시스템을 검증할 수 있도록 해서 이를 해결할 수 있다는 것이 매스웍스의 설명이다. 가상 환경에서 제품을 개발하는 것뿐 아니라 현실 데이터를 기반으로 가상 모델의 파라미터를 튜닝할 수 있다는 것도 매스웍스가 내세우는 MBD의 이점이다. 멀퍼 디렉터는 “복잡성은 예상하지 못한 문제의 원인이 되는 경우도 많다. 매스웍스는 수백만 개의 시뮬레이션을 클라우드에서 동시에 수행해서 복잡성을 처리할 수 있도록 한다. 또한, 다양한 툴과 환경을 사용할 수 있는 플랫폼을 제공해 매스웍스뿐 아니라 더 넓은 생태계를 활용할 수 있도록 돕는다”고 전했다.   디지털 엔지니어링 위한 자율화, 연결성, 전동화에 대응 자율화(autonomous), 연결성(connectivity), 전동화(electrification) 등 산업 애플리케이션 트렌드는 엔지니어의 개발 업무에도 영향을 주고 있다. 이런 상황에서 매스웍스는 시스템 엔지니어링의 성장, 소프트웨어 중심 개발의 확대, 인공지능(AI)의 활용 등이 엔지니어링 업무의 주요한 흐름이 될 것으로 보고 있다. 멀퍼 디렉터는 디지털 엔지니어링을 성공시키기 위해 매스웍스가 제공하는 기술 요소를 다음과 같이 소개했다. 모든 것의 자동화 : 자동화는 MBD의 근간이 되어 왔다. 이제는 연산 기술과 소프트웨어를 결합해 라이프사이클 전체의 관리를 자동화해야 한다. 복잡한 시스템으로의 확장 : 컴포넌트/서브시스템에서 나아가 복잡한 시스템 아키텍처를 설계하기 위해 소프트웨어 중심의 아키텍처(Soffware-Oriated Architecture : SOA)가 필요하다. 코드 생성 자동화 : 이는 MBD의 장점 중 하나이다. 이미 수천에서 수백만 라인의 코드를 자동으로 생성해 만든 제품이 일상에서 쓰이고 있다. 매스웍스는 인피니온 등 반도체 기업과 파트너십을 통해 이를 지원한다. 결함의 조기 방지 : MBD의 핵심 가치 중 하나는 포괄적으로 결함을 빠르게 검증 및 제거하는 것이다. 매스웍스는 디자인/테스트/코드/인증 등 여러 단계서 결함 검증 툴을 제공하며, 이를 통해 더욱 초기 단계에서 결함을 수정하기 위한 투자를 진행할 수 있다. 앱 표준 소프트웨어 워크플로 : 국내서는 현대자동차, 국방과학연구소 등에서 이를 활용하고 있다. 컨티넨탈은 매트랩으로 산출물 처리, 요구사항 관리, 코드 제작 등을 수행하면서 워크플로를 향상시켰다. 클라우드 기반 설계 및 시뮬레이션 : 매스웍스는 시뮬링크에서의 코드 생성부터 시높시스 환경에서의 검증까지 AWS 클라우드에서 구동할 수 있도록 지원한다. 인공지능을 활용한 설계 : 코드 자동 생성에 인공지능과 rom(축소 차수 모델)을 사용하거나, 제품 설계 후 인공지능을 칩이나 클라우드에 배포할 수 있다. 매스웍스는 단일 생태계를 통해 파이썬 . 매트랩 . 오픈소스 코드 배포의 자동화까지 지원한다.   ▲ 매스웍스가 제시하는 AI와 MBD의 결합   한편, 매스웍스코리아의 이종민 대표이사는 “한국 지사인 매스웍스코리아는 자동차, 통신, 국방 등 산업을 핵심 시장으로 삼아 지난 20년간 꾸준히 성장하면서, 매년 비즈니스 목표를 달성하고 있다”면서, “매스웍스는 새로운 기능을 꾸준히 추가하면서 타깃 산업을 넓히고 있다. 특히 최근에는 시뮬링크와 인공지능을 결합해 AI 시뮬레이션을 구현하는 데에 초점을 맞추고 있다”고 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-07-03
헥사곤, 한국자동차공학회 세미나에서 AI/ML 활용 미래 모빌리티 연구 발표
헥사곤 매뉴팩처링 인텔리전스(헥사곤 MI)가 ‘2024 한국자동차공학회 춘계학술대회’에 참가해 현대자동차와 함께 ‘인공지능과 머신러닝을 활용한 미래 모빌리티 주행성능 버추얼 개발’을 주제로 세미나를 진행했다고 밝혔다. 현대자동차가 주관하고 헥사곤이 후원한 이번 발표에서는 100여 명의 모빌리티 분야 전문가가 참석한 가운데 자동차 산업 분야의 엔지니어링 프로세스에 인공지능(AI)과 머신러닝(ML) 기반의 예측 모델 도입과 미래 모빌리티의 주행 성능 향상에 대한 연구를 중점적으로 다뤘다. 세션의 세부 프로그램은 ▲AI/ML을 활용한 미래 모빌리티 주행성능 버추얼 개발 ▲AI R&H 자동화 툴을 활용한 엔지니어링 고도화 ▲소음 예측을 위한 차량과 e-파워트레인(e-powertrain)의 모델링 통합과 머신러닝 예측에의 활용 ▲AI/ML을 활용한 EV 구동모터의 방사 소음(radiation noise) 예측 ▲AI/ML을 활용한 PBV(Platform Beyond Vehicle)의 실시간 버추얼 개발 ▲헥사곤의 자동차 산업 AI/ML 연구동향 및 사례로 구성됐다. 세션에서 발표된 연구에는 다양한 주행 상황을 시뮬레이션할 수 있는 아담스(Adams), 다분야 구조해석 솔루션 나스트란(Nastran), 음향 솔루션 엑트란(Actran), 인공지능 및 머신러닝 플랫폼 오딧세이(ODYSSEE) 등 헥사곤 제품이 예측 모델을 개발하는 데에 활용됐다. 헥사곤의 아담스와 오딧세이는 고성능 스포츠카의 다양한 사례 연구에서 공차 범위를 변경하는 반복 작업을 신속하게 수행해 기어 변속의 품질과 효율성에 직결되는 기어박스 메커니즘 최적화에 사용됐다. 아담스는 메커니즘의 동작 검토와 설계 목표 정의, DoE(실험설계)를 지원한다. 아담스에서 입력 데이터로 사용이 가능한 데이터 매트릭스를 생성한 후, 오딧세이에서 데이터 학습을 거쳐 설계 사양에 따른 새로운 설계 변수에 대한 결과를 예측할 수 있다. 헥사곤 MI는 사례 발표를 통해 충돌 성능 예측에 활용된 오딧세이의 글로벌 사례, 헥사곤의 크래들 CFD(Cradle CFD) 솔버에 내장된 3D-ROM 기능, 딥러닝을 사용한 CT 데이터 결함 검사 등 다양한 기술과 활용 예시를 소개했다.     이번 연구 발표의 좌장을 맡은 현대자동차의 김용대 마스터는 “현대자동차와 헥사곤이 함께 진행한 이번 연구를 통해 자동차 제품 설계, 모델링, 해석에 인공지능과 머신러닝 도입의 중요성을 다시 한번 확인하게 됐다”면서, “헥사곤과의 협력을 통해 현대자동차의 버추얼 차량 개발 기간을 단축하고,  비용 절감 효과를 가질 것을 기대하고 있다”고 말했다. 헥사곤 매뉴팩처링 인텔리전스 코리아의 성브라이언 사장은 “미래 모빌리티 기술 혁신을 위한 연구에서 헥사곤의 솔루션이 활용되길 바란다”면서, “앞으로도 지속적인 교류를 통해 국내의 연구자들이 제품 연구 및 개발에 생산성 및 효율성을 높일 수 있도록 지원을 아끼지 않겠다”고 전했다.동차공학회 춘계학술대회는 6월 19일부터 22일까지 진행되며, 행사기간 중 진행된 전문 연구 발표인 ‘AI/ML을 활용한 미래 모빌리티 주행성능 버추얼 개발’ 세미나는 현대자동차가 주관하고 헥사곤이 후원했다.
작성일 : 2024-06-21
대한기계학회 가상제품개발연구회, 2024년 춘계 심포지엄 개최
대한기계학회 가상제품개발연구회는 오는 6월 13일 서울 포스코타워 역삼에서 2024년 춘계 심포지엄을 개최한다고 밝혔다. 제조업에서의 경쟁은 극심해지고 완성도 높은 제품을 개발하기 위한 기술 난이도와 복잡도도 더욱 높아지고 있다. 글로벌 기업들은 완성도 높은 제품을 빠르게 개발하기 위해서 기존의 시험과 실험 위주의 개발을 가상 제품 개발로 전환하고 있다. 이제 가상 제품 개발 기술은 제조업의 생존을 위한 필수 요건으로 대두되고 있다. 대한기계학회 가상제품개발연구회는 산업계의 제품 개발 생산성을 높이기 위한 가상 제품 개발 기술의 산학연 교류를 활성화하기 위하여 2020년 설립되었으며, ‘Journey to the Digital Transformation(from DE to DX)’을 주제로 매년 춘계 심포지엄을 진행하고 있다. 올해 춘계 심포지엄은 1D CAE를 주제로 삼았다. 1D CAE는 전통적인 3D CAE와 결합해서 시스템 레벨의 성능을 모사할 수 있는 중요한 도구로 꼽힌다. 이번 춘계 심포지엄에서는 산학연 1D CAE 사례 공유와 토의를 통해서 가상 제품 개발 기술의 확산 및 고도화 방안을 모색할 예정이다. 키노트에서는 LG전자 고문인 한양대 오재응 교수가 ‘MBSE∙MBD 성공을 위한 가상제품개발 : 1D CAE 개념 및 적용기술’을 주제로 발표한다. 또한 한국기계연구원 이충성 선임의 ‘ROM 기술을 활용한 1D CAE 기반 시스템 신뢰성 예측’, LG전자 황윤제 기술고문의 ‘1D CAE 기반 히트펌프 건조기 시스템 통합 모델 개발’, HL 만도 오선열 책임의 ‘Motor Parametric Design Using an Electro-Hydraulic Model of a Brake System’, 지멘스 코리아 구자건 프로의 ‘Designing HVAC systems for improved passenger thermal comfort with AMESIM and embedded CFD’, 현대자동차 유근수 실장의 ‘차량 선행개발 단계 1D 활용 사례와 확장을 위한 극복과제’ 등 주제발표가 진행된다. 이와 함께 ‘디지털 엔지니어링 고도화 및 추진/적용을 위한 1D CAE 이슈/현황/과제’를 주제로 하는 패널 토론도 이뤄질 예정이다.
작성일 : 2024-05-31