• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " MBSE"에 대한 통합 검색 내용이 147개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
다쏘시스템, 영국 NCC의 클라우드 기반 전환 및 첨단 연구·기술의 산업적 성과 창출 지원
다쏘시스템은 영국의 혁신 기관인 국립복합센터(NCC)가 다쏘시스템의 클라우드 기반 3D익스피리언스 플랫폼(3DEXPERIENCE Platform)을 도입하고, 이를 영국 제조연구센터(HVMC) 네트워크 내 다른 혁신 센터로까지 확대 적용한다고 밝혔다. NCC는 이미 10여 년간 다쏘시스템 설루션을 활용해왔으며, 이번 클라우드 기반 전환을 통해 항공 등 다양한 산업의 지속가능성 과제에 대응하고, 연구와 혁신의 핵심 기반으로 다쏘시스템 3D익스피리언스 플랫폼을 채택했다. 오늘날 산업계는 더 나은 제품을 더 적은 폐기물로, 더 오래 지속할 수 있도록 만들기 위해 복합재와 같은 첨단 소재를 적극 활용하고 있다. 특히 항공우주 분야에서는 차세대 여객기 및 첨단 항공 모빌리티를 변화시키고 있는 경량·고강도·내구성·친환경성을 갖춘 차세대 동체, 엔진 및 추진 시스템 설계를 위한 최첨단 연구가 활발히 진행되고 있다. 현재 신규 항공기의 약 50%가 복합재로 제작되는 것으로 추정된다.     NCC는 제조·산업 고객의 요구에 보다 신속하고 민첩하게 대응하며, 네트워크 내 다른 혁신 센터와 협업해 신기술의 개발·확산·실현을 촉진하고자 했다. 다쏘시스템의 3D익스피리언스 플랫폼은 협업 환경과 AI 기반 버추얼 트윈 경험을 제공해 설계부터 제조까지 밸류체인의 모든 영역을 가속화한다. 또한 NCC는 전 과정 추적이 가능한 모델 기반 시스템 엔지니어링(MBSE) 역량을 통해 차세대 날개 성능, 소재 재활용 공정, 국방 항공기, 첨단 항공 모빌리티뿐만 아니라 기타 산업 분야 연구에 이르기까지, 대규모 실증 프로젝트, 공동 연구 프로그램 및 고객 프로젝트를 위한 복합재 설루션을 탐색하고 최적화할 수 있다. NCC의 마크 서머스(Mark Summers) 최고기술책임자(CTO)는 “NCC의 클라우드 기반 3D익스피리언스 플랫폼으로의 전환은 협업·혁신·실행 방식을 한 단계 높이는 전략적 조치다”며, “이를 통해 산업계의 요구에 더욱 신속히 대응하고 개발 기간을 단축하며, 신기술을 보다 효과적으로 확산시킬 수 있을 것”이라고 말했다. 그는 이어 “이는 영국 내 생산성 향상, 고부가가치 일자리 창출, 장기적 경제 성장에 지원하는 산업적 성과 창출에서 NCC의 역할을 한층 강화하는 계기가 될 것”이라고 강조했다. 다쏘시스템의 데이비드 지글러(David Ziegler) 항공우주 및 국방 산업 부문 부사장은 “항공우주와 국방 산업은 혁신과 새로운 창조 방식을 요구하는 패러다임 전환을 맞이하고 있다”며, “NCC는 3D익스피리언스 플랫폼을 클라우드에서 도입함으로써 팀·데이터·애플리케이션을 하나의 버추얼 경험으로 연결해 협업과 복합소재 혁신을 강화할 수 있게 됐다”고 말했다.
작성일 : 2025-09-22
앤시스 2025 R2 : AI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션
개발 및 공급 : 앤시스코리아 주요 특징 : 원클릭으로 전문 지식에 접근 가능한 AI 기반 어시스턴트 지원, AI+ 기능이 탑재된 7종 제품을 통한 시뮬레이션 효율 및 접근성 향상, 데이터 관리 및 워크플로 자동화 강화를 통한 AI 통합 효과 향상 등   앤시스는 자사 전 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션 속도와 접근성을 크게 향상시키는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높인다. 특히, 초기 설계 단계에서의 스마트한 의사결정을 가능하게 하여, 차세대 위성부터 데이터센터 설계에 이르기까지 다양한 산업 분야에서 실질적인 가치를 제공한다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다. 앤시스 2025 R2는 AI 기반 다양한 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원한다.   ▲ 앤시스 2025 R2는 시뮬레이션 워크플로 전반의 생산성, 정확성, 인사이트를 향상시키는 AI 기반 기술을 새롭게 선보인다.   물리 기반 AI로 직관적인 시뮬레이션 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 ‘앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)’을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 마이크로소프트 애저(Microsoft Azure)의 니디 체펠(Nidhi Chappell) AI 인프라 부문 부사장은 “마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합을 통해 엔지니어들은 핵심 정보에 신속하게 접근하고, 앤시스의 깊이 있는 엔지니어링 전문성을 활용함으로써 생산성을 높이고 혁신을 가속화할 수 있다”고 전했다. 2025 R2는 앤시스 포트폴리오 전반에 AI 기능을 추가했다. 이를 통해 충실도가 높은 시뮬레이션을 자동으로 생성, 검증 및 최적화하여 모델 생성 속도를 높이고, 수동 작업을 줄이며 인적 오류를 줄일 수 있다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근 가능 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도는 17배 향상, 위상 배열 안테나의 빔 조향 정확도 개선으로 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션 최적화 이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다.   데이터 처리 및 자동화를 통한 AI 활용 극대화 앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 40개 이상의 파이썬(Python) 라이브러리를 포함한 파이앤시스(PyAnsys) 컬렉션은 신규 도구인 파이에스티케이(PySTK) 및 파이켐킨(PyChemkin)을 통해 앤시스 설루션과의 자동화 연동을 강화 및 다양한 산업 애플리케이션 내 생산성·효율성 강화 웹 기반 협업 플랫폼인 앤시스 메디니 사이버 보안(Ansys medini Cybersecurity) SE는 위협 분석 및 취약점 관리 자동화 통해 사이버 보안 리스크 최소화 SysML v2 기반 웹 플랫폼 앤시스 시스템 아키텍처 모델러(Ansys System Architecture Modeler : SAM)를 통한 소프트웨어·안전·시뮬레이션 통합, 포괄적 MBSE 구현 지원 스마트 자동화와 고도화된 데이터 관리 기술은, 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 대표 사례로, 에너지 효율형 모터 제어 설루션 분야의 글로벌 선도 기업인 댄포스 드라이브(Danfoss Drives)는 앤시스의 시뮬레이션을 활용해 복잡한 시스템 설계를 검증하고, 성능 최적화, 에너지 절감, 운영 신뢰성 향상 등 산업 전반의 지속 가능한 혁신적인 드라이브 기술을 구현하고 있다. 댄포스 드라이브의 가상 설계·테스트·최적화 총괄 책임자인 마이클 라우르센(Michael Laursen)은 “파이앤시스는 사용자 맞춤형 자동화, 시스템 통합, 확장성을 구현하는 핵심 도구이다. 개방형 생태계를 기반으로 다양한 툴을 유기적으로 연결하고 AI 기능을 접목함으로써 설계부터 최적화까지의 워크플로를 가속화할 수 있다”고 밝혔다. 또한 “앤시스 기술은 디지털 설계 프로세스를 고도화하는 동시에 빠르게 변화하는 산업 환경에 유연하게 대응할 수 있는 기반을 마련해줄 뿐만 아니라, 비용 절감과 제품 개발 기간 단축에도 실질적으로 기여하고 있다”고 전했다.   현실을 모사하는 고성능 물리 시뮬레이션 정교한 물리 모델과 시뮬레이션 기술은 복잡한 설계 과제를 해결하는 데 필수이다. 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다. 앤시스 메카니컬(Ansys Mechanical)의 신규 혼합 솔버는 대형 과도 모델의 연산 속도 향상 및 시간에 따른 열 변화 분석 지원 복잡한 적층형 전자 시스템 메싱 작업의 자동화 및 속도·정확도·사용성 향상, 신규 메싱 플로 기능을 통한 수작업 간소화 앤시스 록키(Ansys Rocky) 및 프리플로우(Ansys FreeFlow)를 통한 고급 다물리(multiphysics) 연성 해석 기능 제공, 열·유체-구조·전자기 결합을 포함한 상세 시뮬레이션 및 성능 최적화 지원 앤시스 파워X(Ansys PowerX) 디버깅 툴을 통한 반도체 전력 소자의 설계 시간 단축, 기생 성분 이슈의 신속한 식별, 설정 간소화 및 효율적인 2D 메싱 작업 지원 RF 전력 분야의 기업인 앰플리온은 앤시스의 고급 시뮬레이션 기술을 활용해 4G LTE 및 5G NR 인프라는 물론 산업, 과학, 의료, 방송, 항법, 안전 무선통신용으로 사용되는 고신뢰·고성능 GaN 및 LDMOS 설루션을 설계하고 있다. 앰플리온의 모델링 및 특성화 그룹 팀장인 비토리오 쿠오코(Vittorio Cuoco, Ampleon) 박사는 “전자기, 열, 기계 간의 복잡한 상호작용을 효과적으로 제어하며 RF 전력 제품을 설계하는 일은 매우 까다로운 과제”라며, “앤시스의 설루션은 이러한 복잡성을 정면으로 해결할 수 있는 정밀한 시뮬레이션을 제공해 설계 리스크를 줄이고 제품 신뢰성을 높이는 데 도움이 되며, 그 결과는 성능 향상, 에너지 절감, 그리고 더 높은 효율성이라는 측면에서 크다”라고 전했다. 이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 온디맨드 방식의 기술을 적극 활용함으로써, 기업은 디지털 전환을 보다 수월하게 실현할 수 있다.   클라우드 기반 시뮬레이션 통한 디지털 전환 가속 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 극대화한다. 이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있으며, 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다. 앤시스 아이스팩(Ansys Icepak) 및 플루언트 GPU 솔버(Fluent GPU Solver)를 통한 전자 냉각 시뮬레이션 연산 속도 최대 2.5배 향상, 앤시스 플루언트(Ansys Fluent) 웹 인터페이스에서는 제한적 GPU 솔버 기반의 실시간 모니터링 기능 제공 앤시스 디스커버리(Ansys Discovery)의 메싱 기능 개선을 통한 시뮬레이션 신뢰도 및 품질 향상, GPU 기반의 셋업 속도 개선으로 더 빠르고 안정적인 해석 환경 구현 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute)의 온디맨드(on-demand) HPC 성능이 앤시스 스피오스(Speos) 및 루메리컬 FDTD(Lumerical FDTD) 포함한 6종 제품에 적용, 별도 설치나 IT 지원 없이 고성능 클라우드 환경 활용 가능     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
앤시스, AI 기능으로 시뮬레이션 효율 및 접근성 높인 ‘앤시스 2025 R2’ 발표
앤시스는 자사의 모든 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션의 속도와 접근성을 높이는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높일 수 있게 했다. 또한, 초기 설계 단계에서 스마트한 의사결정을 가능하게 하여 차세대 위성부터 데이터센터 설계까지 다양한 산업 분야에서 실질적인 가치를 제공하는 데에 초점을 맞췄다. AI 기반의 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원하는 것도 특징이다. 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 앤시스는 마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합으로 엔지니어가 핵심 정보에 신속하게 접근하고, 엔지니어링 전문성을 활용할 수 있게 했다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근이 가능하다. 앤시스는 “AI 기반의 엔지니어링 코파일럿을 활용하면 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도를 17배 높일 수 있다. 이외에도 위상 배열 안테나의 빔 조향 정확도를 개선해 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션을 최적화할 수 있다”면서, “이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율성을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다”고 설명했다.     앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로, 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 스마트 자동화와 고도화된 데이터 관리 기술은 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 뿐만 아니라, 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다고 소개했다.  이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 강화한다. 앤시스는 “이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있다. 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며, 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다”고 전했다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해 왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다.
작성일 : 2025-07-31
딜로이트-프로스텝, 디지털 프로세스 체인 시연하는 스마트 공장 모델 선보여
딜로이트(Deloitte)는 인더스트리 4.0을 직접 체험할 수 있는 스마트 공장의 모델 시설을 독일 뒤셀도르프에 열었다고 밝혔다. 이 스마트 공장은 사이버-물리 시스템(CPS)의 개발 및 생산에 관련된 모든 산업을 대상으로 하며, 여러 전문 부서 간의 협업을 조율하고 회사 내외부의 수많은 이해관계자를 통합해야 하는 기업을 위해 마련되었다. 딜로이트와 프로스텝(PROSTEP)은 이 공장에서 엔드 투 엔드 데이터 프로세스를 위한 실용적인 활용 사례를 구현했으며, 요구사항 공학, 모델 기반 시스템 엔지니어링(MBSE) 및 개발을 연결하는 디지털 프로세스 체인을 그 예로 들 수 있다. 이들 사용 사례는 엔드 투 엔드 추적성이 어떻게 작동하는지와 AI 지원 프로세스의 기반을 어떻게 마련할 수 있는지를 보여준다. 딜로이트와 프로스텝은엔드 투 엔드 엔지니어링 프로세스 체인 개발을 위해 긴밀히 협력했으며, 이 과정에서 딜로이트의 프로세스 노하우와 프로스텝의 PLM(제품 수명주기 관리) 통합 노하우가 결합되었다. 프로스텝의 설루션인 오픈PDM(OpenPDM)이 통합의 기반을 제공하며, 이는 프로스텝 디지털 스레드 플랫폼의 일부이다. 오픈PDM은 주요 PLM, ALM, ERP 시스템에 대한 표준 커넥터를 제공하여 통합 및 유지보수 비용을 최소화한다. 통합된 IT 시스템 환경은 시스템 개발에서 원활한 협업을 촉진하여, 다양한 전문 부서가 선호하는 전문 시스템에서 높은 수준의 품질과 효율성을 달성할 수 있도록 한다. 또한 개발 주기를 단축하고 A-SPICE, CSMS 표준, MDR(의료기기 규정) 등에서 요구하는 추적성 관련 규정 준수 요건을 충족하는 데 도움이 된다.     이런 사용 사례는 V-모델(V-model)을 따르는 일반적인 개발 프로세스를 기반으로 한다. 이해관계자의 요구사항은 먼저 PTC 코드비머(PTC Codebeamer)에 기록된 후, 다쏘시스템의 카티아 매직 사이버 시스템즈 엔지니어(Catia Magic Cyber Systems Engineer)로 전송되어 시스템 아키텍처를 모델링하고 추가적인 기능 및 시스템 요구사항을 도출하는 데 사용된다. 특정 성숙도에 도달하면 전체 요구사항 패키지는 추가 개발을 위해 지멘스 팀센터(Siemens Teamcenter)로 전달된다. 프로스텝의 피터 팔츠그라프(Peter Pfalzgraf) 파트너 매니저는 “이렇게 구현된 사용 사례의 주요 장점은 자동화된 데이터 인터페이스가 도메인 경계를 넘나드는 협업을 용이하게 한다는 점”이라면서, “이 설루션은 연결된 IT 시스템에서 일관된 데이터 상태를 보장하고 시스템 간 추적성을 지원한다. 이를 통해 여러 전문 부서 간의 협력이 필요한 복잡한 시스템의 개발 속도를 높이는 데 기여한다”고 밝혔다. 딜로이트의 티노 크루거(Tino Krüger) 제품 전략 및 수명 주기 관리 파트너는 “프로스텝이 규제 산업에서 이기종 시스템 환경을 통합한 수십 년의 경험을 가지고 있어 파트너로 선택했다”면서, “두 회사는 자동차, 방위, 항공우주, 의료 기술, 플랜트 엔지니어링, 조선 등 수많은 다양한 산업에서 사업을 운영하고 있다. 우리는 서로를 완벽하게 보완한다”고 전했다.
작성일 : 2025-07-30
[포커스] 가상제품개발연구회, 춘계 심포지엄에서AI 전환 시대의 제품 개발 방향 논의
대한기계학회 가상제품개발연구회가 지난 6월 12일 2025년 춘계 심포지엄을 개최했다. ‘AI와 VPD의 만남 : Journey to the Digital Transformation’을 주제로 한 이번 심포지엄에서는 제조업 분야의 인공지능 전환(AX) 시대에 발맞춘 가상 제품 개발(VPD) 기술 및 디지털 전환 사례가 소개됐다. ■ 정수진 편집장     디지털 전환에서 AI 전환으로, 새로운 시대가 열린다 지난 2020년 출범한 가상제품개발연구회는 제조업 분야의 가상 제품 개발 기술과 디지털 전환 사례를 공유하고 기술 교류를 통해 산업 분야의 글로벌 경쟁력을 높이는 것을 목표로 삼았다. 2021년부터는 매년 봄·가을 심포지엄과 특별 세션을 열고 있다. 가상제품개발연구회의 오세기 회장은 개회사에서 “빅데이터와 딥러닝으로 시작된 디지털 전환(DX)은 생성형 AI(generative AI)가 등장하면서 기업의 문화, 전략, 비즈니스 모델까지 인공지능 중심으로 재설계하는 인공지능 전환(AX) 시대로 진화하고 있다”면서, 그 동안 연구회 심포지엄의 모토였던 ‘디지털 전환으로의 여정’이 이제는 ‘인공지능 전환으로의 여정’으로 바뀌어야 할 시점이라고 밝혔다. 대한기계학회의 배중면 회장은 축사를 통해 “챗GPT (ChatGPT)나 생성형 AI로 대표되는 현대 인공지능 시대의 개막은 기계공학 분야에서도 예외가 아니며, 물리기반 모델과 인공지능의 융합, 시뮬레이션의 자동화, 그리고 설계 최적화의 지능화가 실현 가능한 시대가 되었다”고 짚었다. 그리고 “가상제품개발연구회는 디지털 기반 제품 개발의 혁신을 선도해 왔으며, 대한기계학회 역시 이 분야의 발전을 적극 뒷받침하겠다”고 전했다.   물리지식 기반 AI와 생성형 AI를 활용한 VPD KAIST의 이승철 교수는 ‘제품 개발 가상화를 위한 물리지식 기반 인공지능의 역할’을 주제로 기조연설을 진행했다. 생성형 AI를 활용한 제품 가상화 설계 및 공학 문제 해결 방법에 대한 고민을 전한 이승철 교수는 “생성형 AI의 출현 이후 디지털 전환에서 인공지능 전환의 시대로 진화했으며, 기계공학 분야에서도 물리기반 모델과 AI의 융합, 시뮬레이션 자동화, 설계 최적화의 지능화가 가능해졌다”고 강조했다. 생성형 AI는 하나의 입력값에서 많은 수의 결과를 생성하여 설계의 다양성을 확보하는 데에 유용하다. 특히, 위상 최적화에서 문제를 ‘불량 설정(ill-posed)’하여 다양한 최적화 설루션을 생성하고, 이를 전통적인 최적화 방법의 초기 조건으로 활용하여 설계 시간을 줄일 수 있다. 이승철 교수는 “생성형 AI를 제품 설계에 적용하는 과정에서는 정밀도와 다양성의 절충점을 찾는 것이 중요하다”고 짚었다. 또한, 이승철 교수는 VPD에 AI 신경망 학습을 접목하기 위한 방법론을 소개했다. 물리지식 기반 인공지능(PINN)은 물리 지식을 데이터 프레임워크에 결합하여 인공지능 학습에 활용하는 방식으로, 특히 알려지지 않은 물리적 특성을 예측하는 ‘역방향 문제 해결’에 장점이 있다. 딥 오퍼레이터 네트워크(DeepONet)는 입력 매개변수나 형상이 바뀌어도 재학습 없이 거의 실시간으로 해석 결과를 예측할 수 있어서, 입력 파라미터의 변경이 예측 결과에 곧바로 반영되지 못하는 PINN의 단점을 극복할 수 있을 것으로 보인다. 이승철 교수는 “물리지식 기반의 DeepONet은 유동장 및 압력 분포를 실시간으로 예측하고, 복잡한 형상 변화에 따른 유동, 압력, 온도장 등을 실시간으로 예측할 수 있음을 입증했다”면서, “인공지능 기반의 새로운 도구들이 공학 문제를 해결하고 설계 분야를 혁신하는 데에 기여할 것”이라고 전망했다.   ▲ KAIST의 이승철 교수는 물리지식 기반의 AI를 제품 개발에 적용하기 위한 방법론을 소개했다.   AI/ML 기반 가상 검증 사례와 활용 전략 이번 심포지엄을 가상제품개발연구회와 공동 주관한 다쏘시스템코리아의 김문성 파트너는 ‘AI/ML 기반 가상 검증 사례와 활용 전략’에 대해 소개했다. 그는 인공지능 기반의 생성형 경험(generative experience)이 창의적이고 자동화된 설계를 가능하게 하며, 인공지능/머신러닝이 제품 개발 과정에서 반복 작업을 줄이고 비용과 시간을 절감하는 데 기여한다고 전했다. 이번 발표에서는 시뮬레이션에 적용할 수 있는 다양한 머신러닝 기법이 소개됐다. 합성곱 신경망(CNN)은 이미지 특징 추출에, 순환 신경망(RNN)과 장단기 메모리(LSTM)는 시계열 데이터 예측에, 딥러닝은 복잡한 3차원 필드 데이터 예측에, 그리고 그래프 신경망(GNN)은 유한요소모델(FEM)과 같은 그래프 구조 데이터 처리에 유용하다는 것이 김문성 파트너의 설명이다. 또한, 김문성 파트너는 문제 정의 − 학습 데이터 준비(실험 계획법 및 자동화 스크립트 활용) − 모델 학습 − 신뢰도 검증 − 예측 모델 구축까지 다쏘시스템의 아바쿠스(Abaqus)와 아이사이트(Isight)를 활용하는 머신러닝 프로세스 구현 단계를 소개했다. 김문성 파트너는 AI/ML 기법의 시뮬레이션 적용 사례로 LSTM을 활용한 하중-변위 선도 예측, 디스플레이 스트레인 예측, 전자기 성능 예측 등을 소개했으며, GNN을 사용해 빔과 항공기 랜딩기어 부재의 3차원 응력/변형량 예측이 가능하다고 전했다. 그는 “머신러닝 기술이 시뮬레이션 작업의 효율을 높이고, 데이터 기반의 정확한 의사 결정을 지원하는 강력한 도구가 될 것”이라고 전망했다.   ▲ 다쏘시스템코리아 김문성 파트너는 AI/ML 기반의 가상 검증 전략과 사례를 소개했다.   VPD와 AI의 융합, R&D 혁신을 이끈다 이외에도 이번 심포지엄에서는 물리지식 기반 인공지능과 생성형 AI를 활용한 제품 가상화 설계 방안, AI/머신러닝 기반 가상 검증 사례와 활용 전략 등에 관한 논의를 통해 미래 제품 개발의 방향을 짚어보는 기회가 마련됐다. 주제 발표로는 ▲히타치 야마자키 미키 박사의 ‘AI가 주도하는 MBSE·MBD와 VPD의 융합 : 가상화를 통한 차세대 제품 개발 가속 및 DX 추진’ ▲피도텍 대표인 한양대 최동훈 교수의 ‘VPD 대중화로 가는 길 : Al-Aided Design Optimization’ ▲현대모비스 송준영 팀장의 ‘AI를 이용한 R&D Shift’ ▲LG전자 백영진 팀장의 ‘AI와 VPD 연계를 통한 효율적 제어 시스템 개발 프레임워크’ ▲한화에어로스페이스 윤용상 상무의 ‘디지털 해석 기술을 활용한 항공엔진 개발과 국내 항공엔진의 미래’ 등이 진행됐다. 또한 패널토론에서는 VPD와 AI의 융합을 통해 R&D 혁신을 이끌어낼 수 있는 가능성과 미래 방향에 대해 논의했다.      ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
대한기계학회 가상제품개발연구회 2025년 춘계 심포지엄 개최 안내
      대한기계학회 가상제품개발연구회 2025년 춘계 심포지엄 개최 안내     2009년 본격화된 빅데이터와 딥러닝 기술은 2016년 ‘알파고 모멘트’를 거쳐, 오늘날에는 생성형 AI로 대표되는 Modern AI 시대를 맞이하고 있습니다. 특히 GPT의 출시 이후 최근 2년간 인공지능 기술은 실로 빛의 속도라 할 만큼 눈부신 발전을 이어가고 있습니다. 전통적인 시뮬레이션 분야에도 기계학습 및 딥러닝 기술이 도입되고 있으며, 산업계 전반에서는 인공지능을 통한 획기적인 R&D 생산성 향상을 기대하고 있습니다. 생성형 AI를 활용해 기업 내 R&D 데이터를 학습시키고, 이를 바탕으로 설계를 자동화하려는 시도들이 확산되고 있으며, Agentic AI가 현실화되는 시점에는 현재의 R&D 방식에 근본적인 변화가 찾아올 것으로 전망됩니다. 이번 가상제품개발연구회 춘계 심포지엄에서는 VPD와 AI의 융합을 통해 R&D 생산성 혁신을 이끌어낼 수 있는 가능성과 미래 방향을 함께 모색하고자 합니다. 참석하시는 회원 여러분과 연구자분들께서 귀중한 인사이트와 영감을 얻어 가는 뜻깊은 시간이 되시길 바랍니다.   대학기계학회 가상제품개발연구회 회장 오세기 올림   ◈ 행사일정 사회 : LG전자 황윤제 기술고문        세션 발표자(소속) 시간(분) 주제 등록 및 Network 10:00~10:30 (30) 등록 및 상호 인사, 교류 등 개회사 오세기 연구회장 (LG전자) 10:30~10:40 (10) 연구회 및 심포지엄 소개 축사 배중면 회장 (대한기계학회) 10:40~10:50 (10) 대한기계학회 가상제품개발연구회 격려사 Key Note Speech 이승철 교수 (KAIST) 10:50~11:30 (40) 제품 가상화 설계를 위한 물리지식기반 인공지능의 역할 주제발표 김문성 파트너 (다쏘시스템) 11:30~12:00 (30) AI/ML 기반의 가상 검증 사례와 활용 전략 점심 식사 등 12:00~13:20 (80) 식사 및 상호 인사, 교류, 다쏘시스템 전시 참관 등 (사전/현장 등록 확인 후 식사 비용 1만원/인 제공) 주제발표 Miki Yamazaki (HITACHI / JSME) 13:20~13:50 (30) AI가 주도하는 MBSE·MBD와 VPD의 융합 : 가상화를 통한 차세대 제품 개발 가속 및 DX 추진 최동훈 교수/대표 (한양대/피도텍) 13:50~14:20 (30) VPD 대중화로 가는 길: AI-Aided Design Optimization 송준영 팀장 (현대모비스) 14:20~14:50 (30) AI를 이용한 R&D Shift 백영진 팀장 (LG전자) 14:50~15:20 (30) AI와 VPD 연계를 통한 효율적 제어 시스템 개발 프레임워크 윤용상 상무 (한화에어로스페이스) 15:20~15:50 (30) 디지털 해석 기술을 활용한 항공엔진 개발과 국내 항공엔진의 미래 쉬는 시간 15:50~16:10 (20) 상호 인사, 교류, 다쏘시스템 전시 참관 등 패널 토론 16:10~17:30 (80) 연구회 임원 및 발표자            (참고 : 가상제품개발연구회 홈페이지 http://k-vpd.org/)  
작성일 : 2025-06-12
사례로 살펴 보는 아키텍처 모델과 1D 모델의 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (2)   지난 호에서는 MBD(모델 기반 개발)의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 소개했다. 이번 호에서는 실제 모델 구축 및 설계 사례를 살펴 본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   1D 모델 구축 및 설계 사례 여기에서 소개할 사례는 의료용 기기 침대에 대한 설계 및 모델링 프로세스를 설명하기 위한 것으로, 실제 의료 현장에서 사용되는 환자 이송 및 자세 조절 장치를 대상으로 한다. 핵심 목적은 현재 사용 중인 기기의 성능을 유지하면서 제조 및 운영 비용을 절감하고, 유지 보수가 용이한 형태로 개선하는 것이다. 이를 위해 시스템 아키텍처 구성, 서브시스템 모델링, 제어기 설계 및 가상시험 환경 구성이 유기적으로 통합되어 있다.(그림 1)   그림 1. 기구 및 1D 모델 프로세스를 의료 기기용 침대 설계에 적용한 예   시스템 구성 및 작동 원리는 다음과 같은 주요 구성 요소로 이루어져 있다. 침대 위의 사람이 눕는 구조물이며, 움직임은 없지만 시스템의 하중 요소로 작용한다. 침대 본체에 사람을 지지하고 구동장치 및 제어기와 연결되어 상하 혹은 기울기 방향으로 조정 가능하다. 기어 풀링 벨트와 풀리 시스템은 침대의 움직임을 유도하는 메커니즘으로, 전기 모터에 의해 회전되는 벨트가 기어와 연결되어 침대 위치를 조정한다. 가이드 및 가이드 롤러는 침대의 직선 이동을 유도하며 안정적인 동작을 보장한다. 구동 축은 모터의 회전력을 벨트에 전달하는 역할을 수행하며, 전체 시스템의 동적 응답에 큰 영향을 미친다. 1D 모델링 및 제어 시스템에서 1D 모델 구축은 전체 시스템의 성능 예측 및 최적화를 위해 매우 중요하다. 이 사례에서는 물리 기반 모델을 활용하여 다음과 같은 서브 시스템 모델이 구축되었다. 모터 구동부 모델은 전기 모터, 기어 감속기, 벨트 구동 시스템 등으로 구성되며, 목표 위치에 따라 침대의 이동을 정밀하게 제어한다. 서브 블록도에서는 입력되는 타겟 각도와 실제 위치 간의 오차를 계산하고, 이를 보상하기 위한 PID 제어기가 설계되어 있다. 침대 이동 메커니즘 모델은 침대의 기계적 운동은 벨트 풀리 시스템을 통해 직선 운동으로 전환되며, 이에 따른 침대 위치 및 속도 응답을 시간 함수로 시뮬레이션할 수 있다. 모델에서는 각 구성 요소의 질량, 감쇠, 스프링 상수 등의 파라미터가 반영되어 있으며, 실제 작동 중 발생할 수 있는 진동 및 불안정 현상까지도 반영할 수 있다. 제어기 및 인터페이스 모델은 사용자 인터페이스를 통해 목표 위치를 입력하면, 제어기 블록은 이를 기준으로 모터에 신호를 출력하여 실시간 제어가 가능하다. 시뮬레이션을 통해 피드백 루프의 안정성과 응답 속도를 사전에 검증할 수 있다. 이 사례에서 설계 및 개발 목표는 비용 절감을 위해 기존 장비에 비해 구조 및 부품 단순화로 제조 비용과 유지보수 비용을 줄이는 것이다. 또한 성능 유지 및 개선을 위해서 사람의 체중, 운동 속도, 반응 속도 등의 다양한 작동 조건 하에서도 기존 수준 이상의 성능을 확보하는 것이다. 검증 기반 설계에서 실제 제품 제작 이전에 가상 시뮬레이션을 통해 문제점을 사전에 파악하고 설계 품질을 높이는 것을 가능하게 한다. 이 사례는 MBSE(모델 기반 시스템 엔지니어링)와 MBD의 통합 적용을 통해 실제 의료기기 설계 과정의 효율화와 성능 개선을 동시에 달성할 수 있음을 보여준다. 다양한 시스템 구성요소 간의 상호작용을 정량적으로 모델링하고 이를 기반으로 제어기 설계 및 성능 검증을 수행함으로써, 제품 개발 초기 단계에서부터 신뢰성 있는 설계를 유도할 수 있다.   내부 블록 다이어그램과 파라미터 다이어그램의 연계 시스템 모델링 및 시뮬레이션 기반의 설계 환경에서는 기능적 구성요소 간의 상호작용과 함께, 각 구성요소에 영향을 주는 매개변수(parameter)의 정의와 연계가 매우 중요하다. 이 사례에서는 내부 블록 다이어그램(IBD)과 파라미터 다이어그램을 연계하여, 시스템 구성요소 간의 구조적 연계와 수치적 특성 연계를 동시에 파악할 수 있는 방법을 설명한다.    그림 2. 의료 기기용 침대 설계를 위한 내부 블록 다이어그램과 파라미터 다이어그램   <그림 2>의 내부 블록 다이어그램은 ‘Belt Side Speed Analysis System’이라는 롤러 기반 시스템의 내부 구성 요소 간 상호작용을 시각화한 것이다. 시스템은 다음과 같은 주요 하위 블록으로 구성되어 있다. upport roller/mechanic roller는 롤러 메커니즘으로서, 회전을 통해 동력을 전달하거나 속도를 제어한다. roller/guide/clutch 등은 기계적 서브시스템의 구성요소이며, 각 요소는 물리적으로 연결되어 동작한다. speed_ change 블록은 속도 변화 조건을 반영하는 부분으로, 시뮬레이션에서 조건부 동작을 정의한다. controller는 전체 시스템의 제어 역할을 수행하며, 클러치나 롤러의 동작을 조정한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-06-04
다쏘시스템, ‘3D익스피리언스 콘퍼런스 코리아 2025’에서 AI 버추얼 트윈 비전 제시
다쏘시스템은 5월 29일 서울 코엑스에서 ‘3D익스피리언스 콘퍼런스 코리아 2025(3DEXPERIENCE CONFERENCE KOREA 2025)’를 열고, 급변하는 경제 상황 속에서 생성형 경제로의 전환을 위한 비전과 함께 AI 기반 버추얼 트윈 기술을 통한 산업 혁신 전략을 제시했다. 이번 행사는 다쏘시스템의 모든 제품 브랜드를 아우르는 연례 콘퍼런스이다. 올해 콘퍼런스의 오전 세션에서는 다쏘시스템코리아 정운성 대표이사의 환영사를 시작으로 LG전자 황윤제 기술고문의 ‘모델 기반 가상화 R&D 를 통한 디지털 혁신 : AI시대의 도전과 미래’, PWC 컨설팅 문홍기 대표의 ‘Beyond Digital | Virtual Twin’, 다쏘시스템 마시모 프란도(Massimo PRANDO) 3D익사이트 사업 및 영업 총괄의 ‘Virtual Twins in Action : The Experience Engine Across Industries’, 델 테크놀로지스 오리온 상무의 ‘Unleashing the Future of AI Development with Dell Pro Max Workstation’ 등 발표가 진행됐다.     정운성 대표이사는 2040년을 향한 다쏘시스템의 비전인 ‘생성형 경제(Generative Economy)’를 소개하면서, 경험 경제와 순환 경제를 통합하는 개념으로서 제품 중심에서 사용자 경험 중심으로, 그리고 환경 및 리사이클링을 고려하는 산업 모델로의 전환을 강조했다. 이는 제품의 제조 – 소비 – 폐기로 이어지는 일직선 방식에서 생성-  경험 - 재생이 순환하는 생성형 모델로의 변화를 뜻한다. 또한, 정운성 대표이사는 “다쏘시스템은 3D 기술을 시작으로 디지털 목업(DMU), 제품 데이터 관리(PDM), 제품 수명주기 관리(PLM)를 거쳐 제품 및 인간 영역의 버추얼 트윈(Virtual Twin)을 선보였으며, 이 모든 기술을 바탕으로 3D익스피리언스 플랫폼을 구축했다”면서, 버추얼 트윈에 생성형 AI를 탑재한 7세대 기술인 ‘3D 유니버스(3D UNIV+RSES)’를 소개했다. 3D 유니버스를 구성하는 핵심 요소로는 ▲꾸준히 고도화되는 버추얼 트윈 ▲버추얼 트윈 기반의 경험 축적 ▲생성형 AI를 통한 생성형 경험 ▲가상의 AI 동반자 기술 ▲몰입감 있는 경험을 지원하는 센스 컴퓨팅 기술 등을 꼽았다. 마시모 프란도 총괄은 3D익사이트(3DEXCITE)가 엔지니어링 데이터와 고객 경험을 연결하는 역할을 한다고 설명하면서, 가상 세계와 현실 세계를 잇는 버추얼 트윈에 생성형 AI를 접목하여 혁신적인 경험을 창출한다는 다쏘시스템의 비전을 제시했다. 그리고 항공우주, 반도체 제조, 산업 장비, 철도, 가전제품, 스포츠 및 라이프스타일, 자동차 등 다양한 산업 분야의 버추얼 트윈 적용 사례를 공유했다. 황윤제 기술고문은 LG전자의 R&D 디지털 혁신 여정을 공유하면서, AI의 발달로 디지털 혁신은 최적기를 맞았다고 짚었다. 그리고, R&D 분야에서 모델 기반 시스템 엔지니어링(MBSE)의 중요성과 AI를 활용한 가상화 설계 및 복잡한 문제 해결 사례를 제시했다. 문홍기 대표는 디지털 전환을 넘어서는 패러다임 전환의 필요성을 언급하며, 버추얼 트윈이 한국 제조업의 게임 체인저가 될 잠재력을 가지고 있음을 강조했다. 또한, 디지털 선도 기업들이 버추얼 트윈을 통해 운영 효율성과 새로운 비즈니스 가치를 창출하고 있다고 소개했다. 오리온 상무는 인공지능의 능력을 효과적으로 활용할 수 있도록 돕는 워크스테이션 등 컴퓨팅 기술을 소개했다. 오후에는 바이오비아(BIOVIA), 에노비아(ENOVIA), 넷바이브(NETVIBES), 카티아(CATIA), 3D익사이트(3DEXCITE), 델미아(DELMIA), 시뮬리아(SIMULIA) 등 다쏘시스템의 주요 브랜드 및 SDV(소프트웨어 정의 자동차)를 주제로 한 트랙별 브레이크 아웃 세션에서 다양한 기술 정보와 고객 사례가 소개됐다. 이외에도 AI 포토 부스, VR 부스, 플레이그라운드 등 현장에 마련된 체험존은 참가자들이 다쏘시스템의 기술을 직접 경험하며 기술 비전을 접할 수 있도록 했다. 정운성 대표이사는 “변화하는 생성형 경제 시대에 다쏘시스템은 3D 유니버스 기술 비전을 통해 사용자의 업무 혁신, 지적 재산 보호, 그리고 지속 가능한 혁신을 지원하는 신뢰할 수 있는 파트너가 되겠다”고 전했다.
작성일 : 2025-05-29
다쏘시스템, ‘3D익스피리언스 콘퍼런스 코리아 2025’에서 AI 시대 선도하는 버추얼 트윈 혁신 제시
다쏘시스템은 5월 29일 서울 코엑스에서 ‘3D익스피리언스 콘퍼런스 코리아 2025(3DEXPERIENCE CONFERENCE KOREA 2025)’를 개최한다고 밝혔다. ‘모두를 위한 모든 것의 버추얼 트윈(Virtual Twin of Everything for Everyone)’을 주제로 열리는 이번 행사는, 생성형 AI와 결합해 한층 진화한 버추얼 트윈 기술을 중심으로 대한민국 산업의 미래를 만들어 나갈 혁신 비전을 소개한다. 이번 콘퍼런스에서는 다쏘시스템이 올해 초 새롭게 발표한 기술 비전 ‘3D유니버스(3D UNIV+RSES)’를 소개하고, 7개 혁신 브랜드를 통해 다양한 산업 분야에 적용되는 최신 기술 트렌드를 선보인다. 특히 다쏘시스템은 ▲40개 이상의 전문 세션 ▲산업 전문가들이 직접 전하는 실무 지식과 노하우 등 프로그램을 통해 참석자들에게 실질적 인사이트를 제공할 예정이다.     오전에 진행되는 제네럴 세션은 다쏘시스템코리아 정운성 대표이사의 환영사로 시작한다. 기조연설자로 초청된 LG전자 ES연구소의 황윤제 기술고문은 ‘모델 기반 가상화 R&D를 통한 디지털 혁신 : AI 시대의 도전과 미래’를 주제로, 디지털 전환(DX)을 이끄는 AI 기술과 버추얼 목업 제작을 더욱 용이하게 하는 모델 기반 시스템 엔지니어링의 중요성에 대해 발표한다. 황윤제 기술고문은 가상화 분야에서 현재 직면한 주요 도전 과제가 무엇인지 살펴보고, 이를 극복함으로써 열릴 미래의 가능성에 대한 인사이트를 제공할 예정이다. 오후에는 바이오비아(BIOVIA), 에노비아/넷바이브(ENOVIA/NETVIBES), 카티아/3D익사이트(CATIA/3DEXCITE), 델미아(DELMIA), 시뮬리아(SIMULIA)의 5개의 브랜드 트랙과 별도 마련된 SDV(Software-Defined Vehicle) 트랙이 진행된다. 각 트랙을 통해 다쏘시스템의 전문가와 브랜드별 고객사는 최신 기술 동향과 다양한 산업 적용 사례를 폭넓게 소개하며, 특히 3D익스피리언스 기반 통합 업무 환경을 심도 있게 다룰 예정이다. 특히 추가로 마련된 SDV 트랙은 총 3개의 발표로 구성되어, 다쏘시스템의 SDV 설루션 전략과 함께 모델 기반 시스템 엔지니어링(MBSE : Model-Based Systems Engineering), 하드웨어/소프트웨어 통합, 가상 검증 등 제품 전체 관점의 개발 방향을 소개한다. 아울러 미래 모빌리티 산업의 도전과제와 설루션 방안, 메카트로닉스(mechatronics) 및 소프트웨어 중심 경험(software-driven experiences)을 위한 엔드 투 엔드 통합 업무 환경 구축 전략을 다룬다.   다쏘시스템코리아 정운성 대표이사는 “3D익스피리언스 콘퍼런스 코리아 2025는 가상과 현실을 끊임없이 연결하는 기술로 산업 혁신의 방향을 제시하는 자리”라며, “모두를 위한 모든 것의 버추얼 트윈이라는 이름에 걸맞게, 다쏘시스템은 앞으로도 다양한 산업의 전문가들과 함께 버추얼 트윈으로 미래 산업을 혁신하고, 무한한 가능성을 만들어 나갈 것”이라고 밝혔다.
작성일 : 2025-05-08