• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " R"에 대한 통합 검색 내용이 15,789개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
프로세스 자동화Ⅳ - 다물리 시스템 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (9)   이번 호에서는 자동차의 승차감과 연료 소모량 최소화를 위한 시스템 최적화를 위해 심센터 아메심(Simcenter Amesim)을 사용하여 차량의 다양한 시스템에 대한 변수를 제어하여 최적화의 목적을 달성하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   이번에 사용할 심센터 아메심은 오늘날의 복잡한 엔지니어링 환경을 위한 종합 시뮬레이션 플랫폼이다. 수 많은 설계자가 직면하고 있는 제품 설계의 성공 여부는 혁신적인 아키텍처를 통합하지 않으면 성능, 안전 및 효율에 대한 증가하는 요구 사항을 충족할 수 없다. 심센터 아메심은 광범위하고 강력한 모델링 기능을 통해 메카트로닉스 시스템(Thermal & Fluid, Mechanical, Electrification, Battery, Vehicle, Aerospace & Marine, Renewable Energies Control 등)을 분석할 수 있으며, 가상 테스트 환경을 통해 실제 프로토타입을 제작하기 전에 최적의 설루션을 발견할 수 있다. 심센터 아메심에서 제공하는 다중 물리 시스템 시뮬레이션 접근 방식은 단일 플랫폼에서 다양한 아키텍처와 기술을 사용하여 시스템 간 영향에 대한 완전한 분석을 수행하여 다양한 지표에 대한 시스템의 영향을 설계하고 평가할 수 있다. <그림 1>은 자동차 파워트레인 전동화를 위해 엔진, 변속기 및 열 통합과 관련된 모든 중요한 전기 서브시스템을 시뮬레이션하는 데 필요한 모델링을 나타낸다. 배터리 사이징, 전기 기계 설계, 아키텍처 생성부터 상세 설계를 포함한 통합까지 엔지니어링 작업을 지원하는 효율적인 모델링 워크플로를 구성할 수 있다.   그림 1   설계자는 심센터 아메심에서 제공하는 기능을 활용하여 기본 물리 현상을 심층적으로 이해할 수 있는 등 강력한 분석 도구를 통해 시뮬레이션에서 얻은 지식을 강화할 수 있다. 또한 앱을 사용하면 애플리케이션에 맞게 맞춤 제작된 사용자 인터페이스와 프로세싱의 유연성을 활용하여 시스템 분석을 강화할 수 있다. 또한 모든 기능을 갖춘 API(애플리케이션 프로그래밍 인터페이스) 세트를 통해 스케치 생성을 자동화하고 시뮬레이션의 다양성을 추가할 수 있다. 시뮬레이션 자동화에는 파이썬(Python), 매트랩(MATLAB), 싸이랩(Scilab) 및 Visual Basic for Applications(VBA)와 같은 언어로 애플리케이션 프로그래밍을 지원하는 스크립트 세트를 제공한다. 이를 통해 배치 실행 설정, 복잡한 전처리 및 후처리 수행, 매개변수 연구 수행, 외부 애플리케이션 내 심센터(Simcenter) 모델 통합 등 모델과의 상호 작용을 자동화할 수 있다. 설계 또는 검증에서는 전체 동작에 직접적인 영향을 미치는 전역 파라미터에 액세스하여 설계 탐색, 최적화 및 견고성 분석을 위한 기능을 사용할 수 있고, 더 나아가서 고급 분석과 더 나은 자동화 프로세스 통합을 위해 HEEDS(히즈)를 활용하여 모델을 처리할 수 있다. 심센터 아메심은 시스템 라이프사이클 전반에 걸쳐 다양한 시뮬레이션 툴을 통합하여 디지털 연속성과 워크플로 효율을 향상시킨다. PLM 시스템 연결, 모델 기반 제어 개발 및 기능적 목업 인터페이스(FMI)를 사용한 상호 작용을 지원하며 머신 러닝, 선형 대수학 및 통계 기법으로 ROM(차수 축소 모델) 생성을 지원하여 실행 가능한 디지털 트윈으로 실시간 운영이 가능하므로 의사 결정 및 운영 효율이 향상된다. 임베디드 3D CFD는 열유체 시스템 모델에 대해서 연결된 커플링 시뮬레이션을 통해 3D와 1D 간에 상호 작용이 전달되어 시스템의 중요한 부분을 더욱 상세하게 해석할 수 있으므로 정확도, 설루션 안정성 및 결과에 대한 신뢰도를 높일 수 있다.  Simulation Based Characterization(SBC)을 사용하면 3D CFD를 사용하여 압력 강하 및 열 거동과 관련하여 구성 요소를 특성화하고 시스템 환경에 원활하게 통합되어, 전체 시스템 동작을 정확하게 분석할 수 있다. 차량 동역학 및 파워트레인 물리 거동을 포함하는 모델은 심센터 프리스캔(Simcenter PreScan)과 함께 사용하면 환경 및 센서 정보를 기반으로 첨단 운전자 보조 시스템(ADAS) 및 자율 주행 시스템을 보완하고 대규모 시뮬레이션의 효율을 높여 안전, 승차감, 연료 및 전기 에너지 소비, 오염 물질 배출 평가를 수행할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-11-04
차세대 다중물리 CFD 설루션의 ‘4A’
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (27)   현재 시장에서는 정확성(Accuracy), 자동화(Automation), 속도(Acceleration), 인공지능(AI)과의 통합을 제공하는 CFD(전산 유체 역학) 설루션이 필요하며, 이러한 원리는 케이던스 피델리티 CFD(Cadence Fidelity CFD)의 근간을 이루는 원칙이다. 이번 호에서는 케이던스가 ‘CadenceLIVE 실리콘밸리 2024’ 이벤트에서 발표한 내용을 중심으로, ‘4A’로 통칭되는 이 네 가지 요소가 어떻게 차세대 멀티피직스 CFD 설루션으로서 케이던스 피델리티 CFD 소프트웨어의 입지를 다지는지에 대해 설명한다.    ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   오늘날 교통, 환경, 건강, 방위, 우주 시스템 등 산업 전반에 걸쳐 직면한 많은 혁신적 과제는 유체 역학에 대한 깊은 이해와 불가분의 관계에 있다. 예를 들어, 자동차 백미러 주변에서 발생하는 음향 소음은 측면 유리창의 재순환 유체 유도 압력 진동으로 인해 실내 소음 수준에 상당한 영향을 미칠 수 있다. CFD 코드를 사용하면 실험적 접근 방식에 비해 훨씬 적은 리소스를 필요로 하면서도 미러의 복잡한 디자인과 공기 흐름 거동을 고려하여 이러한 현상을 정확하게 예측하고 분석할 수 있다. 케이던스 피델리티 CFD는 단순한 솔버 제품군이 아니라 지난 5년 동안 전략적 인수와 유기적인 개발을 통해 발전해 온 광범위한 에코시스템이다. 이 에코시스템은 CFD 및 다중물리 CFD 영역 내에서 모델 구축, 해석 및 학습을 위해 설계된 포괄적인 범위의 도구와 기술을 포함한다. 정확성, 자동화, 가속, AI는 피델리티 CFD의 모든 제품의 원동력이며, 다음에서 몇 가지 예를 들어 간략히 설명한다.   그림 1. 피델리티 CFD의 상품   정확성 엔지니어가 직면하는 고질적인 문제 중 하나는, CFD를 사용하여 설계한 제품을 검증하고 인증하기 위해 물리적 테스트에 의존하는 것이다. 시뮬레이션 기술의 발전에도 불구하고, 최종 제품 검증에 필요한 탁월한 정확도를 달성하기 위해서는 물리적 테스트가 여전히 필수이다. 예를 들어 항공기 설계는 엄격한 안전 및 성능 표준을 충족하기 위해 엄격한 물리적 테스트를 거쳐야 한다. 하지만 대규모 와류 시뮬레이션(LES)과 같은 새로운 고급 방법론이 유망한 대안을 제시하고 있다. 계산이 까다롭기는 하지만 LES는 유체 흐름 현상을 포괄적이고 상세하게 표현한다. 이 방법은 실험에 가까운 수준의 정확도를 제공함으로써 시뮬레이션과 물리적 테스트 간의 격차를 해소하여 광범위한 물리적 테스트에 대한 의존도를 낮추고, 설계 및 인증 프로세스를 가속화할 수 있다.   그림 2. 접근 조건에서 저소음 OGV를 사용하는 SDT 팬의 실험(검은색 기호)과 LES(빨간색 선)의 소음 수준(PWL) 비교(Brès et al. 2023)   자동화 자동화는 CFD에서 없어서는 안 될 필수 요소이며, 특히 케이던스 피델리티 제품군에서 중요한 역할을 한다. 자동화는 파이썬(Python) 기반 스크립팅을 사용하여 CFD 워크플로 전반에 걸쳐 이루어지며, 최소한의 수동 개입으로 시뮬레이션에 대한 일관성과 제어를 보장한다. 이는 특히 반복적인 작업에서 상당한 효율 향상으로 이어진다. 자동차 전처리를 예로 들어보겠다. 자동차 설계에는 CAD 시스템에서 수십만 개의 부품이 포함된 매우 복잡한 지오메트리가 포함되며, 종종 누락된 요소가 있다. 피델리티 제품은 광범위한 자동화를 통해 이러한 워크플로를 간소화한다. CAD 임포트 프로세스는 내부 캐빈 요소를 효율적으로 필터링하고, 자동으로 중복을 감지하며, 중복 개체를 선택 및 삭제하고, 젖은 표면을 식별하고, 실링 표면을 생성한다. 예를 들어 자동 실링 기능을 사용하면 ‘습식 : Wet’(외부) 및 ‘건식 : Dry’(내부) 지점을 지정하여 틈새 및 조인트 충진 프로세스를 자동화함으로써 CFD 시뮬레이션을 신속하게 진행할 수 있다.   그림 3. 기술은 ‘습식’ 및 ‘건식’ 지점을 감지하고 표면과의 간격을 몇 분 안에 자동으로 밀봉한다.   보로노이 기반 그리드 생성은 높은 수준의 자동화를 활용하는 피델리티 CFD의 또 다른 뛰어난 기능이다. 이 기술은 복잡한 지오메트리 주위에 높은 수준의 메시를 생성하여 균일성을 보장하고 시뮬레이션 정확도와 수렴 속도를 높인다. 기존의 메시 생성 방식은 표면 근처에서 고품질 메시를 생성하지만, 레이어가 상호 작용할 때 품질이 낮은 메시를 생성하여 시뮬레이션 수렴 속도와 정확도에 영향을 미친다. 보로노이 기반 그리드 생성은 보다 일관되고 효과적인 설루션을 제공하여 전반적인 시뮬레이션 프로세스를 향상시킨다.   그림 4. 자전거 라이더 모델에 대한 보로노이 다이어그램 메시와 일반적인 RANS 메시의 비교     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-11-04
코드로 강력한 수학 그래픽 애니메이션을 만드는 매님
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 복잡한 수학적 개념을 명료하고 아름다운 애니메이션으로 시각화하기 위해 설계된 파이썬(Python) 라이브러리인 Manim(Mathematical Animation Engine, 매님)에 대해 살펴본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   매님은 코드를 통해 프로그래밍 방식으로 정밀한 2D 애니메이션을 생성하는 데 사용되는 오픈소스 프레임워크이다. 사용자는 파이썬 클래스와 메서드를 활용하여 도형, 텍스트, 그래프, 공식 등 다양한 시각적 요소를 정의하고, 이들의 생성, 변형, 소멸 등 다채로운 움직임을 제어할 수 있다. 단순한 키프레임(Keyframe) 기반의 애니메이션 도구와 달리, 매님은 모든 시각적 요소를 객체(object)로 다룬다. 따라서 좌표, 크기, 색상, 투명도 등 객체의 모든 속성을 수치적으로 정밀하게 제어하는 것이 가능하다. 이러한 특징 덕분에 미적분, 선형대수, 물리학 공식 등 추상적인 개념을 직관적으로 이해할 수 있도록 설명하는 영상 콘텐츠 제작에서 강력한 성능을 보인다. 더 자세한 정보는 매님 웹사이트에서 확인할 수 있다.  https://www.manim.community   매님의 개발 배경 매님은 저명한 수학 유튜버인 그랜트 샌더슨(Grant Sanderson)이 자신의 유튜브 채널 ‘3Blue1Brown’의 콘텐츠를 제작하기 위해 직접 개발한 도구에서 시작되었다. 그는 복잡한 수학 이론을 설명하는 데 기존의 시각 자료나 애니메이션 소프트웨어로는 한계가 있다고 느꼈다. 특히, 수학적 개념의 본질적인 아름다움과 논리적 흐름을 정확하게 표현하기 위해서는 프로그래밍을 통한 완전한 제어권이 필수라고 생각했다. 이러한 필요에 의해 2015년부터 매님을 개인 프로젝트로 개발하기 시작했으며, 그의 영상이 큰 인기를 얻으면서 매님 역시 전 세계의 교육자, 개발자, 아티스트들로부터 주목받게 되었다. 이후, 그의 독창적인 버전을 기반으로 개발자 커뮤니티가 주도하는 보다 범용적이고 사용하기 쉬운 ‘매님 커뮤니티 에디션(Manim Community Edition)’이 파생되어 활발하게 발전하고 있다. 매님의 소스코드는 커뮤니티 깃허브 저장소에서 확인할 수 있다.  https://github.com/ManimCommunity/manim   유사 도구 매님과 비슷하게 코드를 통해 시각적 결과물을 생성하는 라이브러리는 여러 가지가 있으며, 각각 다른 목적과 특징을 가지고 있다.  프로세싱(Processing) : 시각 예술, 데이터 시각화, 인터랙티브 아트 분야에서 널리 사용되는 오픈소스 프로그래밍 언어 및 환경이다. 자바(Java)를 기반으로 하며, 초보자가 쉽게 그래픽 프로그래밍에 입문할 수 있도록 설계되었다. 애니메이션 기능도 지원하지만, 매님만큼 수학적 표현에 특화되어 있지는 않다.(https://processing.org)  D3.js : 웹 브라우저에서 동적인 데이터 기반 문서를 만들기 위한 자바스크립트(JavaScript) 라이브러리이다. SVG, HTML, CSS를 활용하여 데이터 시각화, 특히 인터랙티브 차트와 그래프를 제작하는 데 강력한 기능을 제공한다. 웹 기반이라는 점에서 매님과 차이가 있다.(https://d3js.org)  파이게임(Pygame) : 파이썬으로 2D 게임을 개발하기 위해 설계된 라이브러리이다. 실시간 사용자 입력 처리와 게임 루프 관리에 중점을 두고 있어, 정해진 스크립트에 따라 렌더링되는 매님과는 작동 방식과 목적이 다르다.(https://www.pygame.org) 매님은 MIT 라이선스를 따르는 완전한 오픈소스 소프트웨어이다. 이는 개인, 교육 기관, 상업적 목적을 포함한 어떠한 용도로든 무료로 사용할 수 있음을 의미한다. 별도의 가입 절차나 유료 플랜 없이 누구나 자유롭게 다운로드하여 설치하고, 소스코드를 수정하거나 재배포하는 것이 가능하다. 모든 기능은 커뮤니티의 자발적인 기여를 통해 개발되고 유지보수된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-11-04
캐디안 2025의 유틸리티 기능 소개 Ⅹ
새로워진 캐디안 2025 살펴보기 (12)   오토캐드와 양방향으로 호환되는 국산 CAD인 캐디안(CADian)에서는 사용자의 작업 편의성을 위해서 캐디안에서 구동되는 유틸리티 기능을 새롭게 추가하였다. 이번 호에서도 캐디안 2025 버전의 유틸리티 기능을 계속 이어서 살펴보도록 하겠다.   ■ 최영석 캐디안 기술지원팀 부장으로 기술지원 업무 및 캐드 강의를 담당하고 있다. 홈페이지 | www.cadian.com 카페 | https://cafe.naver.com/ilovecadian   캐디안 2025 버전의 유틸리티를 설치하는 방법은 다음과 같다. 캐디안 홈페이지에 접속한 후 고객지원 클릭 → 기술자료실을 클릭하면 기술 자료가 목록으로 표시되며, 현재 유틸리티 형태로 지원되는 LISP(리스프)의 개수는 총 373개이다. 3번의 ‘캐디안 리습(lisp) 373개 통합본+메뉴화일 다운로드 AUTOLISP입니다’ 항목을 클릭하여 안내된 대로 설치하면 캐디안에서 유틸리티 기능을 이용할 수 있다.     유틸리티 - 드릴 구멍 120도 자동 그리기(120D) 객체에 TAB(암나사) 를 그려주는 기능이다.   1. 메뉴에서 캐디안 유틸-1 → 드릴 구멍 120도 자동 그리기(120D)를 실행한다.   2. 명령창에 ‘120도 구멍의 중심점을 찍으세요’ 메시지가 표시되면 중심점을 마우스 클릭으로 지정한다.   3. 명령창에 ‘드릴홀 방향을 찍으세요’ 메시지가 표시되면 드릴홀의 방향을 마우스로 지정한다.     4. 명령창에 ‘구멍의 직경을 입력하세요:’ 메시지가 표시되면 구멍의 직경을 숫자로 입력한다.(예 : 20)   5. 명령창에 ‘구멍의 깊이를 입력하세요’ 메시지가 표시되면 구멍의 깊이를 숫자로 입력한다.(예 : 40)   6. 드릴 구멍이 자동으로 작도된다.     유틸리티 - 카운터싱크 홀 자동 그리기(CSK) 객체에 카운터싱크 홀을 그려주는 기능이다.    1. 메뉴에서 캐디안 유틸-1 → 카운터 싱크 홀 자동 그리기(CSK)를 실행한다.   2. 명령창에 ‘카운터 싱크 가공홀의 중심점을 찍으세요’ 메시지가 표시되면 중심점을 마우스 클릭으로 지정한다.   3. 명령창에 ‘진행 방향을 찍으세요’ 메시지가 표시되면 카운터싱크 홀의 방향을 마우스로 지정한다.     4. 명령창에 ‘전체 길이를 입력하세요:’ 메시지가 표시되면 카운터싱크 홀의 전체 길이를 숫자로 입력한다.(예 : 40)   5. 명령창에 ‘접시머리 나사 규격을 숫자만 입력하세요’ 메시지가 표시되면 접시머리 나사 규격을 숫자로 입력한다.(예 : 20)   6. 카운터싱크 홀이 자동으로 작도된다.     유틸리티 - 카운터보어 홀 자동 그리기(ACBORE) 객체에 카운터보어 홀을 그려주는 기능이다.    1. 메뉴에서 캐디안 유틸-1 → 카운터보아 홀 자동 그리기( ACBORE)를 실행한다.   2. 명령창에 ‘미터나사 규격을 숫자만 입력하세요’ 메시지가 표시되면 미터나사 규격을 숫자로 입력한다.(예 : 20)     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-11-04
아레스 커맨더의 동적 블록과 트리니티 블록 라이브러리
데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (8)   그래버트(Graebert)의 아레스 캐드(ARES CAD)는 PC 기반의 아레스 커맨더(ARES Commander), 모바일 기반의 아레스 터치(ARES Touch), 클라우드 기반의 아레스 쿠도(ARES Kudo) 모듈로 구성된 삼위일체형 CAD로, 지속적인 혁신을 통해 사용자 경험을 개선하고 있다. 이번 호에서는 도면 작업의 생산성을 높여주는 동적 블록의 지원 확장과 함께, 이를 효율적으로 관리하고 공유하는 툴 팔레트 및 트리니티(Trinity) 블록 라이브러리의 기능에 대해 살펴보겠다.   ■ 천벼리 캐디안 3D 솔루션 사업본부 대리로 기술영업 업무를 담당하고 있다. 홈페이지 | www.arescad.kr 블로그 | https://blog.naver.com/graebert 유튜브 | www.youtube.com/GraebertTV   동적 블록의 새로운 지원 아레스 커맨더는 2024 버전부터 동적 블록(Dynamic Blocks) 지원을 도입했다. 이는 오토캐드에서 생성된 스마트하고 파라메트릭한 블록을 아레스 커맨더에서도 그대로 재사용할 수 있음을 의미한다. 이 기능을 효과적으로 사용할 수 있도록, 현재 다양한 산업 분야의 예제를 담은 450개 이상의 동적 블록을 기본으로 제공하고 있다. 이번 호의 내용을 통해 도면 작성의 효율을 극대화하는 동적 블록의 활용 방법을 확인할 수 있다. 또한, 새롭게 도입된 이 라이브러리는 툴 팔레트(Tool Palettes)와 트리니티 블록 라이브러리의 강력한 기능을 보여준다.   툴 팔레트와 트리니티 블록 라이브러리 툴 팔레트(도구 팔레트)는 개인적인 용도로 블록을 다른 도구와 결합하여 사용할 수 있게 해주는 유용한 기능이다. 툴 팔레트에 포함된 동적 블록은 트리니티 블록 라이브러리에도 샘플 블록으로 함께 제공된다.     트리니티 블록 라이브러리는 인터넷을 통해 여러 사용자 간에 블록을 동기화(synchronizing)할 수 있는 추가 이점을 제공하여, 다른 사용자와 블록을 쉽게 공유하고 표준화할 수 있도록 지원한다. 툴 팔레트에서는 동적 블록 외에도 특정 작업에 맞게 그래버트에서 미리 구성한 도구를 찾을 수 있다. 예를 들어, 특정 호(arc) 도구는 전기 배선 관련 레이어에 바로 작도할 수 있도록 구성되어 있다. 사용자가 이 기본 라이브러리에 고유의 블록을 추가하거나, 기존 블록을 커스텀하는 등 라이브러리를 확장하여 사용할 수 있다.     동적 블록 활용 시연 몇 가지 동적 블록을 활용하여 그 유용성을 직접 확인해 보겠다.   주차장 배치 동적 블록을 사용하여 쇼핑센터의 주차 공간을 신속하게 배치할 수 있다. 블록을 삽입하고 크기를 조정한 다음 간단히 드래그하기만 하면 원하는 구역을 만들 수 있으며, 장애인 주차 구역 지정도 손쉽게 처리할 수 있다.     도로 작업 아레스에서 도로 작업을 위해 제공되는 동적 블록을 사용하면, 그립(grip)을 드래그하여 더 긴 구간을 만들거나 원하는 길이를 직접 입력하여 정확하게 배치할 수 있다. 차선 감소 블록을 삽입한 후, 블록을 대칭(symmetrize)시키고 차선이 더 적은 직선 구간을 추가하는 작업도 간단하다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-11-04
HP Z2 미니 G1a 리뷰 : BIM 엔지니어의 실무 프로젝트 성능 검증
HP Z2 미니 G1a(HP Z2 Mini G1a)는 소형 폼팩터로 설계된 미니 워크스테이션이다. 테스트에 사용된 장비는 AMD 라이젠(Ryzen) AI Max+ PRO 395 프로세서(16 코어, 32 스레드, 최대 5.1GHz) 와AMD 라데온(Radeon) 8060S 내장 그래픽, 64GB LPDDR5x 메모리, NVMe SSD 2TB 구성을 갖추고 있다. 썬더볼트 4, 미니 디스플레이포트 2.1, 10GbE LAN, USB-A(10Gbps), USB-C(40Gbps), 와이파이 7을 지원하며, 내장형 300W 전원 공급장치가 포함되어 있어 별도의 어댑터 없이 바로 사용할 수 있다. 최대 128GB 메모리 확장, 8TB 듀얼 NVMe 스토리지, RAID 구성, 그리고 ISV 인증과 MIL-STD 810H 내구성 기준을 충족해 전문 워크스테이션으로서의 안정성을 확보했다.    ▲ HP Z2 미니 G1a 제품 사진   직접 마주한 첫인상은 단순히 ‘작다’는 한 마디로 표현하기 어려웠다. 박스를 열자마자 느껴진 크기는 갤럭시 폴드 스마트폰과 비슷했고, 책상 위 공간도 거의 차지하지 않았다. 전원선을 연결하자마자 바로 부팅되며, 데스크톱이라기보다 정교하게 만들어진 소형 기기 하나를 설치한 느낌에 가까웠다. 손바닥만한 본체가 조용히 구동되는 모습을 보며, ‘이 작은 장비가 과연 얼마나 버텨줄까’ 하는 기대감이 자연스럽게 따라왔다.    ▲ HP Z2 미니 G1a 데스크톱 위에 갤럭시 폴드 6를 올려놓은 놓은 모습   광고에서 흔히 볼 수 있는 AEC 소프트웨어 시연 화면은 대개 단순한 차량 모델이나 소규모 건축물이다. 시연 화면은 화려하고 매끄럽지만, 실제 토목 BIM 엔지니어가 다루는 데이터는 다르다. 도로, 철도, 교량, 항만과 같은 메가 규모의 모델이 대상이며, 수십만에서 수억 개 단위의 객체가 얽혀 있는 데이터가 일상적으로 다뤄진다. 필자가 주목한 것은 바로 이 점이었다. “작은 본체가 과연, 이러한 초대형 데이터를 견딜 수 있는가?” 현장이나 합사 파견 시 주로 노트북을 사용하지만, 무거운 모델을 검토하고 복잡한 시뮬레이션을 돌리면 한계를 드러내기 마련이다. 따라서 이번 테스트에서는 소형 데스크톱인 HP Z2 미니 G1a를 파견 장비로 실제 활용할 수 있는지 여부를 검증하고자 했다. 단순히 문서 작업이나 뷰어 확인에 그치지 않고, BIM 모델링, 시뮬레이션, 데이터 가공, 시연 등 실무 프로젝트와 동일한 조건을 적용해 성능을 확인했다. 이번 리뷰에서는 장비가 어느 정도까지 버텨주는지, 그리고 어떤 한계를 드러내는지를 프로젝트별로 기록했다.   ▲ HP Z2 미니 G1a 테스트 프로젝트 요약   테스트 1 - 베트남 Starlake Tay Ho Tay(나비스웍스)    ▲ 나비스웍스 단지 전체 모델 검토 기능 테스트   이번 테스트는 단지·도로·관로 등 복합 시설물 모델을 대상으로 나비스웍스(Navisworks)의 정적 모델 취합 및 검토 기능을 검증하기 위해 진행되었다. 테스트 환경에서는 마이크로스테이션(MicroStation)으로 제작된 여러 개의 3D 모델 파일을 나비스웍스로 동시에 불러와, 하나의 장면 안에서 구조 정합성과 좌표 일치 여부를 확인했다.  HP Z2 미니 G1a에서의 구동 결과는 기대 이상으로 안정적이었다. 복수의 모델을 동시에 불러와도 시스템이 멈추거나 끊기는 현상은 없었으며, 로딩 이후에도 화면 회전과 확대·축소 시 반응 속도가 일정하게 유지되었다. 각 객체의 형상 확인, 단면 전환, 재질 적용, 뷰 이동 등 일반적인 모델 취합 및 검토 작업이 모두 원활하게 수행되었다. 특히 여러 모델이 중첩된 복잡한 단지 구조에서도 그래픽 품질 저하나 노이즈 현상이 발생하지 않았다. 뷰 전환 시에도 지연 없이 매끄럽게 이어져, 실시간 회의나 발주처 브리핑 환경에서도 무리 없이 사용할 수 있었다. 결론적으로 HP Z2 미니 G1a는 나비스웍스의 대규모 모델 취합 및 형상 검토 기능을 안정적으로 처리할 수 있는 수준의 성능을 보여주었다.   테스트 2 - 이라크 Khor Al Zubair 침매터널(레빗)   ▲ 레빗 철근 모델 검토 및 수정 기능 테스트   이번 테스트는 해저 밑바닥면에 구조물을 설치하는 침매터널(Immersed Tunnel) 구조물을 대상으로 수행되었다. 침매터널은 일반적인 굴착식 터널과 달리, 해저에 미리 제작된 콘크리트 세그먼트를 정밀하게 가라앉혀 연결하는 방식이다. 따라서 설계·시공 단계에서 철근 배치의 정확도와 세그먼트 간 접합부(Key Segment) 형상 정합성이 핵심 검토 항목이 된다. 테스트는 레빗(Revit) 환경에서 철근 모델링 파일을 직접 열어 모델 검토 및 수정 기능을 확인하는 시나리오로 진행되었다. PC 세그먼트 한 구간을 선택해 내부 철근 배근을 확인하고, 일부 보조철근의 위치를 수정하여 간섭 반응과 반응 속도를 측정했다.  HP Z2 미니 G1a에서 모델을 로드하는 데에는 약 30분이 소요되었다. 모델 크기와 철근 데이터의 밀도를 고려하면 이는 현실적인 수준이다. 모델이 완전히 열리고 나서는 클릭 한 번에 약 10초 정도의 지연이 있었으나, 시스템이 멈추거나 종료되는 일은 없었다. 철근 객체의 선택, 이동, 피복값 수정 등의 기본 편집 과정이 모두 수행 가능했으며, 시스템 안정성 면에서는 충분히 실무 검토용으로 사용할 수 있는 수준이었다. 철근 모델링은 단순히 주근만이 아니라 보조철근, 전기·기계 매립부, 세그먼트 간 피복 간격까지 반영해야 하므로 수정 과정이 빈번하다. 이번 테스트에서 HP Z2 미니 G1a는 이 복잡한 구조를 다루는 동안 메모리 한계나 그래픽 깨짐 없이 끝까지 버텼다. 작업 속도가 빠르다고 표현하기는 어렵지만, 소형 워크스테이션으로서 대형 레빗 철근 모델을 안정적으로 열고 편집할 수 있다는 점은 인상적이었다. 결론적으로 HP Z2 미니 G1a는 Revit의 철근 모델 검토 및 수정 작업에서 실무 활용이 가능한 수준의 안정성을 보여주었다.   테스트 3 - 동부재정 4공구(블렌더)   ▲ 블렌더 락볼트 모델 검토 및 수정 기능 테스트   이번 테스트는 동부간선지하도로 구간의 락볼트(rock bolt) 모델 검토 및 수정 기능을 확인하기 위해 진행됐다. 이 구간은 GTXA, GTX-C, 성남–강남, 삼성–동탄, 위례–신사 등 여러 도시철도 및 도로 프로젝트가 인접해 있어, 공사 간섭이 빈번하게 발생하는 구간이다. 실제로 락볼트가 인접 공구의 구조물과 충돌하는 사례가 확인되어, 문제 구간을 단면화하고 일부 모델을 직접 수정해야 했다. HP Z2 미니 G1a에서의 테스트는 블렌더(Blender) 환경에서 수행하였다. 레빗과 다이나모(Dynamo)로 생성된 락볼트 모델은 스크립트 기반으로 제작되어, 개별 객체만 직접 수정하면 기존 자동화 코드가 깨질 위험이 있었다. 이 때문에 버텍스(정점) 편집이 자유로운 블렌더를 이용해, 시각적으로 간섭 부위를 잘라내고 재형성하는 방식으로 접근하였다. 테스트 시 약 6만 개의 락볼트 모델을 포함한 전체 파일을 불러오는 데 약 30분이 소요되었다. 로딩 과정은 길었지만, 모델이 완전히 열린 이후에는 뷰 회전·확대·축소가 안정적으로 유지되었으며, 버텍스 단위 편집에서도 시스템이 멈추거나 지연되는 현상은 발생하지 않았다. 단일 객체 수정, 형상 재조정, 도면화를 위한 분할 단면 추출 과정이 모두 정상적으로 수행되었고, GPU 가속을 사용하는 뷰포트에서 화면 품질 저하도 없었다. 레빗·나비스웍스가 구조 중심의 정적 검토 도구라면, 블렌더는 자유도 높은 3D 편집기다. HP Z2 미니 G1a는 이 편집 자유도를 실제 토목 모델링 작업에서도 유지할 만큼의 그래픽·CPU 성능을 보여주었다. 결론적으로 HP Z2 미니 G1a는 대규모 락볼트 모델의 검토·수정 업무에서도 안정적인 작업 환경을 제공하는 수준의 성능을 보였다. 다중 객체를 로딩한 뒤에도 프레임 저하가 크지 않았으며, 블렌더의 버텍스 편집 기능을 활용한 국부 수정 테스트에서 실무 투입이 가능한 반응성과 내구성을 확인할 수 있었다.   테스트 4 - GTX-B 민간투자사업(인프라웍스)   ▲ 인프라웍스 대규모 노선 모델 임포트 및 뷰어 성능 테스트   이번 테스트는 GTX-B 민자사업 구간(총 연장 약 80 km)을 대상으로 진행되었다. 테스트 목적은 대용량 지형 데이터와 위성 사진을 통합한 후, 인프라웍스(InfraWorks)의 모델 임포트 및 뷰어 성능을 검증하는 것이다. 이 프로젝트는 국토지리정보원으로부터 제공받은 현황 도면과 위성사진 데이터의 총 용량이 약 100GB에 달했다. 이전까지 수행한 대부분의 철도·터널 BIM 업무보다 데이터 규모가 훨씬 컸으며, 필자가 처음으로 ‘기존 BIM 워크플로로는 처리 효율이 한계에 달한다’는 사실을 체감한 사례였다. 이후 유사 규모의 프로젝트에서는 SRTM(Shuttle Radar Topography Mission) 지형 데이터를 기반으로 단순화한 방식이 더 효율적이라는 판단을 내리는 계기가 되었다. 테스트는 시빌 3D(Civil 3D)와 래스터 디자인(Raster Design)에서 좌표계 및 기준점을 세팅한 데이터를 인프라웍스에 불러와 확인하는 방식으로 진행되었다. HP Z2 미니 G1a에서 모델 로드를 시작하자, 인프라웍스의 타일 로딩 방식이 구간별로 작동하여 데이터가 점진적으로 표시되었다. 전체 80 km 구간이 완전히 로딩되기까지 약 5분이 소요되었으며, 이후 뷰 이동이나 확대·축소, 태그 생성, 노선 추가 등의 작업은 끊김 없이 매끄럽게 동작했다. 특히 고해상도 위성 사진을 겹쳐 놓은 상태에서도 프레임 저하가 거의 없었고, 장시간 뷰 이동을 반복해도 과열이나 랙 현상이 나타나지 않았다. 이전 세대 노트북에서 동일 데이터를 열 때 수시로 멈춤이 발생했던 점을 고려하면, 소형 데스크톱 장비로 이 정도의 안정성을 확보한 것은 인상적이다. 결론적으로 HP Z2 미니 G1a는 인프라웍스에서의 대규모 노선 모델 임포트 및 뷰어 성능 검증을 충분히 통과했다. 100GB급 지형 데이터를 실시간으로 불러오고 탐색하는 환경에서도 안정적으로 동작했으며, 국토·철도·터널 분야의 대용량 시각화 검토용 장비로 활용하기에 적합한 수준임이 확인되었다.   테스트 5 – 경산지식산업센터(다이나모)   ▲ 다이나모 기반 관로 자동 모델링 스크립트 실행 테스트   이번 테스트는 경산지식산업센터 단지 프로젝트의 관로 자동 모델링 프로세스를 검증하기 위해 수행되었다. 단지형 프로젝트의 경우, 우수·오수·상수 등 각 관로의 담당사가 서로 달라 조율 과정에서 도면 교환만으로 수많은 시간이 소요된다. 이를 3D 모델로 통합하면 공정 간섭 검토와 협의가 신속하게 이루어지며, 전체 공기를 단축할 수 있다. 테스트는 기존에 구축해 둔 다이나모(Dynamo) 스크립트의 실행 성능과 안정성을 확인하는 방식으로 진행되었다. 해당 스크립트는 각 관로별 데이터베이스를 CSV 파일 형태로 불러와, 물량산출 양식에 맞는 형식으로 자동 모델링을 수행하도록 설계되어 있다. 약 600개의 관로 데이터를 처리해야 했으며, 스크립트 실행 후 전체 모델이 완성되는 데 약 2분이 소요되었다. HP Z2 미니 G1a는 스크립트 실행 중에도 메모리 과부하나 뷰 응답 지연이 거의 발생하지 않았다. CSV 로드, 파라미터 매칭, 객체 자동 생성 등 일련의 과정이 매끄럽게 진행되었으며, 모델 생성 중 다른 창으로 전환하거나 병행 작업을 수행해도 시스템 반응이 안정적으로 유지되었다. 이전 노트북 환경에서 동일 스크립트를 실행할 때 20~30분이 걸리던 것을 감안하면, 처리 속도 면에서도 체감 개선이 있었다. 다이나모는 BIM 자동화의 핵심 도구로, CPU·RAM 활용도가 높은 편이다. HP Z2 미니 G1a는 이러한 데이터 기반 자동 모델링 작업에서도 안정성과 연속성을 유지할 수 있는 성능을 보여주었다. 결론적으로, 이 제품은 다이나모를 활용한 중규모 자동화 모델링 업무에서도 실무 투입이 가능한 수준의 연산 성능을 제공했다. 단순한 뷰어 수준을 넘어, 스크립트 실행 및 대량 객체 생성 단계까지 안정적으로 처리할 수 있음을 확인했다.   테스트 6 - 양평–이천 1공구(시빌 3D)    ▲ 시빌 3D 코리더 기반 도로·토공 모델 수정 테스트   이번 테스트는 양평–이천 1공구 교차로 구간의 도로 및 토공 모델 수정 작업을 대상으로 진행되었다. 이 현장은 기존 도로가 운행 중인 상태에서 양측에 신설 교량과 램프가 동시에 시공되는 복합 교차로 구간으로, 작은 설계 변경이 전체 토공·선형·편경사에 즉각적인 영향을 주는 복잡한 구조를 갖는다. 테스트는 시빌 3D의 코리더(Corridor) 모델 수정 기능을 중심으로 진행되었다. 기존에 구축된 도로 모델에서 선형(Alignment)을 일부 이동시켜, 연결된 측점(Point)과 타깃(Target) 요소들이 자동으로 재계산되는 반응을 확인하였다. 이 과정은 실제 설계 변경 상황에서 빈번히 발생하는 업무이며, 연계된 여러 참조 모델들이 동시에 반응해야 정확한 결과를 얻을 수 있다.  HP Z2 미니 G1a에서의 성능은 인상적이었다. 시빌 3D는 평면선형, 종단곡선, 표준횡단면, 편경사까지 모두 반영된 도로 모델링을 처리해야 하므로, 코리더를 크게 구성할수록 연산 부담이 커진다. 필자는 평소 물량산출 단계에서 코리더를 세분화하지 않고 하나의 대형 코리더로 구성하는 방식을 선호하는데, 이번 테스트에서도 동일 조건으로 적용하였다. 결과적으로 약 5분 내에 전체 코리더가 수정 완료되었고, 램프선형 2개와 메인선형 1개가 포함된 복합 모델이 정상적으로 갱신되었다. 로딩 및 재계산 중 팬 소음은 있었지만, 화면 지연이나 모델 깨짐 현상은 나타나지 않았다. 특히 선형 변경 직후 횡단면과 편경사 데이터가 자동으로 반영되는 과정이 부드럽게 이어져, 실시간 설계 검토용으로도 충분히 사용 가능한 안정성을 보였다. 시빌 3D는 고도의 파라메트릭 모델 구조로 인해 변경 연산이 무거운 편이나, HP Z2 미니 G1a는 이러한 연속 연산 작업을 무리 없이 처리했다. 결론적으로, 이 장비는 코리더 기반 도로 모델 수정 및 토공 검토 작업에서 실무 수준의 연산 안정성과 응답 속도를 제공했다. 복잡한 연계 데이터 구조를 가진 프로젝트에서도 모델링 작업이 매끄럽게 이어졌다는 점이 특히 인상적이었다.   테스트 7 - 압해화원 2공구(나비스웍스)   ▲ 나비스웍스 공정 시뮬레이션 뷰어 테스트   이번 테스트는 도로 및 교량 시공 구간의 공정 시뮬레이션 기능을 검증하기 위해 수행되었다. BIM 분야에서 공정(4D) 시뮬레이션은 단순한 모델 시각화를 넘어, 시간 요소를 결합해 시공 순서를 가시적으로 표현하는 기술이다. 설계 중심의 4D는 ‘무엇이 지어지는가’를 보여주고, 시공 중심의 4D는 ‘어떻게 시공되는가’를 보여주며, 감리 관점에서는 ‘어떻게 하면 안전하게 시공할 수 있는가’를 검토하는 도구로 활용된다. 이번 테스트에서는 기존에 구축되어 있던 공정 연동 모델을 나비스웍스 시뮬레이트(Navisworks Simulate) 환경에서 실행시켜, 공정 시뮬레이션의 재생 속도와 뷰 전환 안정성을 확인하였다. 테스트 과정은 단순했지만, 4D 뷰어의 핵심은 시각적 매끄러움과 타임라인 재생의 일관성에 있다. HP Z2 미니 G1a에서의 실행 결과, 공정 애니메이션이 처음부터 끝까지 지연이나 프레임 드롭 없이 부드럽게 재생되었다. 재생 중 모델 회전·확대·축소·시점 이동을 병행해도 화면이 끊기지 않았으며, 공정 단계 전환 시 오브젝트의 색상 변화나 투명도 조절 효과도 자연스럽게 이어졌다. 테스트 동안 CPU 사용률은 일정하게 유지되었고, 팬 소음은 있었지만 발열로 인한 성능 저하는 없었다. 이전 테스트(1~6)가 모델 검토와 수정 중심이었다면, 이번 테스트부터는 시각적 시뮬레이션 성능과 렌더링 안정성에 초점을 맞춘 항목을 다룰 예정이다. 결과적으로 HP Z2 미니 G1a는 공정 시뮬레이션 뷰어로서의 안정성과 시각적 완성도 면에서 충분히 실무 활용이 가능한 수준을 보여주었다.   테스트 8 - 남양주왕숙지구 국도47호선 이설(트윈모션)   ▲ 트윈모션 주행 시뮬레이션 렌더링 성능 테스트   이번 테스트는 남양주 왕숙지구 국도 47호선 이설 구간의 복합 교차로(IC)를 대상으로 진행되었다. 이 구간은 터널, 지하차도, 램프, 분기부가 하나의 구조물 내에 집중되어 있는 복합 노드로, 설계 단계에서부터 구조 간섭이 빈번히 발생했던 구간이다. BIM 모델을 기반으로 한 시각적 검토 과정에서, 실제 차량의 주행 경로와 주행 표면을 3D 환경에서 구현하여 상부 보고 시 설득력을 강화한 사례이기도 하다. 테스트는 트윈모션(Twinmotion) 환경에서 기존에 구축된 주행 시뮬레이션 파일을 불러와 재생하는 방식으로 진행되었다. 주요 검토 항목은 렌더링 과정의 프레임 안정성, 뷰 이동 반응성, 그리고 카메라 전환 시 딜레이 여부였다. HP Z2 미니 G1a에서의 실행 결과, 전체 시뮬레이션이 매끄럽게 재생되었으며, 렌더링 과정에서의 끊김이나 프레임 드랍이 관찰되지 않았다. 특히 차량 궤적을 기존 설계값보다 높여 시뮬레이션 범위를 인위적으로 확장했을 때에도, 예상과 달리 렌더링이 흔들리지 않고 안정적으로 구동되었다. 시점 전환이나 장면 이동 시에도 지연이 거의 없었으며, 복합 IC 구조물의 터널·램프·교차부 간 연결성이 시각적으로 명확히 유지되었다. 이 테스트는 단순한 뷰어 수준을 넘어, 실제 주행 경로를 포함한 3D 시뮬레이션의 실시간 렌더링 처리 능력을 확인하는 것이 목적이었다. 결과적으로 HP Z2 미니 G1a는 트윈모션 기반 주행 시뮬레이션에서도 안정적인 그래픽 처리 성능과 렌더링 지속성을 입증했다. 특히 복잡한 교차로 구간에서 여러 객체가 동시에 움직이는 장면에서도 프레임 유지율이 높았으며, 실무 프레젠테이션용 장비로도 손색이 없는 수준이었다.   테스트 9 - 천안 환경 클러스터(리얼리티스캔)   ▲ 리얼리티스캔 드론 사진 기반 자동 3D 모델링 테스트   이번 테스트는 천안 환경 클러스터 매립지 현장에서 촬영한 드론 사진을 활용하여, 리얼리티스캔(RealityScan)의 사진 기반 자동 3D 모델링 기능을 검증하기 위해 진행되었다. 시공 단계에서는 대부분의 현장이 드론 촬영 허가를 보유하고 있으며, 현장 실측 자료를 국토지리정보원 데이터와 비교·보정하여 다양한 지형 검토를 수행한다. 이번 테스트는 이러한 실무 과정과 동일한 조건으로 진행되었다. 테스트 절차는 단순했다. 현장에서 촬영한 약 300장의 드론 이미지를 리얼리티스캔에 불러와 자동 모델링을 수행하였다. 필자가 소프트웨어적으로 개입할 부분은 거의 없었으며, 프로그램이 사진 정합, 포인트 생성, 메시 재구성, 텍스처 합성을 모두 자동으로 처리했다. HP Z2 미니 G1a에서의 결과는 매우 인상적이었다. 약 1시간 만에 전체 모델링이 완료되었으며, 생성된 모델의 정확도는 도면 및 정사사진 수준에 준했다. 같은 데이터셋을 개인용 고성능 노트북에서 처리했을 때 약 5시간이 소요되었던 것을 감안하면, 처리 속도가 약 5배 가까이 단축된 셈이다. 프로세스 중 중단이나 에러 메시지 없이 안정적으로 작업이 완료되었으며, 모델 텍스처 품질 또한 균일했다. 리얼리티스캔은 드론 이미지 처리 시 GPU 및 CPU 연산이 복합적으로 작동하는 프로그램이다. HP Z2 미니 G1a는 이러한 사진측량(Photogrammetry) 기반의 연속 연산 작업에서도 안정성과 속도를 모두 확보했다. 특히 본체가 작음에도 불구하고 장시간 연산 중 발열 제어가 우수하여, 팬 속도는 상승했지만 스로틀링(성능 저하) 현상은 전혀 없었다. 결론적으로 HP Z2 미니 G1a는 필드에서 촬영한 이미지를 즉시 처리하고 결과를 시각화해야 하는 BIM–현장 융합형 워크플로에 특히 효율적이었다.   테스트 10 - 이라크 Al Faw Grand Port(시빌 3D)   ▲ 시빌 3D 해저 지표면 토공 모델링 및 물량산출 테스트   이번 테스트는 Al Faw Grand Port 프로젝트의 해저 지반 데이터를 활용해, 시빌 3D 기반 토공 모델링 및 물량산출 기능을 검증하기 위해 수행되었다. 항만 공사에서의 토공은 일반적인 육상 토공과 달리, 해저 지반의 형상이 복잡하고 데이터 정밀도가 높기 때문에 연산 부담이 매우 크다. 이번 테스트에서도 라이다(LiDAR) 스캔으로 취득한 등고선 간격 3cm의 초정밀 해저면 데이터를 활용하였다. 테스트 절차는 단순했다. 시빌 3D에서 해당 지표면 데이터를 불러온 뒤, 설계 구간만큼의 절취·성토 영역을 모델링하고, 그 구간의 물량을 자동 산출하도록 설정하였다. 즉, 토공 모델링–수량 산출까지의 전형적인 워크플로우를 실제 데이터로 재현한 테스트였다. HP Z2 미니 G1a에서 토공 모델링 단계는 약 2시간 이내에 완료되었다. 등고선 간격이 매우 촘촘했음에도 불구하고, 삼각망(TIN) 생성과 표고 반영 과정은 정상적으로 진행되었다. 그러나 이후 수행된 물량산출 단계에서는 연산이 종료되지 않았다. 시빌 3D의 특성상 계산을 완전히 마치려면 장시간이 필요하며, 연산이 멈춘 것이 아니라 시간만 충분히 주면 결과가 생성되는 구조다. 그러나 이번 테스트는 실무 환경을 가정한 단기 검증이었기 때문에, 하루가 지나도 결과가 출력되지 않아 실용적 한계로 판단하고 중단하였다. 결론적으로 HP Z2 미니 G1a는 초고밀도 해저 지반 데이터를 활용한 토공 모델링 단계까지는 안정적으로 처리 가능했으며, 물량산출처럼 장시간 연산이 필요한 작업에서는 현실적인 작업 효율을 고려한 분할 처리 전략이 필요한 것으로 판단된다.   테스트 11 - 가덕도신공항(파이썬, 팬더스)   ▲ 대용량 SPT 지반 데이터 전처리 및 분류 테스트   이번 테스트는 가덕도 신공항 건설 예정지의 지반 데이터베이스(SPT 값)를 파이썬(Python) 환경에서 전처리하는 실험으로 진행되었다. 이 프로젝트는 파랑이 강한 연약지반 위에 활주로와 부지를 조성해야 하는 난공사로, 시공 이전 단계에서 방대한 지반 검토가 이루어진다. 특히 00연구실에서 제공받은 DB는 좌표별 SPT(Standard Penetration Test) 값을 포함한 약 1억 개의 데이터 포인트로 구성되어 있었다. 이로 인해 일반적인 엑셀이나 CSV 편집기에서는 불러오기조차 불가능했다. 필자는 이 과정에서 엑셀이 약 108만 줄 이상은 열 수 없다는 한계를 처음 체감하기도 했다. 테스트는 파이썬의 팬더스(Pandas) 라이브러리를 사용해 1억 줄의 데이터를 불러온 후, 지반 평가 기준에 따라 다섯 가지 유형(VL, L, MD, D, VD)으로 자동 분류하는 방식으로 진행되었다. 연산은 HP Z2 미니 G1a의 로컬 환경에서 수행되었으며, 데이터는 외부 SSD에서 직접 불러왔다. 테스트 결과는 매우 안정적이었다. 약 15분 만에 전체 데이터가 다섯 개 그룹으로 분류 완료되었으며, 중간 단계에서 메모리 오류나 지연 현상은 발생하지 않았다. CPU 점유율은 일정하게 유지되었고, 작업 중 다른 프로그램을 병행 실행해도 시스템 응답성 저하가 없었다. 특히 팬더스가 메모리 내에서 직접 배열을 처리함에도 불구하고, HP Z2 미니 G1a는 데이터 로드 – 필터링 – 그룹화 – 저장까지 전체 프로세스를 안정적으로 처리했다. 결론적으로 HP Z2 미니 G1a는 대용량 CSV·DB 전처리 작업에서 실무에 투입 가능한 수준의 연산 성능과 안정성을 확보하고 있었다. 1억 줄 규모의 지반 데이터를 단시간에 분류할 수 있었던 점은, 토목·지반·측량 등 데이터 중심 엔지니어링 업무에서 파이썬 기반 자동화 환경에도 충분히 대응 가능한 워크스테이션임을 입증한 결과였다.   테스트 12 - 평택오송 1공구(클라우드컴페어)   ▲ 클라우드컴페어 포인트클라우드(LAS) 분할(Clipping) 테스트   이번 테스트는 평택–오송 고속철도 1공구 구간의 라이다(LiDAR) 드론 스캔 데이터를 활용해, 클라우드컴페어(CloudCompare)의 포인트클라우드 분할(Clipping) 기능을 검증하기 위해 진행되었다. 이 프로젝트는 기존 고속철도가 운행 중인 상태에서 양측에 새로운 철도를 신설하는 사업으로, 모든 시공 작업이 기존 선로의 안정성을 저해하지 않도록 수행되어야 한다. 이를 위해 전 구간(약 10km)에 대한 고정밀 드론 스캔이 이루어졌으며, 취득된 LAS 데이터의 용량은 약 40GB에 달했다. 테스트는 클라우드컴페어 환경에서 해당 LAS 데이터를 불러와, 시뮬레이션 현황에 필요한 구간만 선택하여 잘라내고, 분할된 데이터를 별도 파일로 추출하는 시나리오로 진행되었다. HP Z2 미니 G1a에서의 테스트 결과, 데이터 로딩에 약 30분이 소요되었다. 전체 포인트 수가 매우 많아 초기 로딩 단계에서는 일시적인 프리징(멈춤) 현상이 있었으나, 로드가 완료된 이후에는 시점 이동 및 확대·축소가 안정적으로 가능했다. 이후 약 400m×400m 구간을 불린(Boolean) 연산으로 분할·추출하는 데 10분 내외가 소요되었으며, 연산 도중 프로그램이 중단되거나 강제 종료되는 일은 없었다. 포인트클라우드 데이터의 밀도가 매우 높아 화면 전환 시 프레임 드랍이 있었으나, 작업 안정성 자체는 유지되었다.  결론적으로 HP Z2 미니 G1a는 40GB 규모의 라이다 LAS 데이터를 활용한 포인트클라우드 분할·추출 작업을 실무 수준에서 수행할 수 있는 안정성을 보여주었다. 초기 로딩 시간이 다소 길긴 했으나, 작업 중 중단 없이 끝까지 클리핑을 완료한 점에서 대용량 3D 스캔 데이터 처리용 소형 워크스테이션으로 충분히 실용적임이 확인되었다.   테스트 13 - 사우디아라비아 NEOM Spine Concrete Corridor(세슘, 시빌 3D, 언리얼 엔진)   ▲ 세슘 – 시빌 3D – 언리얼 연계 기반 초장거리 토공 뷰어 테스트   이번 테스트는 사우디아라비아 NEOM 프로젝트의 Spine Concrete Corridor 구간(총 연장 약 108km)을 대상으로 진행되었다. 해당 프로젝트는 전 세계적으로 주목받은 초대형 도시개발 계획의 일부로, 초장거리 선형 구조를 가지고 있어서 광범위한 지형 데이터를 안정적으로 처리할 수 있는 워크플로 검증이 필요했다. 이에 세슘(Cesium) 지형 데이터를 시빌 3D에서 토공 모델로 가공하고, 이를 언리얼 엔진(Unreal Engine)으로 이관하여 시각적 뷰어를 구성하는 전체 절차를 테스트하였다. HP Z2 미니 G1a에서의 테스트는 제한된 시간 내에 일부 구간만을 대상으로 수행되었다. 전 구간(108km)을 처리하지는 않았지만, 세슘에서 시빌 3D로의 데이터 임포트, 토공 모델 생성, 언리얼 엔진으로의 시각화 이관이 모두 정상적으로 진행되었다. 좌표 변환, 메시 생성, 텍스처 반영 등 각 단계에서 프로그램 오류나 멈춤 현상은 발생하지 않았다 언리얼 엔진으로의 모델 이관 후에도 기본적인 뷰어 작동은 안정적이었다. 단순화된 토공면 상태에서도 카메라 이동, 회전, 조명 변경이 자연스럽게 수행되었고, 시각적 품질도 유지되었다. 결론적으로 HP Z2 미니 G1a는 초장거리 지형 데이터를 활용한 세슘 – 시빌 3D – 언리얼 통합 워크플로를 실무 수준에서 안정적으로 수행할 수 있는 성능을 보였다. 대규모 토공 뷰어 구축이나 초장거리 인프라 프로젝트의 시각화 단계에서도 충분히 활용 가능한 장비임이 확인되었다.   ■ 이민철 대우건설 토목사업본부 토목국내기술팀의 선임이다. BIM 기반 토목 설계 및 시공 데이터 검증, 시뮬레이션 자동화, 디지털 트윈 구축 업무를 담당하고 있으며, 다수의 대형 인프라 프로젝트에서 실무 중심의 BIM 엔지니어링 프로세스를 연구·적용하고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-11-04
ZW3D Structural & Flow : 3D 설계 환경에 통합된 전문 CAE 시뮬레이션
개발 : ZWSOFT 주요 특징 : 기계/제조 분야에 특화된 올인원 설루션인 ZW3D에 통합된 CAE 소프트웨어, 구조/유체/전자기장 해석 등 다양한 전문 해석 도구 제공. 설계 환경에서 직관적이며 빠른 검증 과정과 데이터 일관성을 통해 제품 개발 과정의 시간 단축과 품질 향상을 실현 공급 : ZWCAD KOREA   해석 전문가를 위한 ZWSIM 해석 플랫폼 ZWSOFT의 ZWSIM은 여러 산업 분야의 문제를 해결하기 위해 개발된 통합 CAE 시뮬레이션 플랫폼이다. ZWSIM은 엔지니어가 제품 개발 초기 단계에서 가상 시뮬레이션을 통해 성능을 예측하고, 잠재적인 결함을 파악하여 설계를 최적화할 수 있도록 지원한다. 이를 통해 개발 기간을 단축하고, 시제품 제작 비용을 절감하며, 제품의 전반적인 품질과 신뢰성을 향상시키는 전문 프로그램이다. 초기에는 구조 해석 설루션인 ‘ZWSIM Structural’로 시작했으나, ZWSIM의 포트폴리오를 지속적으로 확장하여 유체(fluid), 음향(acoustics), 광학(optics) 등 더욱 광범위한 물리 영역을 포괄할 수 있는 다중 물리(multiphysics) 해석 플랫폼으로 발전하고 있다. 이는 단일 현상뿐만 아니라 여러 물리적 요인이 복합적으로 작용하는 복잡한 문제를 하나의 플랫폼에서 해결할 수 있도록 지원하는 것을 목표로 한다.      제품 개발 과정에 필수인 CAE 도구, ZW3D에 통합 복잡한 제품 개발을 지속적으로 영위하는 기업은 3D 모델링을 설계하는 업무보다 그 이후 과정에 더 많은 시간을 투자할 수 밖에 없다. 제작 단계에서 설계 수정이 반영되면서 3D 데이터의 연속성은 필수이기 때문에 2D 도면과 3D 모델링은 연관성이 있고, 구조적 안전성과 열/피로 같은 현실 조건을 설계 단계에서 미리 점검해야 한다. 이러한 문제를 해결하고자 전문 해석자를 위한 ZWSIM 브랜드의 CAE 플랫폼에서 다져 온 역량을 바탕으로, ZW3D 플랫폼에 구조와 유동 해석 소프트웨어를 단계적으로 통합하여 제품 개발의 전 과정을 실현하도록 통합 출시했다.  3D CAD에 통합된 CAE 기능을 통해 설계 환경에서 3D 데이터를 불러온 후, 해석을 위한 모델 전처리 작업과 하중 및 구속조건을 정의하고, 결과를 확인한 뒤 설계 수정을 통해 재검증하는 프로세스를 지원한다. 특히 경향성 파악을 위해 메시 작업도 간결하게 처리할 수 있기 때문에 설계자가 직접 반복 검증을 주도할 수 있게 된다. 여기에 형상 이력과 결과 이력을 함께 축적하면, 변경 사유와 판단 근거가 한 줄기로 이어져 각 제품별 품질 회고가 쉬워진다.    Structural & Flow에서 지원하는 해석의 범위 실무에서 자주 받는 질문은 정형화되어 있다. ‘이 형상이 버틸 수 있는가’, ‘고유 진동수는 어디에 걸리는가’, ‘열 변형이 생기면 체결부는 안전한가’, ‘반복 하중에서 수명은 어떠한가’와 같은 질문이다. ZW3D Structural(ZW3D 스트럭처럴)은 이러한 질문을 정면으로 다룬다. 선형/비선형을 포함한 정적 구조 해석, 고유진동수와 모드를 구하는 모달 해석, 정상/과도 조건의 열전달 해석, 시간 응답을 보는 암시적(implicit) 동역학, 낙하/충격 같은 고변형에 적합한 명시적(explicit) 동역학, 그리고 피로 해석까지 설계 단계에서 필요한 줄기를 폭넓게 지원한다. 피로는 상수/가변/조화/시간 단계/랜덤 진동 등 다양한 케이스를 포괄해 전장/가전/장비처럼 반복 하중이 일상적인 제품에 유용하다. 하중과 구속을 절차대로 적용하는 멀티스텝 해석을 통해 실제 시험 절차를 시뮬레이션에 그대로 옮길 수 있다. 또한 실무에서 자주 쓰는 기능이 빠지지 않고 배치되어 있다는 점이 중요하다. 좌굴, 볼트 프리텐션, 접촉 마찰, 과도 열 등 튜토리얼 성격의 자료가 함께 제공되어 해석 도입의 기초를 마련하는 데 도움이 된다. 여기에 결과 리포트 자동화 기능을 결합하면 스냅샷, 형상 상태, 경계 조건을 일관된 양식으로 남길 수 있어 검토 회의가 간결해진다. 한편 구조해석만으로 해결하기 어려운 냉각, 유동, 온도장 같은 복합적인 문제 영역을 검증하기 위한 설루션인 유동 해석 소프트웨어 ZW3D Flow(ZW3D 플로)를 지원한다.      1974년 영국의 브라이언 스폴딩(Brian Spalding) 교수에 의해 설립된 컨설팅 및 소프트웨어 기업인 CHAM(Concentration, Heat And Momentum) Limited에서 개발한 전산유체역학 분야의 범용 CFD 소프트웨어 피닉스(PHOENICS)를 2023년에 ZW 제품군의 포트폴리오로 추가하면서, ZWSIM Flow를 출시했다.      이를 ZW3D에 네이티브로 통합하여 설계 모델과 동일한 좌표/단위/형상 상태에서 유동과 열을 바로 계산하고, 그 결과를 구조 해석으로 자연스럽게 넘길 수 있게 했다. 예를 들어, 팬 위치나 덕트 단면을 바꾸며 온도 분포가 어떻게 달라지는지, 그 변화가 체결부 응력과 변형에 어떤 영향을 주는지를 한 자리에서 추적할 수 있다. 형상/유동/열/구조의 연계가 끊김 없이 돌아가므로 설계 의도 변화가 결과에 미치는 경향을 빠르게 파악할 수 있다. 초기 콘셉트 단계에서는 단순화한 경계 조건으로 빠른 비교를, 상세 설계 단계에서는 실제 재질/접촉/제약을 반영해 정밀 계산을 수행하는 식의 단계적 접근이 유효하다.   설계자가 주도하는 구조적 실무형 접근 자동차 계기판의 광원 백패널을 예로 들 수 있다.  한여름 갇힘 조건을 가정해 내부 발열과 냉각 조건으로 온도 상승을 해석한다. 결과를 바탕으로 열팽창과 응력 집중을 확인하고 필요 시 체결부 인근의 리브/보스 형태를 조정한다. 수정 모델을 기준으로 속도 변화와 노면 조건을 반영해 모달 해석을 수행하고 취약 주파수 대역을 파악한다. 수명/피로 분석으로 국부 설계 변경의 효과를 검증한다. 사고 시나리오에 따른 충돌 하중을 대입해 최종 설계 사양을 확정한다.     이 모든 과정이 ZW3D의 단일 환경에서 수행된다. 추가 프로그램 없이 설계/해석 평가/설계 변경/재검증까지 같은 문맥에서 진행되므로, 현업에서 빈번한 히스토리 단절과 모델 호환 문제에서 자유로울 수 있다. 팀 협업에서는 동일 모델을 공유하며 검토 내역을 일관되게 축적할 수 있어 관리 효율이 높아진다.   메시 전략과 요소 선택의 체계화 메시는 수렴성과 정확도를 동시에 좌우한다. 곡률 기반 세분화, 접촉부 국부 정렬, 두께 대비 요소 크기 규칙 같은 기본 원칙을 지키면 불필요한 자유도 증가를 피하면서 신뢰 가능한 결과를 얻을 수 있다. 얇은 판/셸 구조는 셸 요소와 두께 오프셋을, 두꺼운 실체는 솔리드 요소와 적절한 적분점을 적용하는 식으로 형상/요소 대응을 표준화하면 셋업 편차가 줄어든다. 초기 단계에서는 자동 메시로 빠르게 경향을 보고, 핵심 부품만 지역 정렬로 보완하는 혼합 전략이 생산적이다.     접촉과 비선형, 수렴성을 높이는 쉬운 해법 해석 난이도는 대개 접촉, 대변형, 재료 비선형에서 결정된다. ZW3D Structural은 이 영역의 수렴을 안정화하기 위해 여러 솔버 선택지를 제공한다. 복잡한 이론을 일일이 지정하지 않아도 자동 해법 선택으로 고유치 계산, 대형 시스템을 위한 해법, 점진적 반복법 등을 상황에 맞게 배치한다. 메시 품질 관리, 접촉 정의, 하중 단계 설계가 함께 맞물리면 설계/해석 반복 속도가 체감될 만큼 빨라진다. 동시에 해석이 ZW3D 커널을 직접 참조하기 때문에 보강 리브 위치 조정이나 두께/재질 변경 같은 수정이 포맷 변환이나 재메시 없이 이어진다. 미세한 차이로 인한 불필요한 잡음을 줄이고 의사결정의 신뢰도를 높일 수 있다. 접촉 안정화를 위한 마찰 계수 스윕, 하중 단계 분할, 요소 품질 검사 같은 절차를 체크리스트로 상시화하면 재작업률을 낮출 수 있다.      다양한 결과 분석 방식과 자동 리포트 해석은 수치만 맞는다고 끝이 아니다. 시험치와의 상호 검증, 경계 조건 민감도, 메시 독립성 검토를 기본 절차로 포함해야 한다. ZW3D Structural에서는 결과 필터, 절단면, 등가응력/주응력 뷰, 변형 과장 보기 등을 일관된 뷰포트로 저장해 재사용할 수 있다. 표준 리포트 서식을 팀에서 공유하면 프로젝트 간 비교가 수월해지고, 승인 사이클이 짧아진다. 색상 범례와 최대/최소 위치, 안전계수 표기를 통일하면 커뮤니케이션 오류가 줄어든다.   해석의 대중화를 향해 : Easy/Affordable/Powerful 지더블유캐드코리아는 해석 제품에서 쉬운 사용성(Easy), 합리적 가격(Affordable), 현업 검토를 통과하는 결과 품질(Powerful)을 일관되게 강조해 왔다. 설계자가 평소 쓰는 도구 안에서 해석을 습관처럼 돌리고, 필요할 때만 전문 해석 팀이나 외부 툴로 심화하는 구조가 더 합리적이라는 관점을 제시했다. 중소 규모 개발 팀일수록 이 균형이 일정과 완성도를 좌우한다. 도입 장벽이 낮을수록 반복은 빨라지고, 반복이 빨라질수록 판단의 질은 높아진다. 교육은 기능 나열보다 실제 부품을 활용한 반복 실습이 효과적이며, 한두 개의 대표 제품군을 선정해 표준 조건과 리포트 양식을 먼저 고정하는 방식이 안정적이다.    ‘기능 수’보다 체감되는 실무 가치 중심 전문 해석자에게는 기능의 세목이 중요할 수 있으나, 일반 설계자에게 더 중요한 것은 폭넓은 범위를 범용적으로 다룰 수 있는가이다. 정적/모달/열/동역학/피로, 그리고 접촉/비선형/단계 해석이 하나의 지도처럼 이어지고, 메시 품질, 결과 가시화와 리포트, 적절한 해법과 수렴 옵션 등 실무형 도구가 설계 품질 향상으로 곧바로 체감되도록 구성했다. 기계적 조작의 부담을 줄이고 설계 의도를 중심에 둔 빠른 가설/검증/수정 루틴을 장착하는 데 초점을 맞췄다. 도입 이후에는 파일 전송과 포맷 변환에 소요되던 시간을 줄이고, 그 시간을 설계 대안 탐색과 리스크 선제 차단에 재투자하는 선순환을 만드는 것이 핵심이다.   통합형 CAD/CAE/CAM 설루션을 통해 기대하는 지점 ZW3D Structural & Flow 제품이 겨냥하는 핵심은 빠른 반복과 데이터 일관성이다. ZWSIM이 축적한 신뢰를 바탕으로 설계자에게 한 화면에서 닫히는 검증 루프를 제공한다. 유동과 구조를 오가며 현실에 가까운 하중 시나리오를 초기부터 반영하고, 그 결과를 도면과 가공까지 끌고 가는 흐름을 정착시킨다.이 흐름이 자리잡을수록 설계 팀은 비용과 시간을 낮추면서 판단의 질을 끌어올릴 수 있다. 현장에서도 해석이 특별한 이벤트가 아니라 매일의 루틴으로 자리 잡을 때 제품 품질과 실행 속도가 함께 높아진다. ZW3D에 추가된 CAE 제품군들은 그 지점을 향해 설계/해석/제조를 단단히 엮는 역할을 수행한다. 결국 중요한 것은 도구 자체가 아니라 팀이 동일한 모델과 동일한 근거로 더 빠르게 합의에 이르는 역량이며, ZW3D 통합 해석 환경은 바로 그 역량을 키우는 기반이 된다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-11-04
트윈모션 2025.2 : 실시간 3D 시각화 워크플로의 생산성 향상
개발 및 공급 : 에픽게임즈 주요 특징 : 나나이트 가상화된 지오메트리 시스템 추가, 빠르고 쉬운 시각화 기능 추가, 애니메이션 기능 향상, 워크플로 통합 및 개선 등   건축, 자동차, 미디어 및 엔터테인먼트, 소비재 등 어떤 분야에서든 활용할 수 있는 새로운 기능이 추가된 트윈모션(Twinmotion)의 최신 버전이 출시됐다. 이번 트윈모션 2025.2는 작업 방식을 혁신적으로 바꿀 수 있는 새로운 기능과 기존 툴 및 워크플로에 더 높은 생산성을 함께 제공한다.   ▲ ‘트윈모션 2025.2 새로운 기능’ 영상   나나이트 가상화된 지오메트리 2년 전, 언리얼 엔진 5의 다이내믹 글로벌 일루미네이션 시스템인 루멘(Lumen)을 도입했던 트윈모션은 이번 최신 버전에 UE5의 또 다른 기능인 나나이트 가상화된 지오메트리 시스템을 추가했다. 나나이트(Nanite)는 보이는 데이터만 필요할 때 자동으로 스트리밍하는 기능으로, 이를 통해 수억 개 또는 수십억 개의 폴리곤으로 구성된 여러 개의 초고해상도 복잡한 메시도 실시간 성능을 유지하면서 작업할 수 있다. 덕분에 파일을 임포트하기 전에 최적화할 필요가 없어져, 시간을 절약할 수 있다.    ▲ 나나이트 가상화된 지오메트리(출처: 트윈모션 홈페이지)   메시는 임포트할 때 또는 임포트 후에도 나나이트로 변환할 수 있으며, 해당 오브젝트의 모든 메시를 일괄 변환할 수 있다. 또한 메가스캔 3D 애셋 및 3D 식물, 스케치팹 애셋도 나나이트로 변환할 수도 있다. 기존 프로젝트가 무겁고 느려진 것 같을 때 나나이트를 사용해 보면 그 차이를 확인할 수 있다.   빠르고 쉬운 시각화 기존과 같은 수준의 시각화를 더 빠르고 간편하게 구현하면서도, 성능 부담을 줄여주는 두 가지 신규 기능이 트윈모션 2025.2에 추가됐다. 먼저, ‘패럴랙스 윈도우’를 지원한다. 건물의 외관을 시각화할 때 사실감을 위해 창문 안쪽까지 모델링하는 것은 지루한 작업일 수 있는데, 패럴랙스 윈도우는 오픈 셰이딩 언어(Open Shading Language : OSL) 셰이더를 통해 단순한 가벼운 평면에 실내 공간의 깊이감을 만들어 내 복잡한 3D 지오메트리 없이도 방이나 건물 내부를 시뮬레이션할 수 있다. 창문을 모델링할 필요도 없이, 외부 표면에 패럴랙스 윈도우를 배치하기만 하면 된다. 라이브러리에 사무실, 주거 공간, 헬스장, 소매점 등 27가지 인테리어가 포함된 패럴랙스 윈도 폴더가 추가돼 있으며, w패럴랙스(wParallax) 및 에버모션(Evermotion) 등의 소스에서 자체 맵을 추가할 수 있는 커스텀 윈도 또한 제공한다. 또한 유리 오버레이를 시뮬레이션하거나, 불규칙한 야간 조명 애니메이션도 포함되어 있다.   ▲ 패럴랙스 윈도(출처 : 트윈모션 홈페이지)   신(scene)에 사실감을 손쉽게 구현할 수 있는 애니메이션 포그 카드도 추가됐다. 라이브러리 VFX 폴더에 포함된 17종의 새로운 애니메이션 포그 카드를 사용하면 드래그 앤 드롭으로 손쉽게 안개를 배치하고 연출할 수 있으며, 성능에 미치는 영향도 최소화할 수 있다. 또한 안개는 신의 바람이나 카드별로 바람 속도, 방향에 따라 반응할 수 있도록 설정할 수 있다.   ▲ 애니메이션 포그 카드(출처 : 트윈모션 홈페이지)   포토리얼한 트윈모션에서 때로는 좀 더 자유로운 스타일이 필요할 경우가 있다. 비사실적인 렌더링 효과는 스타일라이즈드 이미지를 제작하거나 지나치게 사실적으로 ‘완성된’ 렌더링이 이해관계자의 실험과 반복 작업을 방해할 수 있는 사전 시각화 과정에서 활용된다. 이를 위해 더욱 유연하고 향상된 비주얼 퀄리티를 제공하고자 전체 FX 포스트 프로세싱 시스템을 개편했다. 해칭, 쿠와하라 필터링, 펜 스타일 윤곽선 등 회화 및 스케치 스타일 효과에 중점을 두었으며, 모든 파라미터가 제공되어 원하는 대로 커스터마이징하고 프리셋을 저장할 수 있다.   ▲ FX 포스트 프로세싱(출처 : 트윈모션 홈페이지)   또한, 이제 *.cube 형식의 자체 룩업 테이블(LUT)을 임포트할 수 있어, 특정 컬러 룩을 구현하고 여러 샷이나 프로젝트 간에 컬러 일관성을 유지하며 컬러 그레이딩 과정을 간소화할 수 있다. 또 다른 신규 기능으로 스태틱 오브젝트에 선형 또는 방사형 모션 블러를 적용할 수 있게 됐다. 이 기능은 정적인 신에서 움직임을 빠르게 시뮬레이션할 때 유용하다. 예를 들어 자동차 바퀴에 회전 모션 블러를 적용하거나, 건축 이미지에서 선형 모션 블러로 인물의 초점을 미묘하게 낮추고 건물에 초점을 집중시킬 수 있다. 반대로 비디오나 시퀀스를 익스포트할 때 렌더링 속도를 희생하더라도 더 높은 퀄리티의 사실적인 모션 블러를 적용할 수 있는 옵션도 추가됐다.   ▲ 스태틱 모션 블러(출처 : 트윈모션 홈페이지)   마지막으로, 신 디버깅을 돕기 위해 언릿, 와이어프레임, 루멘, 나나이트 등 다양한 기술적 뷰포트 모드를 활성화할 수 있다.   향상된 애니메이션 신에 애니메이션을 추가하면 완전히 다른 차원의 최종 경험을 제공할 수 있다. 이번 버전에는 이런 애니메이션 기능을 강화하는 다양한 신규 기능들이 추가됐다. 트윈모션의 애니메이터는 트랜슬레이터 및 로테이터처럼 오브젝트에 가까이 다가갔을 때 실행되도록 설정할 수 있는 간단한 애니메이션을 제작할 수 있었는데, 이번에는 새로운 유형의 애니메이터인 익스플로더가 추가됐다. 익스플로더는 선택한 형태(평면, 원기둥, 구체)에 따라 오브젝트를 원래 위치에서 바깥쪽이나 안쪽으로 이동시켜 기술 프레젠테이션이나 극적인 연출을 위한 분해도 애니메이션을 손쉽게 만들 수 있다.   ▲ 익스플로더(출처 : 트윈모션 홈페이지)   다양한 프리셋으로 부드럽게 밀기, 해체, 부풀리기, 링 벗겨내기, 압축, 평면 분할, 스택 재조립 등과 같은 애니메이션을 손쉽게 만들 수 있다. 또한 이동 거리, 시차 오프셋, 이동 방향 등을 편집해 자신만의 애니메이션을 만들고 프리셋으로 저장할 수도 있다. 기존의 트랜슬레이터 및 로테이터 애니메이터에도 스태거 오프셋이 추가되어, 오브젝트가 하늘에서 떨어지거나 지면에서 솟아오르는 효과 또는 순차적으로 회전하는 것과 같이 신에 역동적인 연쇄 연출을 손쉽게 만들 수 있게 됐다.   ▲ 캐스케이드 애니메이션(출처 : 트윈모션 홈페이지)   또한, 이제 애니메이터를 시퀀스 툴에서 트랙으로 사용할 수 있어, 애니메이션의 시작 시각 변경, 재생 시간 조절, 다른 애니메이션 요소와 동기화하는 것이 간편해졌다. 애니메이션 캐릭터와 컨트롤 경로도 이제 시퀀서 툴의 재생 위치와 동기화된다. 애니메이션은 신에 생동감을 더해 주지만, 스틸 이미지를 만들 때는 원하는 구도나 동작 시점을 정확하게 잡아내기 어려울 수 있다. 이를 해결하기 위해 이미지 속성에 새로운 글로벌 스태틱/리얼타임 애니메이션 재생 옵션이 추가되어 애니메이션을 멈추고 정확한 순간을 선택해 촬영할 수 있다. 마지막으로, 이제 신에 애니메이션 파일을 임포트하면 로컬 디스크를 불러오는 방식이 아니라 신에 바로 포함되도록 변경됐다. 덕분에 프로젝트 패키징과 공유가 훨씬 쉬워지고, 애니메이션 파일을 로컬 및 클라우드 프레젠테이션에서 모두 사용할 수 있으며, 애니메이션이 포함된 신의 로딩 속도가 더 빨라졌다.   버추얼 카메라(VCam) 이번 버전은 촬영감독부터 시각화 전문가에 이르기까지 누구나 활용 가능한 버추얼 카메라를 새롭게 지원하여 흥미로운 가능성을 제시한다. 트윈모션을 안드로이드 또는 iOS에서 언리얼 VCam 앱에 연결하면 휴대용 디바이스를 움직이는 것만으로 신에 버추얼 카메라를 배치할 수 있다. 샷 탐색 기능을 활용하면 신을 자유롭게 탐색하면서 카메라 배치, 각도, 노출, 초점, 배율 등의 설정을 1인칭 시점에서 실험해 볼 수 있고, 디자인 리뷰에서는 가상의 애셋을 실제로 걸어 다니면서 모든 각도에서 살펴볼 수 있다. 어떤 경우든 탐색 중 스냅샷을 캡처할 수 있으며, 캡처한 샷은 트윈모션에 미디어/이미지로 자동 저장되어 나중에 쉽게 해당 뷰로 돌아가 볼 수 있다.   ▲ VCam(출처 : 트윈모션 홈페이지)   향상된 머티리얼 할당/편집/구성 모든 트윈모션 사용자에게 필수인 머티리얼 작업을 위해 이번 버전에서 UI 및 워크플로를 크게 향상시켰다. 먼저, 이제 머티리얼 도크에서 머티리얼을 폴더로 정리하고 이름으로 검색할 수 있다. 또한 머티리얼을 알파벳순으로 정렬할 수 있으며, 계층 구조의 어느 지점에서든 플랫 뷰를 활성화해 해당 레벨 하위의 모든 머티리얼을 한 화면에서 볼 수 있다. 또한, 툴바에 멀티드롭 툴 버튼이 추가되어 신에서 마우스 클릭 한 번으로 머티리얼을 빠르게 적용할 수 있어 반복적인 드래그 앤 드롭 작업이 필요 없어졌다. 그리고 머티리얼 속성 패널을 탭으로 구성해 가독성을 높이고, 주요 설정에 더 쉽게 접근할 수 있게 됐다. UV, 엑스레이, 양면과 같은 일부 속성을 서로 다른 유형의 여러 머티리얼을 선택해서 일괄 변경할 수도 있다. 이 탭 중 하나는 해당 머티리얼이 어떤 메시에 할당되어 있는지 확인하고 선택할 수 있는 새로운 기능을 제공한다. 또한 여러 머티리얼이 할당된 단일 애셋(트윈모션 라이브러리의 대다수 애셋)을 선택하면 속성 패널에서 해당 애셋에 적용된 모든 머티리얼을 볼 수 있으며, 머티리얼 도크에 추가할 수 있다. 이러한 향상된 기능들을 통해 한층 더 만족스럽고 효율적인 워크플로를 경험할 수 있다.   ▲ 향상된 머티리얼 워크플로(출처 : 트윈모션 홈페이지)   트윈모션 및 DCC 뷰포트 동기화 이번에 추가된 트윈모션 뷰포트 카메라 위치 및 속성을 DCC 뷰포트 카메라와 동기화하는 신규 기능은 이미 DCC 또는 CAD 패키지의 소스 파일에서 수정하면서 트윈모션에서 완전히 렌더링된 결과를 확인하는 워크플로를(데이터스미스 다이렉트 링크로 가능) 활용 중인 사용자에게 도움이 될 전망이다. 이 기능은 아키캐드, 레빗, 라이노 및 스케치업 프로를 우선 지원하며, 이 기능을 사용하려면 최신 버전으로 플러그인을 업데이트(해당되는 경우)하면 된다.   ▲ DCC 뷰포트 카메라와 동기화(출처 : 트윈모션 홈페이지)   향상된 컨피규레이션 트윈모션 2025.1에서 도입된 컨피규레이션은 계속해서 발전하고 있다. 예를 들어, 이제 모든 상태를 일괄 익스포트하는 새로운 기능이 추가되어 컨피규레이션의 모든 옵션을 개별 이미지, 비디오, 파노라마로 손쉽게 보여줄 수 있다. 다양한 기능 향상과 더불어 각 상태에 카메라 위치를 저장하는 기능, 버튼 하나로 손쉽게 모든 상태의 섬네일을 다시 캡처하는 기능, 글로벌 세팅 창을 통해 2D 트리거 리본을 커스터마이징하는 기능 등이 추가됐다.    ▲ 향상된 컨피규레이션(출처 : 트윈모션 홈페이지)   클라우드 호스팅 콘텐츠 트윈모션을 여러 워크스테이션에 배포해야 하는 사용자들을 위해, 기존 패키지 콘텐츠를 클라우드 스토리지로 옮겨 인스톨러를 더 가볍고 배포하기 쉽게 만들었다. 인스톨러에서 제거된 기존 콘텐츠를 찾을 수 있도록 온디맨드 콘텐츠 설루션을 개발했으며, 카테고리 또는 하위 카테고리의 모든 콘텐츠를 다운로드할 수 있는 새로운 기능도 추가됐다.   더 많은 기능 지금까지 살펴본 주요 기능들 외에도 트윈모션 2025.2에는 3D 잔디, 파노라마 세트, 알리아스 파일(*.wire) 테셀레이션 옵션 등 다양한 기능이 향상됐다. 모든 업데이트에 대한 자세한 내용은 출시 노트를 참고하면 된다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-11-04
트윈모션 2025.2 : 실시간 3D 시각화 워크플로의 생산성 향상
개발 및 공급 : 에픽게임즈 주요 특징 : 나나이트 가상화된 지오메트리 시스템 추가, 빠르고 쉬운 시각화 기능 추가, 애니메이션 기능 향상, 워크플로 통합 및 개선 등   건축, 자동차, 미디어 및 엔터테인먼트, 소비재 등 어떤 분야에서든 활용할 수 있는 새로운 기능이 추가된 트윈모션(Twinmotion)의 최신 버전이 출시됐다. 이번 트윈모션 2025.2는 작업 방식을 혁신적으로 바꿀 수 있는 새로운 기능과 기존 툴 및 워크플로에 더 높은 생산성을 함께 제공한다.   ▲ ‘트윈모션 2025.2 새로운 기능’ 영상   나나이트 가상화된 지오메트리 2년 전, 언리얼 엔진 5의 다이내믹 글로벌 일루미네이션 시스템인 루멘(Lumen)을 도입했던 트윈모션은 이번 최신 버전에 UE5의 또 다른 기능인 나나이트 가상화된 지오메트리 시스템을 추가했다. 나나이트(Nanite)는 보이는 데이터만 필요할 때 자동으로 스트리밍하는 기능으로, 이를 통해 수억 개 또는 수십억 개의 폴리곤으로 구성된 여러 개의 초고해상도 복잡한 메시도 실시간 성능을 유지하면서 작업할 수 있다. 덕분에 파일을 임포트하기 전에 최적화할 필요가 없어져, 시간을 절약할 수 있다.    ▲ 나나이트 가상화된 지오메트리(출처: 트윈모션 홈페이지)   메시는 임포트할 때 또는 임포트 후에도 나나이트로 변환할 수 있으며, 해당 오브젝트의 모든 메시를 일괄 변환할 수 있다. 또한 메가스캔 3D 애셋 및 3D 식물, 스케치팹 애셋도 나나이트로 변환할 수도 있다. 기존 프로젝트가 무겁고 느려진 것 같을 때 나나이트를 사용해 보면 그 차이를 확인할 수 있다.   빠르고 쉬운 시각화 기존과 같은 수준의 시각화를 더 빠르고 간편하게 구현하면서도, 성능 부담을 줄여주는 두 가지 신규 기능이 트윈모션 2025.2에 추가됐다. 먼저, ‘패럴랙스 윈도우’를 지원한다. 건물의 외관을 시각화할 때 사실감을 위해 창문 안쪽까지 모델링하는 것은 지루한 작업일 수 있는데, 패럴랙스 윈도우는 오픈 셰이딩 언어(Open Shading Language : OSL) 셰이더를 통해 단순한 가벼운 평면에 실내 공간의 깊이감을 만들어 내 복잡한 3D 지오메트리 없이도 방이나 건물 내부를 시뮬레이션할 수 있다. 창문을 모델링할 필요도 없이, 외부 표면에 패럴랙스 윈도우를 배치하기만 하면 된다. 라이브러리에 사무실, 주거 공간, 헬스장, 소매점 등 27가지 인테리어가 포함된 패럴랙스 윈도 폴더가 추가돼 있으며, w패럴랙스(wParallax) 및 에버모션(Evermotion) 등의 소스에서 자체 맵을 추가할 수 있는 커스텀 윈도 또한 제공한다. 또한 유리 오버레이를 시뮬레이션하거나, 불규칙한 야간 조명 애니메이션도 포함되어 있다.   ▲ 패럴랙스 윈도(출처 : 트윈모션 홈페이지)   신(scene)에 사실감을 손쉽게 구현할 수 있는 애니메이션 포그 카드도 추가됐다. 라이브러리 VFX 폴더에 포함된 17종의 새로운 애니메이션 포그 카드를 사용하면 드래그 앤 드롭으로 손쉽게 안개를 배치하고 연출할 수 있으며, 성능에 미치는 영향도 최소화할 수 있다. 또한 안개는 신의 바람이나 카드별로 바람 속도, 방향에 따라 반응할 수 있도록 설정할 수 있다.   ▲ 애니메이션 포그 카드(출처 : 트윈모션 홈페이지)   포토리얼한 트윈모션에서 때로는 좀 더 자유로운 스타일이 필요할 경우가 있다. 비사실적인 렌더링 효과는 스타일라이즈드 이미지를 제작하거나 지나치게 사실적으로 ‘완성된’ 렌더링이 이해관계자의 실험과 반복 작업을 방해할 수 있는 사전 시각화 과정에서 활용된다. 이를 위해 더욱 유연하고 향상된 비주얼 퀄리티를 제공하고자 전체 FX 포스트 프로세싱 시스템을 개편했다. 해칭, 쿠와하라 필터링, 펜 스타일 윤곽선 등 회화 및 스케치 스타일 효과에 중점을 두었으며, 모든 파라미터가 제공되어 원하는 대로 커스터마이징하고 프리셋을 저장할 수 있다.   ▲ FX 포스트 프로세싱(출처 : 트윈모션 홈페이지)   또한, 이제 *.cube 형식의 자체 룩업 테이블(LUT)을 임포트할 수 있어, 특정 컬러 룩을 구현하고 여러 샷이나 프로젝트 간에 컬러 일관성을 유지하며 컬러 그레이딩 과정을 간소화할 수 있다. 또 다른 신규 기능으로 스태틱 오브젝트에 선형 또는 방사형 모션 블러를 적용할 수 있게 됐다. 이 기능은 정적인 신에서 움직임을 빠르게 시뮬레이션할 때 유용하다. 예를 들어 자동차 바퀴에 회전 모션 블러를 적용하거나, 건축 이미지에서 선형 모션 블러로 인물의 초점을 미묘하게 낮추고 건물에 초점을 집중시킬 수 있다. 반대로 비디오나 시퀀스를 익스포트할 때 렌더링 속도를 희생하더라도 더 높은 퀄리티의 사실적인 모션 블러를 적용할 수 있는 옵션도 추가됐다.   ▲ 스태틱 모션 블러(출처 : 트윈모션 홈페이지)   마지막으로, 신 디버깅을 돕기 위해 언릿, 와이어프레임, 루멘, 나나이트 등 다양한 기술적 뷰포트 모드를 활성화할 수 있다.   향상된 애니메이션 신에 애니메이션을 추가하면 완전히 다른 차원의 최종 경험을 제공할 수 있다. 이번 버전에는 이런 애니메이션 기능을 강화하는 다양한 신규 기능들이 추가됐다. 트윈모션의 애니메이터는 트랜슬레이터 및 로테이터처럼 오브젝트에 가까이 다가갔을 때 실행되도록 설정할 수 있는 간단한 애니메이션을 제작할 수 있었는데, 이번에는 새로운 유형의 애니메이터인 익스플로더가 추가됐다. 익스플로더는 선택한 형태(평면, 원기둥, 구체)에 따라 오브젝트를 원래 위치에서 바깥쪽이나 안쪽으로 이동시켜 기술 프레젠테이션이나 극적인 연출을 위한 분해도 애니메이션을 손쉽게 만들 수 있다.   ▲ 익스플로더(출처 : 트윈모션 홈페이지)   다양한 프리셋으로 부드럽게 밀기, 해체, 부풀리기, 링 벗겨내기, 압축, 평면 분할, 스택 재조립 등과 같은 애니메이션을 손쉽게 만들 수 있다. 또한 이동 거리, 시차 오프셋, 이동 방향 등을 편집해 자신만의 애니메이션을 만들고 프리셋으로 저장할 수도 있다. 기존의 트랜슬레이터 및 로테이터 애니메이터에도 스태거 오프셋이 추가되어, 오브젝트가 하늘에서 떨어지거나 지면에서 솟아오르는 효과 또는 순차적으로 회전하는 것과 같이 신에 역동적인 연쇄 연출을 손쉽게 만들 수 있게 됐다.   ▲ 캐스케이드 애니메이션(출처 : 트윈모션 홈페이지)   또한, 이제 애니메이터를 시퀀스 툴에서 트랙으로 사용할 수 있어, 애니메이션의 시작 시각 변경, 재생 시간 조절, 다른 애니메이션 요소와 동기화하는 것이 간편해졌다. 애니메이션 캐릭터와 컨트롤 경로도 이제 시퀀서 툴의 재생 위치와 동기화된다. 애니메이션은 신에 생동감을 더해 주지만, 스틸 이미지를 만들 때는 원하는 구도나 동작 시점을 정확하게 잡아내기 어려울 수 있다. 이를 해결하기 위해 이미지 속성에 새로운 글로벌 스태틱/리얼타임 애니메이션 재생 옵션이 추가되어 애니메이션을 멈추고 정확한 순간을 선택해 촬영할 수 있다. 마지막으로, 이제 신에 애니메이션 파일을 임포트하면 로컬 디스크를 불러오는 방식이 아니라 신에 바로 포함되도록 변경됐다. 덕분에 프로젝트 패키징과 공유가 훨씬 쉬워지고, 애니메이션 파일을 로컬 및 클라우드 프레젠테이션에서 모두 사용할 수 있으며, 애니메이션이 포함된 신의 로딩 속도가 더 빨라졌다.   버추얼 카메라(VCam) 이번 버전은 촬영감독부터 시각화 전문가에 이르기까지 누구나 활용 가능한 버추얼 카메라를 새롭게 지원하여 흥미로운 가능성을 제시한다. 트윈모션을 안드로이드 또는 iOS에서 언리얼 VCam 앱에 연결하면 휴대용 디바이스를 움직이는 것만으로 신에 버추얼 카메라를 배치할 수 있다. 샷 탐색 기능을 활용하면 신을 자유롭게 탐색하면서 카메라 배치, 각도, 노출, 초점, 배율 등의 설정을 1인칭 시점에서 실험해 볼 수 있고, 디자인 리뷰에서는 가상의 애셋을 실제로 걸어 다니면서 모든 각도에서 살펴볼 수 있다. 어떤 경우든 탐색 중 스냅샷을 캡처할 수 있으며, 캡처한 샷은 트윈모션에 미디어/이미지로 자동 저장되어 나중에 쉽게 해당 뷰로 돌아가 볼 수 있다.   ▲ VCam(출처 : 트윈모션 홈페이지)   향상된 머티리얼 할당/편집/구성 모든 트윈모션 사용자에게 필수인 머티리얼 작업을 위해 이번 버전에서 UI 및 워크플로를 크게 향상시켰다. 먼저, 이제 머티리얼 도크에서 머티리얼을 폴더로 정리하고 이름으로 검색할 수 있다. 또한 머티리얼을 알파벳순으로 정렬할 수 있으며, 계층 구조의 어느 지점에서든 플랫 뷰를 활성화해 해당 레벨 하위의 모든 머티리얼을 한 화면에서 볼 수 있다. 또한, 툴바에 멀티드롭 툴 버튼이 추가되어 신에서 마우스 클릭 한 번으로 머티리얼을 빠르게 적용할 수 있어 반복적인 드래그 앤 드롭 작업이 필요 없어졌다. 그리고 머티리얼 속성 패널을 탭으로 구성해 가독성을 높이고, 주요 설정에 더 쉽게 접근할 수 있게 됐다. UV, 엑스레이, 양면과 같은 일부 속성을 서로 다른 유형의 여러 머티리얼을 선택해서 일괄 변경할 수도 있다. 이 탭 중 하나는 해당 머티리얼이 어떤 메시에 할당되어 있는지 확인하고 선택할 수 있는 새로운 기능을 제공한다. 또한 여러 머티리얼이 할당된 단일 애셋(트윈모션 라이브러리의 대다수 애셋)을 선택하면 속성 패널에서 해당 애셋에 적용된 모든 머티리얼을 볼 수 있으며, 머티리얼 도크에 추가할 수 있다. 이러한 향상된 기능들을 통해 한층 더 만족스럽고 효율적인 워크플로를 경험할 수 있다.   ▲ 향상된 머티리얼 워크플로(출처 : 트윈모션 홈페이지)   트윈모션 및 DCC 뷰포트 동기화 이번에 추가된 트윈모션 뷰포트 카메라 위치 및 속성을 DCC 뷰포트 카메라와 동기화하는 신규 기능은 이미 DCC 또는 CAD 패키지의 소스 파일에서 수정하면서 트윈모션에서 완전히 렌더링된 결과를 확인하는 워크플로를(데이터스미스 다이렉트 링크로 가능) 활용 중인 사용자에게 도움이 될 전망이다. 이 기능은 아키캐드, 레빗, 라이노 및 스케치업 프로를 우선 지원하며, 이 기능을 사용하려면 최신 버전으로 플러그인을 업데이트(해당되는 경우)하면 된다.   ▲ DCC 뷰포트 카메라와 동기화(출처 : 트윈모션 홈페이지)   향상된 컨피규레이션 트윈모션 2025.1에서 도입된 컨피규레이션은 계속해서 발전하고 있다. 예를 들어, 이제 모든 상태를 일괄 익스포트하는 새로운 기능이 추가되어 컨피규레이션의 모든 옵션을 개별 이미지, 비디오, 파노라마로 손쉽게 보여줄 수 있다. 다양한 기능 향상과 더불어 각 상태에 카메라 위치를 저장하는 기능, 버튼 하나로 손쉽게 모든 상태의 섬네일을 다시 캡처하는 기능, 글로벌 세팅 창을 통해 2D 트리거 리본을 커스터마이징하는 기능 등이 추가됐다.    ▲ 향상된 컨피규레이션(출처 : 트윈모션 홈페이지)   클라우드 호스팅 콘텐츠 트윈모션을 여러 워크스테이션에 배포해야 하는 사용자들을 위해, 기존 패키지 콘텐츠를 클라우드 스토리지로 옮겨 인스톨러를 더 가볍고 배포하기 쉽게 만들었다. 인스톨러에서 제거된 기존 콘텐츠를 찾을 수 있도록 온디맨드 콘텐츠 설루션을 개발했으며, 카테고리 또는 하위 카테고리의 모든 콘텐츠를 다운로드할 수 있는 새로운 기능도 추가됐다.   더 많은 기능 지금까지 살펴본 주요 기능들 외에도 트윈모션 2025.2에는 3D 잔디, 파노라마 세트, 알리아스 파일(*.wire) 테셀레이션 옵션 등 다양한 기능이 향상됐다. 모든 업데이트에 대한 자세한 내용은 출시 노트를 참고하면 된다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-11-04
리커다인 2026 : 접촉·포스 성능 향상 및 MFBD 후처리, 산업별 툴킷 기능 강화
개발 및 공급 : 펑션베이 주요 특징 : 지속적인 솔버 개발을 통해 접촉 기능 및 Joint, Force 기능 향상, MFBD 후처리와 제어 코시뮬레이션 안정성 개선, 다양한 산업군 맞춤 툴킷의 기능 개선 등 사용 환경(OS) : 64비트 윈도우 10/11    2025년 11월, 리커다인 2026(RecurDyn 2026)이 새롭게 출시되었다. 지속적인 솔버 개선을 통해 이번 버전에서도 다양한 솔버 관련 기능이 강화되었다. 접촉 성능과 Joint, Force의 기능 향상이 이루어졌으며, 유연체를 포함한 동역학 모델의 후처리가 강화되었다. 또한, 다양한 산업군 별 툴킷의 지속적인 개발을 통해 이번에도 다양한 기능 개선이 이루어졌다. 이러한 개선 사항을 좀 더 자세히 소개하면 다음과 같다.   솔버 접촉(Contact) 리커다인의 강력한 접촉 요소인 지오 콘택트(Geo Contact)의 다양한 성능이 향상되어, 더욱 정밀한 접촉 해석이 가능해졌다. Contact Stiffness 타입이 추가되어 다양한 방법으로 접촉 특성을 정의할 수 있게 되었다.   그림 1. Stiffness 타입 추가 : per Area, Pressure Spline   또한, 접촉 해석의 정밀도를 더욱 향상시켰다. 특히, 더 작은 크기의 접촉 패치(patch)를 사용할 수 있도록 하여 접촉면을 세밀하게 정의할 수 있게 되었으며, 이를 통해 해석의 정확도를 높일 수 있게 되었다. 또한, 구(sphere) 형상에 대한 접촉 정의 시 다중 접촉점 옵션이 새롭게 추가되어, 다양한 조건에서 보다 정밀한 접촉 및 마찰 해석이 가능해졌다. 리커다인 2026에서는 리커다인 프로페셔널(RecurDyn Professional)의 모든 접촉 개체에 대해 사용자가 정의한 조건에 따라 활성화 혹은 비활성화할 수 있는 옵션이 추가되었다. 이를 통해 추가적인 모델링 수고 없이, 해석 중에도 조건에 따라 편리하게 접촉을 활성화 또는 비활성화할 수 있게 되었다.   그림 2. 접촉의 조건부 활성화 지원   조인트(Joint) 및 포스(Force) 리커다인의 부력 기능인 Buoyancy Force에 SMP(symmetric multiprocessing)를 적용하여, 해석 모델에 따라 65% 이상의 해석 속도 개선이 이루어졌다.   그림 3. SMP를 이용하여 부력의 계산 속도 향상   또한, 조인트 마찰력에 수직방향의 PreForce를 적용할 수 있어, 억지 끼움 상태에서의 마찰력을 효과적으로 모사할 수 있게 되었다. Screw Joint의 마찰력 계산 알고리즘도 개선되어 나사산 방향의 마찰력을 더욱 정확하게 계산할 수 있다.   MFBD(Multi Flexible Body Dynamics) 후처리 기능 해석 결과를 확인하는 후처리에서 컨투어(contour) 기능이 개선되었다. 특정 노드의 결과 값 변화를 그래프로 확인할 수 있게 되어, 여러 노드에 대한 결과 값 변화를 시각적으로 한 눈에 분석할 수 있다.   그림 4. 여러 노드에 대한 결과값 변화를 시각적으로 분석   외부 메시에 대한 품질 체크 메시(mesh)에 대한 품질 체크(quality check) 기능이 유연체의 편집 모드에서 사용할 수 있게 확장되었다. 이를 통해 외부 소프트웨어에서 생성하여 가져온 메시 데이터에 대해서도 품질 체크를 수행할 수 있게 되었다.   제어(Control) 시뮬링크 코시뮬레이션 리커다인의 General CoSim 기능을 이용하여 시뮬링크(Simulink)와 코시뮬레이션(co-simulation)을 수행할 때, 리커다인의 클라이언트 블록의 파라미터가 자동으로 세팅되도록 개선되었다. 이를 통해 코시뮬레이션 설정 과정에서 사용자 오류를 줄이고, 해석 안정성을 높일 수 있다.   툴킷(Toolkit) DriveTrain 기어 전용 모델러를 제공하는 GearKS는 이론 기반의 기어 전용 접촉을 통해 정확한 트랜스미션 에러(transmission error)를 예측할 수 있다. 이번 리커다인 2026에서는 접촉 계산 시 Damping Exponent를 사용할 수 있게 개선되어, 보다 상세한 접촉 모델링이 가능해졌다.   Durability 하나의 모델에 대해 서로 다른 해석 조건을 가진 각각의 해석 결과를 결합하여 피로 해석을 수행할 수 있도록 기능이 개선되었다. 각각의 해석에서 계산된 Stress/Strain Recovery 결과를 Stress/Strain 히스토리 파일로 저장하고, 이를 결합하여 피로 해석을 수행할 수 있다.   Gear 유연체 웹(web)을 포함하는 기어를 생성할 때 Patch Constraint를 활용할 수 있는 기능이 새롭게 추가되었다. 사용자는 FDR 대신 Patch Constraint를 이용하여 유연체 웹을 포함하는 기어를 쉽게 생성할 수 있다. 특히, Patch Constraint를 활용해 생성한 웹 기어는 적절한 파라미터 설정을 통해 기존 FDR 방식 대비 최대 2배 빠른 계산 속도를 제공한다.   그림 5. Patch Constraint를 이용한 웹기어 생성   Tire 리뉴얼 리커다인 2026의 Tire 툴킷이 대대적으로 리뉴얼되어 타이어 해석 환경이 한층 향상되었다. 이번 업데이트를 통해 최신 MF-TIRE-2406 라이브러리를 지원하며, GTire Group으로 통합되어 단일 환경에서 다양한 타이어 모델(예 : Fiala Tire)을 설정할 수 있다. 새로운 GTire Group은 ISO-Axis 기반 좌표계를 적용해 국제 표준에 맞는 타이어 자세 정의를 지원하며, 접촉점/휠 센터 기준의 Force Display 선택이 가능해졌다. 또한, 이와 함께 해석 결과에 접촉점 및 접촉력 데이터가 추가되었으며, 다양한 노면 모델 지원으로 실제 주행 조건을 보다 정밀하게 반영할 수 있게 되었다.   그림 6. ISO-Axis 기반 좌표계를 활용한 타이어 생성     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-11-04