• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " GPU"에 대한 통합 검색 내용이 1,431개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
인텔, 아크 프로 B-시리즈 GPU 및 제온 6 프로세서의 AI 추론 벤치마크 결과 소개
인텔은 ML커먼스(MLCommons)가 발표한 최신 MLPerf 추론 v5.1 벤치마크에서 P코어를 탑재한 인텔 제온(Intel Xeon) 및 인텔 아크 프로 B60(Intel Arc Pro B60) 그래픽으로 구성된 인텔 GPU 시스템(코드명 프로젝트 배틀매트릭스)의 추론용 워크스테이션이 달성한 결과를 공개했다. 6가지 주요 벤치마크 테스트 결과, 라마(Llama)4 80B 모델 추론 처리량에서 인텔 아크 프로 B60은 엔비디아 RTX 프로 6000 및 L40S에 비해 각각 최대 1.25배 및 최대 4배의 가격 대비 성능 우위를 보였다. 인텔은 “이는 하이엔드 워크스테이션 및 에지 애플리케이션 전반에 걸쳐 새로운 AI 추론 워크로드를 처리하는 인텔 기반 플랫폼의 성능과 접근 우수성을 보여주는 결과”라고 평가했다. 인텔의 리사 피어스(Lisa Pearce) 소프트웨어, GPU 및 NPU IP 그룹 총괄은 “MLPerf v5.1 벤치마크 결과는 인텔의 GPU 및 AI 전략을 강력히 입증하고 있다. 새로운 추론 최적화 소프트웨어 스택을 탑재한 아크 프로 B-시리즈 GPU는 기업과 개발자가 강력하면서도 설정하기 쉽고, 합리적인 가격에 확장 가능한 추론 워크스테이션으로 AI 분야에서 경쟁력을 높여준다”고 밝혔다.     이전까지는 높은 추론 성능을 제공하면서 데이터 프라이버시 침해에서 자유로운 플랫폼을 우선시하는 전문가들이 독점적인 AI 모델에 의한 과도한 구독 비용 부담 없이 LLM(대형 언어 모델)을 배포하기에 필요한 역량을 갖추기 위한 선택지가 제한적이었다. 새로운 인텔 GPU 시스템은 최신 AI 추론 요구사항을 충족하도록 설계되었으며, 풀스택 하드웨어와 소프트웨어를 결합한 올인원(all-in-one) 추론 플랫폼을 제공한다. 인텔 GPU 시스템은 리눅스 환경을 위한 새로운 컨테이너 기반 설루션을 통해 간소화된 도입과 사용 편의성을 목표로 한다. 또한 멀티 GPU 스케일링 및 PCle P2P 데이터 전송으로 높은 추론 성능을 발휘하도록 최적화되었으며, ECC, SRIOV, 텔레메트리(telemetry) 및 원격 펌웨어 업데이트 등과 같은 엔터프라이즈급 안전성 및 관리 용이성을 갖추고 있다. CPU는 AI 시스템에서 계속해서 중요한 역할을 수행하고 있다. 오케스트레이션 허브로서 CPU는 데이터 전처리, 전송 및 전반적인 시스템 조율을 담당한다. 지난 4년간 인텔은 CPU 기반 AI 성능을 지속적으로 향상시켜왔다. P 코어를 탑재한 인텔 제온 6는 MLPerf 추론 v5.1에서 이전 세대 대비 1.9배의 성능 향상을 달성했다.
작성일 : 2025-09-10
처리 시간이 10시간 미만인 LES 워크플로
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (25)   이번 호에서는 사용자가 피델리티 포인트와이즈(Fidelity Pointwise)와 피델리티 LES 솔버(Fidelity LES Solver, 이전 명칭 CharLES)를 사용하여 LES 워크플로의 이점을 누릴 수 있는 방법에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   대규모 와류 시뮬레이션(LES)은 최근 전산 유체 역학(CFD)에서 그 중요성이 커지고 있다. 이러한 급증은 주로 제한된 설계 공간, 긴 실행 시간, 물리학 감소 등 기존의 레이놀즈 평균 나비에 스토크(RANS) 기반 CFD에 내재된 트레이드오프 때문이다. 코드 설계 및 컴퓨팅 아키텍처의 발전으로 경계층 분리, 항공 음향, 연소 등 복잡한 산업 문제에 대해 LES(Large-Eddy Simulation, 대형 와류 시뮬레이션)와 같은 고충실도 시뮬레이션을 구현할 수 있게 되었다. 이러한 발전은 시뮬레이션 결과에 대한 신뢰도를 높여줄 뿐만 아니라, GPU 컴퓨팅 아키텍처의 활용을 통해 LES 솔버의 성능을 크게 향상시켰다. 이러한 개선으로 이제 LES 워크플로를 실제 엔지니어링 작업에 적용하여 10시간 미만의 처리 시간을 달성할 수 있게 되었으며, 이를 통해 LES는 생산 수준의 CFD 환경에서 실용적인 선택이 될 수 있게 되었다.   ▲ CFD Prediction for High-Lift Aerodynamics(Slotnick, 2019)   피델리티 LES 솔버 피델리티 LES 솔버가 고충실도 LES 시뮬레이션에서 갖는 장점은 다음과 같이 네 가지로 볼 수 있다. 보로노이 다이어그램 기반 대규모 병렬 메시 환경 강력하고 비선형적으로 안정적인 수치 체계 및 고급 물리 모델 대규모 데이터 세트를 위한 신속한 시각화 및 심문 확장 가능한 GPU 상주 다중 물리 유동 솔버     전처리는 전체 정확도에 큰 영향을 미치고 일반적으로 전체 워크플로 시간의 약 75~80%를 차지하기 때문에 CFD 워크플로에서 매우 중요한 단계이다. 이 단계에서 CFD 사용자를 지원하기 위해 피델리티 LES는 피델리티 스티치(Fidelity Stitch)라는 고급 메시 툴을 개발했다. 이 툴은 정확도를 개선하고 메시 품질 지표를 향상하는 데 필요한 시간을 단축하여 전처리 워크플로를 훨씬 더 효율적으로 만들 수 있도록 설계되었다. 피델리티 스티치는 LES를 위한 보로노이 다이어그램 기반 볼륨 메시 툴이다. 보로노이 다이어그램은 유클리드 거리를 기반으로 한 고유한 파티션이다. 이 메시 프로세스에는 두 가지 입력이 있다. 첫 번째 입력은 피델리티 스티치가 다이어그램을 클립하는 데 사용할 수밀하고 매니폴드한 표면 메시를 가져오는 것이다. 두 번째 입력은 사이트 생성이다. 토폴로지는 사이트 배치와 해당 사이트 스텐실과 서피스 메시의 교차점을 생성한 결과물이다. 그러면 스티치가 임의의 다면체 셀을 직접 생성한다.     로이드 알고리즘은 반복적으로 메시를 평활화하는 데 사용된다. 이 스무딩 절차는 벽에 가까운 정렬을 유리하게 만들고 고해상도가 필수적인 인터페이스에서 셀 볼륨을 보다 균일하게 분배한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
앤시스 2025 R2 : AI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션
개발 및 공급 : 앤시스코리아 주요 특징 : 원클릭으로 전문 지식에 접근 가능한 AI 기반 어시스턴트 지원, AI+ 기능이 탑재된 7종 제품을 통한 시뮬레이션 효율 및 접근성 향상, 데이터 관리 및 워크플로 자동화 강화를 통한 AI 통합 효과 향상 등   앤시스는 자사 전 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션 속도와 접근성을 크게 향상시키는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높인다. 특히, 초기 설계 단계에서의 스마트한 의사결정을 가능하게 하여, 차세대 위성부터 데이터센터 설계에 이르기까지 다양한 산업 분야에서 실질적인 가치를 제공한다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다. 앤시스 2025 R2는 AI 기반 다양한 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원한다.   ▲ 앤시스 2025 R2는 시뮬레이션 워크플로 전반의 생산성, 정확성, 인사이트를 향상시키는 AI 기반 기술을 새롭게 선보인다.   물리 기반 AI로 직관적인 시뮬레이션 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 ‘앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)’을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 마이크로소프트 애저(Microsoft Azure)의 니디 체펠(Nidhi Chappell) AI 인프라 부문 부사장은 “마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합을 통해 엔지니어들은 핵심 정보에 신속하게 접근하고, 앤시스의 깊이 있는 엔지니어링 전문성을 활용함으로써 생산성을 높이고 혁신을 가속화할 수 있다”고 전했다. 2025 R2는 앤시스 포트폴리오 전반에 AI 기능을 추가했다. 이를 통해 충실도가 높은 시뮬레이션을 자동으로 생성, 검증 및 최적화하여 모델 생성 속도를 높이고, 수동 작업을 줄이며 인적 오류를 줄일 수 있다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근 가능 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도는 17배 향상, 위상 배열 안테나의 빔 조향 정확도 개선으로 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션 최적화 이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다.   데이터 처리 및 자동화를 통한 AI 활용 극대화 앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 40개 이상의 파이썬(Python) 라이브러리를 포함한 파이앤시스(PyAnsys) 컬렉션은 신규 도구인 파이에스티케이(PySTK) 및 파이켐킨(PyChemkin)을 통해 앤시스 설루션과의 자동화 연동을 강화 및 다양한 산업 애플리케이션 내 생산성·효율성 강화 웹 기반 협업 플랫폼인 앤시스 메디니 사이버 보안(Ansys medini Cybersecurity) SE는 위협 분석 및 취약점 관리 자동화 통해 사이버 보안 리스크 최소화 SysML v2 기반 웹 플랫폼 앤시스 시스템 아키텍처 모델러(Ansys System Architecture Modeler : SAM)를 통한 소프트웨어·안전·시뮬레이션 통합, 포괄적 MBSE 구현 지원 스마트 자동화와 고도화된 데이터 관리 기술은, 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 대표 사례로, 에너지 효율형 모터 제어 설루션 분야의 글로벌 선도 기업인 댄포스 드라이브(Danfoss Drives)는 앤시스의 시뮬레이션을 활용해 복잡한 시스템 설계를 검증하고, 성능 최적화, 에너지 절감, 운영 신뢰성 향상 등 산업 전반의 지속 가능한 혁신적인 드라이브 기술을 구현하고 있다. 댄포스 드라이브의 가상 설계·테스트·최적화 총괄 책임자인 마이클 라우르센(Michael Laursen)은 “파이앤시스는 사용자 맞춤형 자동화, 시스템 통합, 확장성을 구현하는 핵심 도구이다. 개방형 생태계를 기반으로 다양한 툴을 유기적으로 연결하고 AI 기능을 접목함으로써 설계부터 최적화까지의 워크플로를 가속화할 수 있다”고 밝혔다. 또한 “앤시스 기술은 디지털 설계 프로세스를 고도화하는 동시에 빠르게 변화하는 산업 환경에 유연하게 대응할 수 있는 기반을 마련해줄 뿐만 아니라, 비용 절감과 제품 개발 기간 단축에도 실질적으로 기여하고 있다”고 전했다.   현실을 모사하는 고성능 물리 시뮬레이션 정교한 물리 모델과 시뮬레이션 기술은 복잡한 설계 과제를 해결하는 데 필수이다. 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다. 앤시스 메카니컬(Ansys Mechanical)의 신규 혼합 솔버는 대형 과도 모델의 연산 속도 향상 및 시간에 따른 열 변화 분석 지원 복잡한 적층형 전자 시스템 메싱 작업의 자동화 및 속도·정확도·사용성 향상, 신규 메싱 플로 기능을 통한 수작업 간소화 앤시스 록키(Ansys Rocky) 및 프리플로우(Ansys FreeFlow)를 통한 고급 다물리(multiphysics) 연성 해석 기능 제공, 열·유체-구조·전자기 결합을 포함한 상세 시뮬레이션 및 성능 최적화 지원 앤시스 파워X(Ansys PowerX) 디버깅 툴을 통한 반도체 전력 소자의 설계 시간 단축, 기생 성분 이슈의 신속한 식별, 설정 간소화 및 효율적인 2D 메싱 작업 지원 RF 전력 분야의 기업인 앰플리온은 앤시스의 고급 시뮬레이션 기술을 활용해 4G LTE 및 5G NR 인프라는 물론 산업, 과학, 의료, 방송, 항법, 안전 무선통신용으로 사용되는 고신뢰·고성능 GaN 및 LDMOS 설루션을 설계하고 있다. 앰플리온의 모델링 및 특성화 그룹 팀장인 비토리오 쿠오코(Vittorio Cuoco, Ampleon) 박사는 “전자기, 열, 기계 간의 복잡한 상호작용을 효과적으로 제어하며 RF 전력 제품을 설계하는 일은 매우 까다로운 과제”라며, “앤시스의 설루션은 이러한 복잡성을 정면으로 해결할 수 있는 정밀한 시뮬레이션을 제공해 설계 리스크를 줄이고 제품 신뢰성을 높이는 데 도움이 되며, 그 결과는 성능 향상, 에너지 절감, 그리고 더 높은 효율성이라는 측면에서 크다”라고 전했다. 이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 온디맨드 방식의 기술을 적극 활용함으로써, 기업은 디지털 전환을 보다 수월하게 실현할 수 있다.   클라우드 기반 시뮬레이션 통한 디지털 전환 가속 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 극대화한다. 이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있으며, 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다. 앤시스 아이스팩(Ansys Icepak) 및 플루언트 GPU 솔버(Fluent GPU Solver)를 통한 전자 냉각 시뮬레이션 연산 속도 최대 2.5배 향상, 앤시스 플루언트(Ansys Fluent) 웹 인터페이스에서는 제한적 GPU 솔버 기반의 실시간 모니터링 기능 제공 앤시스 디스커버리(Ansys Discovery)의 메싱 기능 개선을 통한 시뮬레이션 신뢰도 및 품질 향상, GPU 기반의 셋업 속도 개선으로 더 빠르고 안정적인 해석 환경 구현 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute)의 온디맨드(on-demand) HPC 성능이 앤시스 스피오스(Speos) 및 루메리컬 FDTD(Lumerical FDTD) 포함한 6종 제품에 적용, 별도 설치나 IT 지원 없이 고성능 클라우드 환경 활용 가능     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
엔비디아, ‘젯슨 토르’ 출시로 로보틱스·피지컬 AI 혁신 가속
엔비디아가 에지 환경에서 실시간 AI 추론을 수행할 수 있는 엔비디아 젯슨 토르(NVIDIA Jetson Thor) 모듈을 출시했다. 젯슨 토르는 연구와 산업 현장의 로봇 시스템에서 두뇌 역할을 수행하며, 휴머노이드와 산업용 로봇 등 다양한 로봇이 보다 스마트하게 동작하도록 지원한다. 로봇은 방대한 센서 데이터와 저지연 AI 처리를 요구한다. 실시간 로봇 애플리케이션을 실행하려면 여러 센서에서 동시 발생하는 데이터 스트림을 처리할 수 있는 충분한 AI 컴퓨팅 능력과 메모리가 필요하다. 현재 정식 출시된 젯슨 토르는 이전 모델인 엔비디아 젯슨 오린(Orin) 대비 AI 컴퓨팅이 7.5배, CPU 성능이 3.1배, 메모리 용량이 2배 향상돼 이러한 처리를 디바이스에서 가능하게 한다. 이러한 성능 도약은 로봇 연구자들이 고속 센서 데이터를 처리하고 에지에서 시각적 추론을 수행할 수 있도록 한다. 이는 기존에는 동적인 실제 환경에서 실행하기에는 속도가 너무 느려 실행하기 어려웠던 워크플로이다. 이로써 휴머노이드 로보틱스와 같은 멀티모달 AI 애플리케이션의 새로운 가능성을 열어주고 있다.   ▲ 엔비디아 젯슨 AGX 토르 개발자 키트   휴머노이드 로보틱스 기업인 어질리티 로보틱스(Agility Robotics)는 자사의 5세대 로봇인 디지트(Digit)에 엔비디아 젯슨을 통합했다. 이어서 6세대 디지트에는 온보드 컴퓨팅 플랫폼으로 젯슨 토르를 채택할 계획이다. 이를 통해 디지트는 실시간 인식과 의사결정 능력을 강화하고 점차 복잡해지는 AI 기술과 행동을 지원할 수 있게 된다. 디지트는 현재 상용화됐으며, 창고와 제조 환경에서 적재, 상차, 팔레타이징(palletizing) 등 물류 작업을 수행하고 있다. 30년 넘게 업계 최고 수준의 로봇을 개발해온 보스턴 다이내믹스(Boston Dynamics)는 자사 휴머노이드 로봇 아틀라스(Atlas)에 젯슨 토르를 탑재하고 있다. 이를 통해 아틀라스는 이전에는 서버급에서만 가능했던 컴퓨팅, AI 워크로드 가속, 고대역폭 데이터 처리, 대용량 메모리를 디바이스 내에서도 활용할 수 있게 됐다. 휴머노이드 로봇 외에도, 젯슨 토르는 더 크고 복잡한 AI 모델을 위한 실시간 추론을 통해 다양한 로봇 애플리케이션을 가속화할 예정이다. 여기에는 수술 보조, 스마트 트랙터, 배송 로봇, 산업용 매니퓰레이터(manipulator), 시각 AI 에이전트 등이 포함된다. 젯슨 토르는 생성형 추론 모델을 위해 설계됐다. 이는 차세대 피지컬 AI 에이전트가 클라우드 의존도를 최소화하면서 에지에서 실시간으로 실행될 수 있도록 한다. 차세대 피지컬 AI 에이전트는 대형 트랜스포머 모델, 비전 언어 모델(vision language model : VLM), 비전 언어 행동(vision language action : VLA) 모델을 기반으로 구동된다. 젯슨 토르는 젯슨 소프트웨어 스택으로 최적화돼 실제 애플리케이션에서 요구되는 저지연과 고성능을 구현한다. 따라서 젯슨 토르는 모든 주요 생성형 AI 프레임워크와 AI 추론 모델을 지원하며, 탁월한 실시간 성능을 제공한다. 여기에는 코스모스 리즌(Cosmos Reason), 딥시크(DeepSeek), 라마(Llama), 제미나이(Gemini), 큐원(Qwen) 모델과 함께, 로보틱스 특화 모델인 아이작(Isaac) GR00T N1.5 등이 포함된다. 이를 통해 개발자는 손쉽게 로컬 환경에서 실험과 추론을 실행할 수 있다. 젯슨 토르는 생애 주기 전반에 걸쳐 엔비디아 쿠다(CUDA) 생태계의 지원을 받는다. 또한 젯슨 토르 모듈은 전체 엔비디아 AI 소프트웨어 스택을 실행해 사실상 모든 피지컬 AI 워크플로를 가속화한다. 여기에는 로보틱스를 위한 엔비디아 아이작, 영상 분석 AI 에이전트를 위한 엔비디아 메트로폴리스(Metropolis), 센서 처리를 위한 엔비디아 홀로스캔(Holoscan) 등의 플랫폼이 활용된다. 이러한 소프트웨어 도구를 통해 개발자는 다양한 애플리케이션을 손쉽게 구축하고 배포할 수 있다. 실시간 카메라 스트림을 분석해 작업자 안전을 모니터링하는 시각 AI 에이전트, 비정형 환경에서 조작 작업을 수행할 수 있는 휴머노이드 로봇, 다중 카메라 스트림 데이터를 기반으로 외과의에게 안내를 제공하는 스마트 수술실 등이 그 예시이다. 젯슨 토르 제품군에는 개발자 키트와 양산용 모듈이 포함된다. 개발자 키트에는 젯슨 T5000 모듈과 다양한 연결성을 제공하는 레퍼런스 캐리어 보드, 팬이 장착된 액티브 방열판, 전원 공급 장치가 함께 제공된다. 엔비디아는 젯슨 생태계가 다양한 애플리케이션 요구사항과 고속 산업 자동화 프로토콜, 센서 인터페이스를 지원해 기업 개발자의 시장 출시 시간을 단축한다고 전했다. 하드웨어 파트너들은 다양한 폼팩터로 유연한 I/O와 맞춤형 구성을 갖춰 생산에 준비된 젯슨 토르 시스템을 개발하고 있다. 센서 및 액추에이터 업체들은 엔비디아 홀로스캔 센서 브릿지(Sensor Bridge)를 활용하고 있다. 이 플랫폼은 센서 융합과 데이터 스트리밍을 간소화하며, 카메라, 레이더, 라이다 등에서 발생한 센서 데이터를 초저지연으로 젯슨 토르 GPU 메모리에 직접 연결할 수 있게 해준다. 수천 개의 소프트웨어 기업들은 젯슨 토르에서 구동되는 다중 AI 에이전트 워크플로를 통해 기존 비전 AI와 로보틱스 애플리케이션 성능을 향상시킬 수 있다. 그리고 200만 명 이상의 개발자들이 엔비디아 기술을 활용해 로보틱스 워크플로를 가속화하고 있다.
작성일 : 2025-08-29
IBM-AMD, 양자·AI·HPC 융합한 차세대 컴퓨팅 개발 협력
IBM과 AMD는 양자 컴퓨터와 HPC(고성능 컴퓨팅)를 결합한 차세대 컴퓨팅 아키텍처인 양자 중심 슈퍼컴퓨팅(quantum-centric supercomputing) 개발 계획을 발표했다. IBM은 고성능의 양자 컴퓨터 및 소프트웨어 개발에서의 리더십을, AMD는 HPC 및 AI 가속기 분야의 리더십을 바탕으로 확장 가능하고 오픈소스 기반의 플랫폼을 공동 개발해 컴퓨팅의 미래를 재정의하고자 한다. 양자 컴퓨팅은 정보를 표현하고 처리하는 방식에서 기존 컴퓨터와 완전히 다르다. 기존 컴퓨터는 0과 1의 비트로 정보를 처리하지만, 양자 컴퓨터는 양자역학의 법칙에 따라 정보를 표현하는 큐비트(qubit)를 사용한다. 이러한 특성은 신약 개발, 소재 탐색, 최적화, 물류 등 기존 컴퓨팅으로는 해결이 어려운 복잡한 문제에 대한 해결책을 탐색할 수 있는 연산 능력을 제공한다. 양자 중심 슈퍼컴퓨팅 아키텍처에서는 양자 컴퓨터가 CPU, GPU, 기타 컴퓨팅 엔진으로 구성된 HPC 및 AI 인프라와 함께 작동한다. 이 하이브리드 접근 방식에서는 문제의 각 요소를 가장 적합한 컴퓨팅 방식으로 해결한다. 예를 들어, 미래에는 양자 컴퓨터가 원자와 분자의 행동을 시뮬레이션하고, AI 기반의 슈퍼컴퓨터가 방대한 데이터 분석을 수행할 수도 있다. 이런 기술이 결합되면 현실 세계의 문제를 더욱 빠른 속도와 큰 규모로 해결할 수 있을 것으로 기대된다. IBM과 AMD는 AMD의 CPU, GPU, FPGA(프로그래밍이 가능한 반도체)를 IBM의 양자 컴퓨터와 통합해 기존 컴퓨팅 방식으로는 해결할 수 없는 새로운 알고리즘을 효율적으로 가속화하는 방안을 모색하고 있다. 이는 IBM이 2030년까지 실현하고자 하는 오류 내성 양자 컴퓨터(fault-tolerant quantum computing) 로드맵에도 기여할 수 있다. AMD의 기술은 오류 내성 양자 컴퓨팅의 핵심 요소인 실시간 오류 수정 기능을 제공할 수 있는 가능성을 지니고 있다. 양사는 올해 말 IBM의 양자 컴퓨터와 AMD 기술이 함께 작동하는 하이브리드 양자-클래식 연계 프로젝트 시연을 계획하고 있으며, IBM 키스킷(Qiskit)과 같은 오픈소스 생태계를 활용해 새로운 알고리즘 개발과 채택을 촉진하는 방안도 함께 검토 중이다. IBM의 아빈드 크리슈나(Arvind Krishna) 회장 겸 CEO는 “양자 컴퓨팅은 자연 세계를 시뮬레이션하고 정보를 완전히 새로운 방식으로 표현할 수 있다. IBM의 양자 컴퓨터와 AMD의 고성능 컴퓨팅 기술을 결합함으로써 기존 컴퓨팅의 한계를 뛰어넘는 강력한 하이브리드 모델을 구축할 수 있을 것”이라고 말했다. AMD의 리사 수(Lisa Su) CEO는 “HPC는 세계의 주요 과제를 해결하는 기반이 된다. IBM과의 협력을 통해 고성능 컴퓨팅과 양자 기술의 융합을 모색함으로써, 우리는 혁신과 발견을 가속화할 수 있는 엄청난 기회를 마주하고 있다”고 밝혔다.
작성일 : 2025-08-27
인텔, “AI 설루션으로 LG이노텍의 생산 공정 효율 향상”
인텔은 LG이노텍이 자사의 기술을 활용해 인공지능(AI) 기반의 자동화 시스템을 구축하고 있다고 소개했다. 소재·부품 전문 기업인 LG이노텍은 휴대폰, 자동차 디스플레이, 스마트 기기 등에 들어가는 수십만 개의 초소형 부품을 완벽한 정확도와 무결점으로 복제하는 것을 목표로 삼고 있으며, 혁신 기술을 통해 이러한 목표를 달성하고자 한다.  LG이노텍의 구미 공장에서는 인텔 코어(Intel Core) 프로세서, 인텔 제온(Intel Xeon) 프로세서 및 인텔 아크(Intel Arc) 내장형 그래픽처리장치(GPU)가 조화를 이루며 작동한다. 이들 기술은 오픈비노(OpenVINO) 소프트웨어 툴킷으로 통합된다. LG이노텍은 생산 라인의 특정 단말기에서 규칙 기반 검사 및 딥러닝 기반 시스템을 사용해 제품 품질을 높여왔다. 여기서 나아가, LG이노텍은 제조 공정 전반에 걸쳐 AI를 광범위하게 적용하여 성능 저하 없이 완전 자동화된 시스템을 구축하고자 했다. 인텔은 지난 2024년 인텔 코어 및 제온 프로세서와 아크 외장형 GPU를 기반으로 하는 AI 기반 검사 시스템에 대한 구축 지원을 위해 LG이노텍과 논의를 시작했다. 핵심은 생산 공정에서 발생하는 데이터가 인텔 코어 CPU를 탑재한 PC로 스트리밍되며, 내장 GPU는 결함 데이터를 분석하는 데 비용 효율을 제공하는 것이다. 고해상도 이미지에서 다중 알고리즘을 실행하는 등 부하가 큰 워크로드는 인텔 아크 외장 GPU가 처리하게끔 했다. 시간이 지남에 따라 축적된 데이터셋은 인텔 제온 기반의 사전 학습 서버로 전송된다.      양사는 향후 협업을 통해 인텔 가우디 AI 가속기가 탑재된 서버를 활용한 사전 학습 워크로드 관리를 검토하고 있다. 이처럼 CPU를 기반으로 내장 및 외장 GPU로 가속화된 인텔 기반 기술 조합을 활용하여 AI 검사 시스템 구축 비용을 절감할 수 있었다는 것이 인텔의 설명이다. 인텔은 “아크 기반 외장 GPU를 도입하면서, 동급 성능의 타사 하드웨어 대비 성능에 비해 높은 비용 효율성을 달성했다. 이러한 비용 절감 효과는 규모의 경제를 더욱 극대화할 수 있는 기반이 되고 있다”고 전했다.  LG이노텍은 2024년 모바일 카메라 모듈 생산 라인에 인텔의 AI 비전 검사 설루션을 처음 적용했으며, 올해는 FC-BGA(flip-chip ball grid array)를 생산하는 구미4공장 등 국내 주요 생산 거점과 해외 생산라인에 단계적으로 확대 적용할 계획이다.  시스템 도입 당시에는 기존 딥러닝 환경이 특정 외장 그래픽 카드를 기반으로 구축되어 있어, 처음에는 통합 GPU 도입에 대한 우려가 있었다. 특히, 신규 GPU에 맞춰 기존 코드를 재작성하고 다시 매핑하는 것이 매우 어려울 것이라는 걱정이 있었만, 오픈비노(OpenVINO) 소프트웨어 툴킷을 활용해 우려를 해소할 수 있었다. 2018년 오픈비노 출시 이후, 인텔은 전 세계 개발자가 AI 기반 개발을 가속화할 수 있도록 지원해왔다. 오픈비노는 개발자가 한 번의 코드 작성으로 다양한 환경에 AI 모델을 배포할 수 있도록 돕는 오픈소스 AI 툴킷이다. LG 이노텍의 엔지니어들은 대량 생산 과정에서 공정이 변경되거나 원자재가 바뀔 때, 딥러닝 모델을 재학습하기 위해 AI 기반 워크로드에 최적화된 AI 가속기가 탑재된 인텔 제온 CPU 활용도 고려하고 있다. 제온 CPU는 병렬 연산 속도를 높이고, 인텔 AMX(Intel Advanced Matrix Extensions)라는 특수 내장 가속기를 지원해 제온 CPU에서 딥러닝 학습 및 추론 성능을 향상시킨다. 인텔은 제온 CPU와 별도 서드파티 GPU를 함께 사용하는 기존 방식에 비해 AI 기반 파인튜닝(Fine Tuning) 작업을 CPU로 처리함으로써 시스템 비용을 줄일 수 있을 것으로 기대하고 있다.
작성일 : 2025-08-26
레노버, “새로운 서비스·설루션·플랫폼으로 하이브리드 AI 확대”
레노버가 AI 시대를 맞아 기업의 IT 전환 가속화를 위해 ‘레노버 하이브리드 AI 어드밴티지(Lenovo Hybrid AI Advantage)’를 확장했다고 밝혔다. 이번 확장을 통해 레노버는 고성능 서버 기반의 가속 컴퓨팅, 네트워킹, 파트너 통합 기능을 갖춘 AI 인프라를 바탕으로 기업이 AI 팩토리를 구축·확장·운영할 수 있도록 지원하는 프레임워크를 제공한다. 새롭게 검증된 설루션과 서비스, 플랫폼은 기업이 모든 환경에 맞춰 적합한 AI를 보다 빠르게 배포할 수 있도록 지원하고 생산성, 민첩성, 신뢰성을 기반으로 한 비즈니스 가치 실현을 가능하게 한다. 레노버 하이브리드 AI 어드밴티지는 AI 인프라, 데이터, 모델, 서비스, 검증된 활용 사례를 통합해 기업이 조직 전반의 인력, 운영, 데이터에 AI를 적용할 수 있도록 지원한다. 레노버는 자사의 서비스를 기반으로 생성형 AI 도구 도입 프레임워크를 적용할 경우 생산성과 효율이 최대 31% 향상(주당 절감 시간 기준)될 수 있다고 설명했다. 레노버의 AI 도입 및 변화 관리 서비스(AI Adoption and Change Management Services)는 기업이 AI 수용 태세를 점검하고, 인력 역량을 강화하며, 참여도를 높이고, 페르소나 기반의 변화 관리와 모범 사례를 통해 기업 시스템에서 ROI를 극대화하도록 지원한다. 주요 서비스 항목으로는 ▲레노버 AI 인적 준비도 평가 ▲페르소나 기반 교육 및 참여 유도 ▲ 코파일럿 도입 지원 ▲AI 거버넌스 및 조직 문화 수용성 강화 등이다. 레노버 하이브리드 AI 어드밴티지는 기업이 AI 실험 단계를 넘어 조직 전반에 걸쳐 측정 가능한 성과를 달성할 수 있도록 지원한다. AI에 대한 기대와 실제 효과 사이의 격차를 줄이기 위해서는 주요 비즈니스 과제를 해결하고 기업 워크플로에 맞게 확장 가능한 신뢰도 높은 AI 애플리케이션이 필요하다. 레노버는 ISV와의 협력을 통해 검증된 레노버 AI 이노베이터 디자인 기반의 설루션을 제공해 기업이 손쉽게 설루션을 맞춤화하고 성능을 최적화할 수 있도록 지원한다고 밝혔다. 이 설루션들은 하이브리드 AI 플랫폼 환경에 최적화되어 실제 비즈니스 워크플로와 활용 사례를 구현할 수 있도록 설계됐다. 대표 설루션으로는 ▲센티픽(Centific) AI 데이터 파운드리 및 엔비디아 기반의 호스피탈리티 설루션 ▲아바돈(Avathon) 비주얼 AI 및 엔비디아 기반의 산업 현장 안전 및 보호장비 착용 준수 여부 모니터링 설루션 ▲웨이트타임(WaitTime) 및 인텔 기반의 리테일 및 스마트 공간 분석 설루션 ▲트리포크(Trifork) 및 엔비디아 기반의 품질 검사 설루션 등이 있다. 이번 확장은 시스코, IBM, 엔비디아와의 협업을 기반으로 글로벌 기업의 AI 도입을 가속화하는 새로운 통합 설루션을 제공한다. 새로운 플랫폼은 업계 선도 파트너의 가속 컴퓨팅, 네트워킹, 스위칭, 소프트웨어를 통합한 고성능·저전력 AI 인프라를 기반으로 기업이 하이브리드 AI 팩토리를 손쉽게 구축·확장·운영할 수 있도록 지원한다. 레노버는 다양한 산업의 모델 개발, 그래픽 처리, 시뮬레이션 워크로드를 위한 연산 성능을 제공하는 새로운 씽크시스템 SR680a V4 시스템을 선보였다. 이 시스템은 인텔 제온(Xeon) 6 CPU와 엔비디아 블랙웰(BlackWell) GPU를 탑재했으며, 고속 엔비디아 NV링크로 GPU 간 고속 연결을 지원해 탁월한 컴퓨팅 파워와 AI 가속 기능을 제공한다. 또한 8개의 엔비디아 슈퍼NIC과 블루필드-3 DPU를 탑재해 기존 대비 최대 11배 빠른 대규모 언어 모델 추론 성능, 7배 높은 연산 처리 성능, 4배 확장된 메모리를 지원한다. 또한 IBM 왓슨x 기반 하이브리드 AI 플랫폼은 레노버 씽크시스템 SR675 서버, 레드햇 오픈시프트(Red Hat OpenShift), 엔비디아 기술을 기반으로 구축된 고성능 인프라를 통해 생성형 AI 모델의 개발, 배포, 거버넌스를 가속화한다. 시스코 기반의 하이브리드 AI 플랫폼은 최대 8개의 엔비디아 RTX PRO 6000 블랙웰 GPU를 탑재한 레노버 SR675 V3 서버를 기반으로 구축되며, 엔비디아 스펙트럼-X(Spectrum-X)가 적용된 시스코 넥서스(Nexus) 스위치를 통해 1.6배 향상된 AI 네트워크 성능과 효율적인 네트워크 관리를 제공한다. 레노버 인프라스트럭처 설루션 그룹(ISG) 애슐리 고라크푸르왈라(Ashley Gorakhpurwalla) 사장은 “레노버는 통합 설루션 전반에서 획기적인 혁신을 이끌며 업계 변화를 주도하는 한편, 모든 기업이 엔터프라이즈급 AI를 실현할 수 있도록 하이브리드 AI 분야를 선도하고 있다”면서, “레노버는 이번 설루션과 신뢰할 수 있는 파트너십을 기반으로 AI를 현실화하고 있다. 검증된 다양한 사용 사례와 서비스를 통해 측정 가능한 생산성 향상과 만족도 제고, 데이터 기반의 빠른 비즈니스 가치 실현을 가능케 할 것”이라고 밝혔다.
작성일 : 2025-08-26
심데이터, “전 세계 시뮬레이션 및 해석 시장 8.8% 성장”
PLM 전략 경영 컨설팅 및 리서치 기업인 심데이터(CIMdata)는 ‘심데이터 시뮬레이션 및 해석(S&A) 시장 분석 보고서’를 발표한다고 밝혔다. ‘심데이터 2025 PLM 시장 분석 보고서 시리즈’의 일부로 수행된 S&A 시장 분석을 확장한 이 보고서는 전 세계 S&A 시장을 다양한 차원에서 상세히 설명한다. 또한 심데이터의 S&A 시장 세분화에 대한 업데이트, S&A 산업의 동향에 대한 논의, 상위 S&A 설루션 공급업체에 대한 최신 정보를 포함한다. 심데이터 보고서에 따르면, 2024년 전 세계 시뮬레이션 및 해석 시장 매출은 2023년의 100억 달러(약 13조 9000억 원)에서 8.8% 증가한 109억 달러(약 15조 1510억 원) 규모로 나타났다.  심데이터는 PLM 시장 전체가 강력한 성장을 지속할 것으로 보았는데, 이 중 S&A 부문은 2025년에 10.7% 성장하여 매출 규모가 120억 달러(약 16조 6800억 원)를 약간 넘을 것으로 전망했다.     또한, 이번 보고서에서는 2024년 업계를 근본적으로 재편한 세 가지 핵심 동향으로 ▲EDA(전자 설계 자동화)와 S&A의 통합 ▲인공지능(AI)/머신러닝(ML) 통합의 부상 ▲ 디지털 트윈의 성숙 등을 꼽았다. 전자 및 반도체 시스템은 더 이상 특정 산업 영역이나 응용 분야에 국한되지 않고, 모든 신제품 및 프로세스 개발의 중심 부분이 되고 있다. 이러한 핵심적인 산업 수요에 따라, EDA 설루션 공급업체들은 ‘실리콘에서 시스템까지’ 아우르는 소프트웨어 스택 비전을 실현하기 위해 빠르게 움직이고 있다. 물리 기반 시뮬레이션 기술은 이들 제품의 핵심적인 부분으로 자리 잡고 있다. AI와 머신러닝 기능은 오랫동안 시뮬레이션 워크플로에 내장되어 주로 배경적인 역할을 수행해 왔다. 그러나 GPU 컴퓨팅 발전과 생성형 AI가 불러일으킨 큰 관심에 힘입어, 신생 스타트업과 기존 설루션 공급업체 모두 시뮬레이션 워크플로를 재창조하고 있다. 여기에는 과거의 시뮬레이션 및 테스트 데이터를 사용한 모델 개발(핵심 머신러닝), 훈련 시간 및 데이터 요구사항을 줄이기 위한 물리 정보 AI 훈련 방법 사용, 기하학적 딥러닝을 기본 구성 요소로 활용하는 것 등이 포함된다. 많은 기업이 ‘파운데이션 모델’을 개발하려 시도하고 있으며, 이를 통해 완전히 훈련된 모델을 사용한 추론으로 시뮬레이션의 패러다임을 전환하고 있다. 디지털 트윈 기술은 개념적 아이디어에서 여러 산업에 걸친 실질적인 구현 단계로 발전했다. 시뮬레이션 및 해석은 디지털 트윈의 기본 요소로서, 예측 통찰력에 필요한 물리 기반 모델링을 제공한다. 기업은 예측 유지보수 및 가상 시운전과 같은 응용 분야에 디지털 트윈을 활용하여 제품 운영과 설계 간의 폐순환(closed-loop) 시스템을 구축하고 있다.
작성일 : 2025-08-20
유니티 6.2 정식 출시… “합리적이고 효율적인 개발 생태계 확장”
유니티가 유니티 6의 두 번째 업데이트인 ‘유니티 6.2(Unity 6.2)’ 정식 버전을 출시했다. 이번 업데이트는 데이터 중심의 안정성 개선, AI 기반 생산성 극대화, 최신 플랫폼 개발 환경 강화 등 개발자들이 한층 더 합리적이고 효율적으로 창작할 수 있는 생태계 확장에 초점을 뒀다.     먼저, 유니티는 개발자가 유니티 생태계 전반에서의 데이터 수집, 관리, 사용 등을 파악하고 통제할 수 있도록 새로운 ‘개발자 데이터 프레임워크(Developer Data Framework)’를 제공한다. 이 프레임워크는 각 프로젝트 내에서 데이터가 활용되는 방식을 개발자에게 투명하게 보여주고, 세부적으로 직접 제어할 수 있는 기능을 지원한다. 또한 다양한 기기에 걸쳐 프로젝트의 성능과 안정성을 실시간으로 모니터링하는 데 도움을 주는 ‘향상된 진단 기능’을 제공한다. 충돌 및 ANR(Application Not Responding) 등에 대한 문제를 빠르게 진단하고, 심층적인 데이터를 제공함으로써 더 원활한 게임 플레이와 플레이어 유지율 향상에 도움을 준다. 유니티 6.2부터 에디터에 통합된 ‘유니티 AI(Unity AI)’는 번거로운 작업 자동화, 애셋 생성 등 개발 워크플로 간소화 및 가속화를 지원한다. 컨텍스트 기반 ‘어시스턴트(Assistant)’ 기능을 통해 개발자들은 자세한 내용을 설명하지 않고도 프로젝트 애셋을 프롬프트로 드래그하면 게임 오브젝트, 스크립트, 프리팹 등에 대해 신속한 지원을 받을 수 있다. 스크립트나 오류 메시지 등 문제를 더 쉽게 파악하고 해결하는 ‘콘솔 오류 디버그’ 기능도 제공한다. 아울러 오브젝트 생성, 애셋 배치, 신 설정 자동화를 비롯해 스프라이트, 텍스처, 애니메이션, 사운드 등 다양한 플레이스홀더 애셋을 워크플로 내에서 매끄럽게 생성하고 활용할 수 있다. 일정 기준 이상의 광원이나 리지드보디(Rigidbody, 게임 개체의 물리적 속성을 시뮬레이션하는 데 사용되는 구성 요소)가 없는 오브젝트를 손쉽게 검색하고, 이름·레이어·컴포넌트 등을 일괄 수정 및 정리하는 것도 가능하다. 현재 유니티 AI는 베타 버전으로 제공하며, 개발자 커뮤니티 피드백을 바탕으로 더욱 고도화해 나갈 예정이다. 유니티 6.2는 ‘안드로이드 XR 패키지(Android XR package)’를 통해 관련 애플리케이션 제작에 필요한 안정적이고 완성도 높은 기반을 제공한다. 핸드 메시를 시각화해 오클루전에 활용할 수 있으며, URP(Universal Render Pipeline)에서 후처리 효과에 대한 GPU 부하를 줄여 색 보정 및 비네팅과 같은 이미지 효과를 보다 실용적으로 구현할 수 있다. 또한 디스플레이의 주사율을 동적으로 조정하는 기능을 지원해 더욱 매끄러운 성능을 제공한다. 이밖에 ▲맞춤형 에디터 기반 그래프 툴을 구축할 수 있도록 지원하는 API 프레임워크 ‘그래프 툴킷’ ▲자동으로 LOD(Level of Detail)를 생성해 반복 수정 작업을 최소화하는 ‘메시 LOD’ ▲몰입형 XR 및 게임 환경을 위한 사용자 인터페이스(UI)를 직접 렌더링할 수 있는 ‘월드 스페이스 UI’ 등의 기능도 제공한다.
작성일 : 2025-08-20
HPE, 엔비디아와 협력해 에이전틱·피지컬 AI 혁신 가속화
HPE는 기업이 AI를 도입하고 개발 및 운영하는 과정을 폭넓게 지원하는 ‘HPE 기반 엔비디아 AI 컴퓨팅(NVIDIA AI Computing by HPE)’ 포트폴리오의 주요 혁신 사항을 공개했다. HPE는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)와의 통합을 한층 강화하고, 최신 엔비디아 AI 모델 및 엔비디아 블루프린트(NVIDIA Blueprints)를 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)에 탑재함으로써 개발자들이 AI 애플리케이션을 보다 간편하게 구축하고 운영할 수 있도록 지원하게 되었다고 전했다. 또한 HPE는 엔비디아 블랙웰(NVIDIA Blackwell) 기반 가속 컴퓨팅을 탑재한 HPE 프로라이언트 컴퓨트(HPE ProLiant Compute) 서버를 출하할 예정이며, 이를 통해 생성형 AI, 에이전틱 AI 및 피지컬 AI 워크로드를 향상된 성능으로 지원할 수 있을 것으로 보고 있다. 엔비디아 블랙웰 아키텍처를 탑재한 HPE 프로라이언트 컴퓨트 서버는 두 종류의 엔비디아 RTX PRO 서버 구성을 포함한다. HPE 프로라이언트 DL385 Gen11 서버는 신규 2U RTX PRO 서버 폼팩터의 공랭식 서버로, 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 최대 2개까지 지원한다. 이 제품은 기업의 증가하는 AI 수요를 충족해야 하는 데이터센터 환경에 최적화된 설계를 지향한다. HPE 프로라이언트 컴퓨트 DL380a Gen12 서버는 4U 폼팩터 기반으로, 엔비디아 RTX PRO 6000 GPU를 최대 8개까지 지원하며 2025년 9월 출시될 예정이다.   특히 HPE 프로라이언트 컴퓨트 Gen12 서버는 HPE iLO(Integrated Lights Out) 7의 실리콘 RoT(Root of Trust) 및 시큐어 인클레이브(Secure Enclave) 기반으로 한 다층 보안 기능을 갖추고 있으며, 위조 및 변조 방지 보호와 양자 내성 펌웨어 서명(quantum-resistant firmware signing) 기능을 통해 한층 강화된 보안 환경을 제공한다.   ▲ HPE 프로라이언트 DL380a Gen12 서버   또한, HPE 컴퓨트 옵스 매니지먼트(HPE Compute Ops Management)으로 지원되는 중앙 집중형 클라우드 네이티브 방식의 라이프사이클 자동화 기능은 서버 관리에 소요되는 IT 업무 시간을 최대 75%까지 줄이고, 서버당 연간 평균 4.8시간의 다운타임 감소 효과를 제공한다. 대상 워크로드에는 생성형 및 에이전틱 AI을 비롯해 로보틱스 및 산업용 사례 등 피지컬 AI, 품질 관리(QC) 모니터링 및 자율주행과 같은 비주얼 컴퓨팅, 시뮬레이션, 3D 모델링, 디지털 트윈, 그리고 각종 엔터프라이즈 애플리케이션이 포함된다. 한편, HPE는 올해 말 출시 예정인 차세대 ‘HPE 프라이빗 클라우드 AI’를 발표했다. 이 설루션은 엔비디아 RTX PRO 6000 GPU를 탑재한 HPE 프로라이언트 컴퓨트 Gen12 서버를 지원하며, GPU 세대 간의 원활한 확장성, 폐쇠망(air-gapped) 관리 및 엔터프라이즈 멀티 테넌시(multi-tenancy) 기능 등을 제공할 예정이다. HPE와 엔비디아가 공동 개발한 엔터프라이즈 턴키 AI 팩토리 설루션인 HPE 프라이빗 클라우드 AI는 에이전틱 AI를 위한 최신 버전의 엔비디아 네모트론(NVIDIA Llama Nemotron) 모델, 피지컬 AI 및 로보틱스를 위한 코스모스 리즌(Cosmos Reason) VLM(vision language model), 엔비디아 블루프린트 VSS 2.4 (NVIDIA Blueprint for Video Search and Summarization)를 지원하여 대규모 영상 데이터에서 인사이트를 추출하는 영상 분석 AI 에이전트를 구축할 수 있다. 또한, HPE 프라이빗 클라우드 AI는 최신 AI 모델을 위한 엔비디아 NIM 마이크로서비스, 엔비디아 블루프린트를 빠르게 배포할 수 있도록 맞춤형 설계되어, 고객들은 HPE AI 에센셜(HPE AI Essentials)를 통해 이를 간편하게 활용할 수 있다. 이와 함께 HPE 프라이빗 클라우드 AI는 엔비디아 AI 가속화 컴퓨팅, 네트워킹, 소프트웨어와의 깊은 통합을 바탕으로, 기업들이 데이터 통제를 유지하면서도 AI의 가치를 보다 신속하게 활용할 수 있도록 지원한다. 이를 통해 고객은 급증하는 AI 추론 수요를 효과적으로 관리하고 AI 생산 속도를 가속화할 수 있다. HPE 셰리 윌리엄스(Cheri Williams) 프라이빗 클라우드 및 플렉스 설루션 부문 수석 부사장 겸 총괄은 “HPE는 AI 시대를 맞아 기업들이 성공을 이룰 수 있도록 필요한 툴과 기술을 제공하는 데 전념하고 있다”면서, “엔비디아와의 협업을 통해 기술 혁신의 경계를 지속적으로 넓혀가며, 생성형 AI, 에이전틱 AI, 피지컬AI의 가치 실현을 포함해 엔터프라이즈 환경의 복잡하고 다양한 요구를 충족하는 설루션을 제공하고 있다. HPE 프로라이언트 서버와 HPE 프라이빗 클라우드 AI의 확장된 역량을 결합함으로써, 기업들이 AI 혁신의 다음 단계를 더욱 신속하고 신뢰 있게 수용할 수 있도록 지원하고 있다”고 밝혔다. 엔비디아의 저스틴 보이타노(Justin Boitano) 엔터프라이즈 AI 부사장은 “기업은 최신 AI 요구사항에 맞추기 위해 유연하고 효율적인 인프라가 필요하다”면서, “엔비디아 RTX PRO 6000 블랙웰 GPU를 탑재한 HPE 2U 프로라이언트 서버는 단일 통합형 기업용 플랫폼에서 거의 모든 워크로드를 가속화할 수 있도록 해줄 것”이라고 밝혔다.
작성일 : 2025-08-18