• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " OpenAI"에 대한 통합 검색 내용이 68개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
오라클, 대규모 클라우드 AI 클러스터 ‘OCI 제타스케일10’ 공개
오라클이 클라우드 환경 내의 대규모 AI 슈퍼컴퓨터인 ‘오라클 클라우드 인프라스트럭처(OCI) 제타스케일10(Zettascale10)’을 발표했다. OCI 제타스케일10은 여러 데이터센터에 걸쳐 수십만 개의 엔비디아 GPU를 연결하여 멀티 기가와트급 클러스터를 형성하며, 최대 16 제타플롭스(zettaFLOPS)에 이르는 성능을 제공한다. OCI 제타스케일10은 스타게이트의 일환으로 미국 텍사스주 애빌린에서 오픈AI(OpenAI)와 협력하여 구축한 대표 슈퍼클러스터를 구성하는 기반 패브릭이다. 차세대 오라클 액셀러론 RoCE(Oracle Acceleron RoCE) 네트워킹 아키텍처를 기반으로 구축된 OCI 제타스케일10은 엔비디아 AI 인프라로 구동된다. 오라클은 강화된 확장성, 클러스터 전반에 걸친 초저지연 GPU-GPU 통신, 가격 대비 높은 성능, 향상된 클러스터 활용도, 대규모 AI 워크로드에 필요한 안정성을 제공한다는 점을 내세운다. OCI 제타스케일10은 2024년 9월 출시된 첫 번째 제타스케일 클라우드 컴퓨팅 클러스터의 차세대 모델이다. OCI 제타스케일10 클러스터는 대규모 기가와트급 데이터센터 캠퍼스에 배치되며, 2킬로미터 반경 내에서 밀도를 높여 대규모 AI 학습 워크로드에 최적화된 GPU-GPU 지연 성능을 제공한다. 이 아키텍처는 오픈AI와 협력하여 애빌린 소재 스타게이트 사이트에 구축 중에 있다. OCI는 고객에게 OCI 제타스케일10의 멀티기가와트 규모 배포를 제공할 계획이다. 초기에는 최대 80만 개의 엔비디아GPU를 탑재한 OCI 제타스케일10 클러스터 배포를 목표로 한다. 이는 예측 가능한 성능과 강력한 비용 효율을 제공하며, 오라클 액셀러론의 초저지연 RoCEv2 네트워킹으로 높은 GPU-GPU 대역폭을 구현한다. OCI는 현재 OCI 제타스케일10 주문을 접수 중이라고 전했다. 이 제품은 2026년 하반기 출시 예정으로, 최대 80만 개의 엔비디아 AI 인프라 GPU 플랫폼을 기반으로 제공될 예정이다. 오라클의 마헤쉬 티아가라얀 OCI 총괄 부사장은 “OCI 제타스케일10을 통해 우리는 OCI의 혁신적인 오라클 액셀러론 RoCE 네트워크 아키텍처를 차세대 엔비디아 AI 인프라와 결합해 전례 없는 규모에서 멀티기가와트급 AI 용량을 제공한다. 고객은 성능 단위당 전력 소비를 줄이면서 높은 안정성을 달성해 가장 큰 규모의 AI 모델을 실제 운영 환경에 구축, 훈련 및 배포할 수 있다. 또한 강력한 데이터 및 AI 주권 제어 기능을 통해 오라클의 분산형 클라우드 전반에서 자유롭게 운영할 수 있다”고 말했다. 오픈AI의 피터 호셸레(Peter Hoeschele) 인프라 및 산업 컴퓨팅 부문 부사장은 “OCI 제타스케일10 네트워크 및 클러스터 패브릭은 오라클과 함께 구축한 슈퍼클러스터인 텍사스주 애빌린에 위치한 대표 스타게이트 사이트에서 최초로 개발 및 배포되었다. 고도로 확장 가능한 맞춤형 RoCE 설계는 기가와트 규모에서 패브릭 전체 성능을 극대화하면서도 대부분의 전력을 컴퓨팅에 집중시켜 준다. 오라클과 협력하여 애빌린 사이트를 비롯한 스타게이트 프로젝트 전반을 전개해 나갈 수 있어 매우 기쁘게 생각한다”고 말했다.
작성일 : 2025-10-16
시놀로지, 스토리지 효율 및 보안·생산성 강화한 디스크스테이션 매니저 7.3 출시
시놀로지가 디스크스테이션 매니저(DSM) 7.3의 출시를 발표했다. 이번 버전은 향상된 스토리지 효율성, 강화된 보안 및 신뢰성, 그리고 새로운 생산성 기능을 제공한다. 시놀로지 DSM 7.3에서 제공하는 시놀로지 티어링(Synology Tiering)은 액세스 패턴을 기반으로 파일을 자동으로 이동시켜, 자주 사용하는 ‘핫’ 데이터는 고성능 스토리지에, 드물게 접근하는 ‘콜드’ 데이터는 비용 효율적인 티어에 배치한다. 또한 수정 시간이나 접근 빈도에 따라 사용자가 정책을 지정해 데이터 이동 시점과 방식을 세밀하게 제어할 수 있다.     지난 12개월간 DSM은 50건 이상의 선제적 보안 업데이트를 적용했으며, DSM 7.3에서는 KEV, EPSS, LEV 등 업계 표준 위험 지표를 도입해 위협 우선순위 지정과 보호 기능을 더욱 강화했다. 오피스 스위트(Office Suite)도 커뮤니티의 요구를 반영해 개선됐다. 시놀로지 드라이브(Synology Drive)는 공유 라벨, 간소화된 파일 요청, 향상된 파일 잠금 기능을 제공해 협업을 더 원활하게 지원한다. 또한 메일플러스(MailPlus)는 이메일 검토 기능으로 보안을 강화하고, 도메인 공유 기능을 추가해 분산된 인프라 전반에서 사용자 신원을 통합할 수 있도록 했다. 시놀로지 AI 콘솔(Synology AI Console)은 2025년 8월 출시 이후 지금까지 43만 대 이상의 시놀로지 시스템에 배포돼, 온프레미스 환경에서 AI 기반 협업과 관리를 지원하고 있다. DSM 7.3에서는 맞춤형 데이터 마스킹과 필터링 기능이 추가되어, 민감한 정보가 타사 AI 서비스로 전송되기 전에 로컬에서 보호할 수 있도록 하여 보안성과 워크플로 신뢰성을 한층 높인다. 또한, 시놀로지 AI 콘솔은 앞으로 모든 OpenAI 호환 API 지원을 추가할 예정이며, 이를 통해 프라이빗 AI 인프라와의 원활한 통합이 가능해지고, 조직은 완전한 데이터 프라이버시와 보안 하에 AI 서비스를 유연하게 배포할 수 있다. 시놀로지는 신뢰할 수 있고 고성능의 스토리지 시스템 제공에 전념하고 있다. 하드웨어와 소프트웨어 구성 요소 모두에 대한 엄격한 검증은 오랜 기간 핵심 개발 우선순위였다. 시놀로지 스토리지 드라이브는 타사 검증 프로그램과 함께 DSM에서 최고의 신뢰성을 제공하도록 설계되었다. 시놀로지는 드라이브 제조업체와 협력하여 인증된 저장 매체의 범위를 확대하고, 더 신뢰할 수 있는 옵션을 제공한다. 한편, 2025년형 DiskStation Plus, Value, J 시리즈는 DSM 7.3에서 타사 드라이브를 사용한 설치 및 스토리지 풀 생성을 지원하여 사용자의 유연성을 높인다. 시놀로지의 케네스 수(Kenneth Hsu) 시스템 그룹 디렉터는 “데이터가 빠르게 증가함에 따라 이를 관리하고 처리하며 가치를 극대화할 수 있는 고급 설루션이 필요하다”면서, “DSM 7.3은 안전하고 신뢰할 수 있으며, AI 혁신까지 지원할 준비가 된 플랫폼 위에서 고객이 변화하는 데이터 관리 과제를 자신 있게 해결할 수 있도록 돕는다”고 전했다.
작성일 : 2025-10-10
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
엔비디아, 오픈AI와 10GW 규모 시스템 구축 위해 협력
엔비디아가 오픈AI(OpenAI)와 전략적 파트너십을 체결했다고 밝혔다. 양사는 이번 파트너십의 일환으로 오픈AI의 차세대 AI 인프라 구축을 위해 최소 10GW(기가와트) 규모의 엔비디아 시스템을 도입한다는 의향서를 발표했다. 이번 협력으로 오픈AI는 차세대 모델을 훈련하고, 운영하며, 슈퍼인텔리전스 배포를 위한 기반을 마련하게 된다. 엔비디아는 데이터센터와 전력 용량 확보를 포함한 이번 구축을 지원하기 위해, 신규 시스템이 도입됨에 따라 오픈AI에 최대 1000억 달러를 투자할 계획이다. 첫 번째 단계는 엔비디아 베라 루빈(Vera Rubin) 플랫폼을 통해 2026년 하반기 가동을 목표로 하고 있다. 엔비디아와 오픈AI는 향후 몇 주 안에 이번 전략적 파트너십의 새로운 단계에 대한 세부 사항을 확정할 예정이다. 오픈AI는 “현재 주간 활성 사용자 수가 7억 명을 넘어섰으며, 글로벌 기업, 중소기업, 개발자 전반에서 강력한 활용도를 보이고 있다. 이번 파트너십은 오픈AI가 인류 전체에 이익이 되는 범용 인공지능(AGI) 구축이라는 사명을 추진하는 데 기여할 것”이라고 소개했다. 오픈AI는 AI 팩토리 성장 계획을 위해 전략적 컴퓨팅, 네트워킹 파트너로서 엔비디아와 협력할 예정이다. 양사는 오픈AI의 모델과 인프라 소프트웨어와 엔비디아의 하드웨어와 소프트웨어에 대한 로드맵을 공동 최적화해 나갈 것이다. 이번 파트너십은 오픈AI와 엔비디아가 이미 마이크로소프트, 오라클, 소프트뱅크, 스타게이트 등 파트너사를 비롯한 여러 협력사와 추진 중인 작업을 보완한다. 이를 통해 양사는 세계 최고 수준의 AI 인프라 구축을 위해 한층 더 속도를 낼 계획이다. 엔비디아의 젠슨 황(Jensen Huang) CEO는 “엔비디아와 오픈AI는 지난 10년간 최초의 DGX 슈퍼컴퓨터부터 챗GPT(ChatGPT)의 혁신에 이르기까지 서로를 함께 견인해왔다. 이번 투자와 인프라 파트너십은 차세대 인텔리전스 시대를 이끌 10GW 규모의 인프라 구축이라는 다음 도약을 의미한다”고 말했다. 오픈AI의 샘 알트만(Sam Altman) CEO는 “모든 것은 컴퓨팅에서 시작된다. 컴퓨팅 인프라가 미래 경제의 기반이 될 것이며, 우리는 엔비디아와 함께 구축 중인 인프라를 활용해 새로운 AI 혁신을 창출하고, 이를 사람과 기업이 대규모로 활용할 수 있도록 할 것”이라고 말했다.
작성일 : 2025-09-25
퓨리오사AI, OpenAI 손잡고 ‘AI 반도체 기술력’ 입증
 OpenAI 코리아 개소식 행사장에 배치된 RNGD 서버와 시연용 워크스테이션[사진=퓨리오사AI]   퓨리오사AI가 9월 12일 열린 OpenAI 코리아 개소식에서 자사의 기술력을 선보이며 AI 업계의 주목을 받았다. 이번 행사에서 퓨리오사AI는 자사 2세대 반도체 'RNGD' 2장만으로 오픈AI의 대규모 언어 모델 'gpt-oss 120B' 기반 챗봇을 실시간으로 구동하는 시연을 진행했다. 이번 시연은 퓨리오사AI가 글로벌 AI 인프라 시장에서 중요한 역할을 할 수 있는 잠재력을 증명하는 계기가 됐다. 오픈AI가 공개한 최고 수준의 오픈 소스 기반 모델인 gpt-oss 120B는 MoE(Mixture-of-Experts) 구조를 적용하여 성능과 효율성을 동시에 갖췄다고 평가받는다. 퓨리오사AI의 RNGD는 이러한 초거대 언어 모델을 기존보다 훨씬 효율적인 전력으로 구동할 수 있어, 고질적인 인공지능의 전력 및 비용 문제를 해결할 수 있다는 점에서 큰 의미를 가진다. 퓨리오사AI의 백준호 대표는 “'AGI(범용인공지능)가 인류 전체에 이롭도록 한다'는 OpenAI의 미션과 'AI를 지속 가능하고 접근 가능하게 한다'는 퓨리오사의 미션은 서로 통한다"며, "RNGD와 gpt-oss의 결합은 전 세계 오픈 소스 기반 AI 생태계를 더욱 빠르게 확산시킬 것"이라고 말했다. 이번 시연을 통해 퓨리오사AI는 초거대 AI 모델 구동에 최적화된 하드웨어 솔루션을 제공하며, AI 기술 대중화에 기여할 것으로 기대된다.    
작성일 : 2025-09-13
바이브 코딩 지원 멀티 에이전트 코덱스의 사용법
BIM 칼럼니스트 강태욱의 이슈 & 토크   요즘 바이브 코딩(vibe coding)이 열풍이다. 이번 호에서는 오픈AI(OpenAI)가 개발한 바이브 코딩을 지원하는 멀티 에이전트 코덱스(Codex)의 사용법을 간략히 소개한다. 얼마 전 챗GPT(ChatGPT) 프로 버전에 무료로 오픈된 코덱스와 오픈소스 코덱스 버전(CLI)의 사용법을 모두 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. Codex | OpenAI   2025년 4월 중순에 OpenAI o3, o4, Codex가 공개되었다. 멀티 AI 에이전트 기능을 충실히 구현한 영상 데모가 업로드되었고, 특히 자동화 코딩을 지원하는 코덱스가 로컬 컴퓨터에서 실행 가능한 형태로 공개된 점이 인상적이었다.   그림 2. 오픈AI o3, o4, 코덱스 공개 영상   코덱스는 단순한 코드 생성에 그치지 않고 버그 수정, 테스트 실행, 코드 리뷰 제안 등 복잡한 개발 업무를 자동화한다. 각 작업은 사용자의 코드 저장소가 사전 로드된 격리된 클라우드 샌드박스 환경에서 독립적으로 실행되며, 작업의 복잡도에 따라 1분에서 30분 이내에 결과를 제공한다. 또한, 코덱스는 작업 수행 과정에서 생성된 터미널 로그와 테스트 출력 등의 증거를 제공하여, 사용자가 변경 사항을 추적하고 검토할 수 있도록 지원한다.코덱스 코드 및 도구는 깃허브(GitHub)에 공개되었다. Codex Lightweight coding agent that runs : https://github.com/openai/codex 6월 초에는 챗GPT 프로 사용자에게 코덱스 기능이 공개되었다. 코덱스는 챗GPT의 사이드바를 통해 접근할 수 있으며, 사용자는 자연어로 코딩 작업을 지시하거나 기존 코드에 대한 질문을 할 수 있다. 또한 코덱스는 사용자의 개발 환경과 유사하게 구성할 수 있어, 실제 개발 환경과의 통합이 용이하다. 보안 측면에서도 코덱스는 격리된 환경에서 실행되며, 인터넷 접근은 기본적으로 비활성화되어 있다. 필요한 경우 특정 도메인에 대한 접근을 허용할 수 있으며, 이를 통해 외부 리소스를 사용하는 테스트나 패키지 설치 등이 가능하다. 코덱스는 현재 챗GPT 프로/팀/엔터프라이즈 사용자에게 제공되며, 플러스 및 에듀 사용자에게도 점차 확대되고 있다. 또한, 코덱스 CLI(Codex CLI)를 통해 터미널 환경에서도 코덱스의 기능을 활용할 수 있어, 다양한 개발 환경에서의 활용이 가능하다.(openai.com)   챗GPT에서 코덱스 사용법 코덱스를 활용한 전체 사용 과정은 단순한 코드 자동 생성 수준을 넘어, 실제 소프트웨어 개발의 전 과정을 자연어 기반으로 자동화하는 방식으로 개발되어 있다. 코덱스는 현재 깃허브를 기본 연결해 사용하도록 되어 있어, 다음과 같이 필자의 깃허브 프로젝트를 연결해 실습을 진행했음을 밝힌다. https://github.com/mac999/AI_agent_simple_function_ call.git 참고로, 필자는 필자의 깃허브 저장소를 이용하였지만, 독자는 각자 깃허브에 로그인한 후 본인의 프로젝트 개발을 진행할 저장소를 선택해야 한다. 아울러, 바이브 코딩 결과물이 제대로 동작하려면 반드시 챗GPT 등을 이용해 미리 PRD(Product Requirement Document)에 요구사항을 명확히 작성한 후, 이를 바이브 코딩 도구에 입력해 프로젝트와 코드를 생성하도록 하는 것이 좋다.   그림 3. 식사 레스토랑 평가용 앱 개발을 위한 PRD 문서 예시(How to vibe code : 11 vibe coding best practices, https://zapier.com)   프로젝트 시작 : 코드 저장소 구성 및 환경 연결 챗GPT 프로의 왼쪽 메뉴에서 <그림 4>와 같이 코덱스를 실행하면, 연결할 깃허브 계정 및 저장소를 요청한다. 코덱스에서 <그림 4>와 같이 본인의 깃허브 계정을 연결한다.   그림 4     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
엔비디아, “RTX GPU와 쿠다 12.8로 LLM 실행 도구 성능 향상”
엔비디아가 엔비디아 지포스(NVIDIA GeForce) RTX GPU와 쿠다(CUDA) 12.8을 통해 로컬 대규모 언어 모델(large language model : LLM) 실행 도구인 ‘LM 스튜디오(LM Studio)’의 성능을 향상했다고 밝혔다.  문서 요약에서 맞춤형 소프트웨어 에이전트에 이르기까지 AI 사용 사례가 계속 확장되고 있다. 이에 따라 개발자와 AI 애호가들은 LLM을 더 빠르고 유연하게 실행할 수 있는 방법을 찾고 있다. 엔비디아 지포스 RTX GPU가 탑재된 PC에서 로컬로 모델을 실행하면 고성능 추론, 향상된 데이터 프라이버시, AI 배포와 통합에 대한 제어가 가능하다. 무료로 체험할 수 있는 LM 스튜디오와 같은 도구는 이러한 로컬 AI 실행을 간편하게 구현할 수 있도록 지원한다. 이를 통해 사용자는 자신의 하드웨어에서 LLM을 탐색하고 구축할 수 있다. LM 스튜디오는 로컬 LLM 추론을 위해 가장 널리 채택된 도구 중 하나로 자리잡았다. 고성능 llama.cpp 런타임을 기반으로 구축된 이 애플리케이션은 모델을 완전히 오프라인에서 실행할 수 있도록 한다. 또한 사용자 지정 워크플로에 통합하기 위해 오픈AI(OpenAI) 호환 API(application programming interface) 엔드포인트 역할도 수행할 수 있다. LM 스튜디오 0.3.15 버전은 쿠다 12.8을 통해 RTX GPU에서 성능이 향상되면서 모델 로드와 응답 시간이 개선됐다. 또한 이번 업데이트에는 ‘툴_초이스(tool_choice)’ 파라미터를 통한 도구 활용 개선, 시스템 프롬프트 편집기 재설계 등 개발자 중심의 새로운 기능도 추가됐다. LM 스튜디오의 최신 개선 사항은 성능과 사용성을 향상시켜 RTX AI PC에서 높은 수준의 처리량을 제공한다. 즉, 더 빠른 응답, 더 신속한 상호작용, 그리고 로컬에서 AI를 구축하고 통합하기 위한 더 나은 툴을 제공한다.     LM 스튜디오는 유연성을 염두에 두고 제작돼 간단한 실험부터 맞춤형 워크플로 통합까지 다양한 용도로 활용할 수 있다. 사용자는 데스크톱 채팅 인터페이스를 통해 모델과 상호작용하거나 개발자 모드를 활성화해 오픈AI 호환 API 엔드포인트를 제공할 수 있다. 이를 통해 로컬 LLM을 비주얼 스튜디오 코드(VS Code)나 맞춤형 데스크톱 에이전트와 같은 앱의 워크플로에 쉽게 연결할 수 있다. 예를 들어, LM 스튜디오는 마크다운 기반의 인기 지식 관리 애플리케이션인 옵시디언(Obsidian)에 통합될 수 있다. 사용자는 텍스트 제너레이터(Text Generator), 스마트 커넥션(Smart Connections)과 같은 커뮤니티 개발 플러그인을 사용해 콘텐츠를 생성하고, 연구를 요약하고, 자신의 노트 검색을 수행할 수 있다. 이 모든 기능은 LM 스튜디오를 통해 실행되는 로컬 LLM으로 구동된다. 이러한 플러그인은 LM 스튜디오의 로컬 서버에 직접 연결되므로 클라우드에 의존하지 않고도 빠르고 비공개적인 AI 상호작용이 가능하다. LM 스튜디오 0.3.15 업데이트에는 개발자를 위한 새로운 기능이 추가됐다. 그중에는 ‘툴_초이스’ 매개변수를 통한 도구 사용에 대한 세분화된 제어 기능과 더 길거나 복잡한 프롬프트를 처리할 수 있는 시스템 프롬프트 편집기 업그레이드 등이 포함된다. 개발자는 툴_초이스 파라미터를 통해 도구 호출을 강제하거나, 완전히 비활성화하거나, 모델이 동적으로 결정하도록 허용하는 등 모델이 외부 도구와 연동하는 방식을 제어할 수 있다. 이러한 유연성은 구조화된 상호작용, 검색 증강 생성(retrieval-augmented generation : RAG) 워크플로 또는 에이전트 파이프라인 구축에 특히 유용하다. 이러한 업데이트는 LLM을 사용하는 개발자의 실험과 프로덕션 사용 사례 모두에서 효율성을 높인다. LM 스튜디오는 젬마(Gemma), 라마3(Llama 3), 미스트랄(Mistral), 오르카(Orca) 등 광범위한 개방형 모델과 4비트부터 고정밀까지 다양한 양자화 형식을 지원한다. 또한, 엔비디아는 소형 RTX 기반 시스템에서 효율성을 최적화하든 고성능 데스크톱에서 높은 처리량을 달성하든, LM 스튜디오가 RTX에서 완전한 제어, 속도, 프라이버시를 모두 제공한다고 설명했다. LM 스튜디오 가속화의 핵심은 소비자 하드웨어에서 효율적인 추론을 제공하도록 설계된 오픈 소스 런타임인 llama.cpp이다. 엔비디아는 LM 스튜디오, llama.cpp 커뮤니티와 협력해 RTX GPU 성능을 극대화하기 위해 ▲쿠다 그래프 활성화 ▲플래시 어텐션 쿠다 커널(Flash attention CUDA kernel) ▲최신 RTX 아키텍처 지원 등의 최적화 사항을 통합했다. LM 스튜디오는 윈도우, 맥OS, 리눅스에서 무료로 다운로드해 실행할 수 있다. 최신 0.3.15 버전과 지속적인 최적화를 통해 사용자는 성능, 맞춤화, 사용성에서 지속적인 개선을 기대할 수 있으며, 로컬 AI를 더 빠르고 유연하며 접근 가능하게 만든다. 사용자는 데스크톱 채팅 인터페이스를 통해 모델을 로드하거나 개발자 모드를 활성화해 오픈AI 호환 API를 사용할 수 있다.  LM 스튜디오는 모델 프리셋, 다양한 양자화 형식, 미세 조정된 추론을 위한 툴_초이스와 같은 개발자 제어 옵션을 지원한다. LM 스튜디오의 성능 개선에 관심이 있는 사용자는 커뮤니티와 엔비디아 주도의 성능 개선이 지속적으로 반영되는 llama.cpp 깃허브(GitHub) 리포지토리에 참여할 수 있다.
작성일 : 2025-05-12
[무료강좌] 오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, OpenAI, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
엔비디아, 오라클 클라우드 인프라에 블랙웰 GPU 지원
엔비디아가 오라클에 엔비디아 블랙웰(NVIDIA Blackwell) GPU를 지원해 에이전틱 AI와 추론 모델의 혁신을 가속화하고 있다고 밝혔다. 오라클은 자사 데이터센터에 수랭식 엔비디아 GB200 NVL72 랙을 최초로 도입하고 최적화했다. 현재 수천 개의 엔비디아 블랙웰 GPU가 엔비디아 DGX 클라우드(DGX Cloud)와 오라클 클라우드 인프라스트럭처(Oracle Cloud Infrastructure : OCI)를 통해 고객이 사용할 수 있도록 배치되고 있다. 이는 차세대 추론 모델과 AI 에이전트 개발과 실행을 지원한다. 오라클이 도입한 GB200에는 고속 엔비디아 퀀텀-2 인피니밴드(Quantum-2 InfiniBand)와 엔비디아 스펙트럼-X 이더넷(Spectrum-X Ethernet) 네트워킹이 포함된다. 이를 통해 확장 가능하고 저지연 성능을 구현하며, 엔비디아와 OCI 소프트웨어와 데이터베이스 통합의 풀스택을 지원한다. OCI는 엔비디아 GB200 NVL72 시스템을 최초로 도입한 기업 중 하나이다. OCI는 세계 최대 규모의 블랙웰 클러스터를 구축하려는 계획을 갖고 있다. OCI 슈퍼클러스터(Supercluster)는 10만 개 이상의 엔비디아 블랙웰 GPU로 확장해 전 세계적으로 급증하는 추론 토큰과 가속 컴퓨팅 수요를 충족할 예정이다. 지난 몇 주 사이 오픈AI(OpenAI)를 비롯한 여러 기업에서 새로운 추론 모델을 출시하면서 AI 혁신은 빠른 속도로 계속되고 있다.     엔비디아는 “OCI의 사례는 엔비디아 그레이스(Grace) 블랙웰 시스템이 전 세계적으로 본격 가동되기 시작한 최신 사례이다. 이는 클라우드 데이터센터를 대규모 인텔리전스를 제조하는 AI 팩토리로 탈바꿈시키고 있다”고 설명했다. 이러한 새로운 AI 팩토리는 36개의 엔비디아 그레이스 CPU와 72개의 엔비디아 블랙웰 GPU를 결합한 랙 스케일 시스템인 엔비디아 GB200 NVL72 플랫폼을 활용한다. 이를 통해 고급 AI 추론 모델 기반의 에이전틱 AI를 위한 고성능과 에너지 효율을 제공한다. OCI는 모든 규모의 고객에게 블랙웰을 제공할 수 있는 유연한 배포 옵션을 지원한다. 여기에는 공공, 정부, 소버린 클라우드는 물론 OCI 전용 리전(Dedicated Region)과 OCI 알로이(Alloy)를 통한 고객 소유의 데이터센터까지 포함된다. 한편 새로운 GB200 NVL72 랙은 엔비디아 DGX 클라우드에서 사용할 수 있는 첫 번째 시스템이다. 엔비디아 DGX 클라우드는 OCI와 같은 주요 클라우드에서 AI 워크로드를 개발하고 배포하기 위해 소프트웨어, 서비스, 기술 지원을 제공하는 최적화된 플랫폼이다. 엔비디아는 추론 모델 훈련, 자율주행차 개발, 칩 설계와 제조 가속화, AI 도구 개발 등 다양한 프로젝트에 이 랙을 사용할 예정이다. GB200 NVL72 랙은 현재 DGX 클라우드와 OCI에서 사용할 수 있다.
작성일 : 2025-04-30