• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " CAE 컨퍼런스 2025"에 대한 통합 검색 내용이 5,978개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
CNG TV, 시뮬레이션의 미래, AI-디지털 트윈이 주도하는 제조 혁신 공개 예정
CNG TV 발표자 -  박종원 단장(한국기계연구원), 김지원 이사(태성에스엔이)   제조 엔지니어링의 핵심 화두인 CAE와 AI 융합, 디지털 트윈 기술의 미래를 조명하는 특별 방송이 마련된다. 캐드앤그래픽스는 2025년 10월 20일 오후 4시부터 5시까지 CNG TV 인터넷 방송을 통해 ‘시뮬레이션의 미래: AI와 디지털 트윈이 주도하는 제조 혁신’ 프리뷰 방송을 진행한다고 밝혔다. 이 방송은 11월 7일 수원컨벤션센터에서 개최되는 ‘CAE 컨퍼런스 2025’의 사전 공개 성격으로 기획됐다. 왜냐하면, 제조 산업의 디지털 전환(DX) 가속화 속에서 엔지니어들에게 최신 시뮬레이션 기술 트렌드와 실질적인 혁신 방안을 제시하고, 본 컨퍼런스에 대한 기대감을 높이기 위함이다. 이번 방송은 조형식 대표(디지털지식연구소)의 사회로, 박종원 단장(한국기계연구원)과 김지원 이사(태성에스엔이)가 발표자로 나설 예정이다. 이들 전문가는 어떻게 CAE의 방향성, 향후 전망, 트렌드에 대해 심도 있게 다룰 것인지를 소개한다. 특히 AI가 주도하는 CAE 환경 변화, 가상제품 개발, EDA 솔루션과의 통합 등 최신 기술 동향을 집중 조명한다. 또한, 한국기계연구원의 오픈소스 CAE 툴인 KIMM Cyber Lab의 개발 현황 및 발전 방향을 상세히 공개해 엔지니어링 생태계 혁신을 위한 실질적 정보를 제공할 계획이다. 본 방송은 어디서든 온라인을 통해 시청 가능하며, 참여를 원하면  등록링크를 통해 신청할 수 있다.    
작성일 : 2025-10-08
빌딩스마트협회, BIM 어워즈 2025 수상작 발표
빌딩스마트협회는 연례 BIM(건설 정보 모델링) 공모전인 ‘BIM 어워즈(BIM AWARDS) 2025’의 수상작을 선정했다고 전했다. 올해 BIM 어워즈 2025은 그라피소프트, 아키소프트, 트림블의 후원으로 빌딩스마트협회와 한국건설기술연구원이 공동주최하였다. 지난 9월 29일 심사위원의 심사 및 심층 논의를 진행한 결과 ▲비전상 1점 ▲대상 일반부문 3점 및 학생부문 2점 ▲최우수상 일반부문 8점 및 학생부문 3점 ▲우수상 일반부문 4점 및 학생부문 4점 ▲특별상(아키캐드상, 트림블상) 일반부문 2점 등 총 25점이 선정됐다.    BIM 어워즈 2025에서는 ▲비전부문 비전상 한국가스기술공사 ▲일반부문 Construction 분야 대상(한국건설기술연구원장상) ‘설계부터 준공 개막가지, One-Stop 통합관리(계룡건설산업, 무영씨엠건축사사무소, 아키탑케이엘종합건축사사무소)’ ▲일반부문 Desgin 분야 대상(빌딩스마트협회장상) ‘아주대학교 행복기숙사(정림건축종합건축사사무소)’ ▲일반부문 Small and Medium sized Project 분야 대상(빌딩스마트협회장상) ‘SMALL PROJECT, BIG BIM 설계에서 준공까지 가상과 현실을 잇다.(유선엔지니어링건축사사무소)’를 선정했다. 또한 ▲학생부문 Design 분야 대상(빌딩스마트협회장상)에 ‘링크 웨이브(원광대학교 박요한, 하승혁, 김태건)’ ▲학생부문 Design 분야 대상(한국건설기술연구원장상)에는 ‘울산 신재생 에너지 센터(조선대학교 임동현 김서연)’가 선정됐다.   ▲ 일반부문 Construction 분야 대상 수상작   빌딩스마트협회는 “2009년부터 건설 분야의 BIM활성화에 기여한 단체 및 개인을 발굴하고 시상하여 한국 건설산업의 선진화 및 경쟁력 향상, BIM기술의 올바른 활용 및 확산을 위하여 노력하고 있다”고 전했다.  BIM 어워즈 2025의 시상식은 10월 28일 건설회관 2층 대회의실에서 ‘빌드스마트 콘퍼런스(buildSMART CONFERENCE) 2025’ 행사와 함께 진행한다. 수상작품은 시상식 당일 행사장에 전시되며, 추후 빌딩스마트협회 홈페이지에도 게시될 예정이다.
작성일 : 2025-10-02
무엇을 볼 것인가?
시점 – 사물이나 현상을 바라보는 눈 (10)   지난 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일을 다양한 사례를 들어가며 조금 특별한 시각으로 바라보았다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등에 관해서 소개했다. 이번 호부터는 3회에 걸쳐서 ‘무엇을 볼 것인가?’, ‘무엇을 믿을 것인가?’, ‘가설, 모델, 이론의 설득력의 시대성’의 이야기를 다룰 예정이다. 이번 호에서는 그 첫 번째 이야기로 ‘무엇을 볼 것인가?’에 관해서 생각해 보고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 일제 강점기에 촬영된 청계천의 수위를 관찰하던 수표교의 모습   하천의 수위 측정 수표교는 하천의 수위를 측정할 수 있도록 눈금(수표)이 새겨져 있는 청계천에 있던 다리이다.(그림 1) 세종 2년(1420년)에 만들어질 당시는 그곳에 마전(馬廛)이 있어 마전교라 불렸다. 세종 23년(1441년) 다리 밑을 지나는 개천(청계천)에 흐르는 수위를 측정하기 위해서 수표를 세웠다. 이후부터 수표교로 부르게 되었으며, 주변에 있는 마을은 수표동이라고 부르게 되었다. 수표는 하천의 수위를 과학적, 계량적으로 측정할 수 있는 기구로, 측우기와 함께 세종 때 만들어진 대표적인 과학 기기의 하나로 꼽힌다. 수표교는 현재의 서울특별시 종로구 수표동에 있었으나, 1958년 청계천 복개 공사로 장충단공원에 옮겨졌다. 2005년 청계천 복원 당시 원래 자리에 다시 놓으려고 했으나, 복원된 청계천의 폭과 수표교의 길이가 맞지 않아 옮겨지지 못했다.(그림 2) 대신 그 자리에는 임시 다리가 설치되어 있다. 원래의 수표교는 동대문구 청량리동에 있는 세종대왕기념관으로 이전되었다. 수표교에서 오른쪽으로 다섯 번째 다리의 이름이 오늘날의 마전교로 되어 있다. 초기의 수표는 청계천의 마전교 서쪽과 한강변에 세워졌다. 물속에 기둥을 꽂을 수 있도록 구멍을 판 받침돌을 놓고 그 구멍에 나무 기둥을 세웠다. 나무 기둥에는 눈금을 새겨 수위를 알아볼 수 있도록 하였으나, 나무로 만든 수표는 쉽게 망가져 15세기 성종 때 돌기둥으로 교체하였다. 아마도 물이 차면 부력으로 떠내려가기도 쉽고 물에 젖었다가 마르기를 반복하는 부분은 쉽게 썩지 않았을까 싶다. 돌기둥으로 만들어진 수표 양면에는 1척에서 10척까지 눈금을 새겼으며, 3, 6, 9척의 위치에는 ○표를 새겨서 각각 갈수(渴水), 평수(平水), 대수(大水)를 판단하는 기준으로 삼았다. 6척 안팎의 물이 흐르면 보통의 수위이고, 9척 이상이 되면 위험 수위로 개천의 범람 징후를 미리 헤아릴 수 있도록 한 것이다. 영조 36년(1760년)에 다리를 수리하면서 돌기둥에 ‘庚(경)·辰(진)·地(지)·平(평)’이라는 글씨를 새겨 물 높이를 4단계로 측정하였다. 순조 때 개천을 다시 준설할 때 새로운 수표를 세웠으며, 지금 남아 있는 수표는 이때 만들어진 것이다.   그림 2. 복원된 청계천의 22개 다리 중에서 옛 모습을 찾지 못한 수표교(빨간 별표로 표시된 다리)   강우량을 측정하는 측우기 현존하는 세계 최고의 강우량 측정기구도 우리나라가 가지고 있다. 국보로 지정된 ‘공주 충청감영 측우기’이다.(그림 3) 헌종 3년(1837년)에 제작된 공주 충청감영(금영) 측우기는 농업을 위한 조상의 과학적 발명과 구체적 실행을 증명해주는 유물로 매우 가치가 크다. 금영 측우기는 조선 시대 충남지역 감독관청이었던 충청감영에 설치되었던 것으로, 1915년경 일본인 기상학자 와다 유지가 국외로 반출한 것을 1971년 일본으로부터 환수한 것이다. 현재 서울 기상청 박물관에 보관되어 있다. 조선 시대에는 중앙정부에서 규격이 같은 측우기를 제작해 전국의 감영에 보냈기 때문에, 여러 점이 만들어졌을 것으로 추정된다. 다만 지금까지 남아 있는 것은 금영 측우기가 유일하다. 빗물을 그릇에 받아 강우량을 재는 측우기는 조선 세종 때에 처음 만들어진 후 여러 차례 다시 만들어졌다는 기록은 남아 있으나, 현재 실물로 남아 있는 것은 헌종 3년(1837년)에 만들어진 이 측우기뿐이다. ‘조선왕조실록’ 세종 23년(1441년) 8월 18일의 기록에는 서운관(기상관측 기관)에 대(臺)를 설치해 빗물을 받아 강우량을 측정했으며, 이듬해인 1442년 5월 8일에는 측정방식이 미진해 다시 원칙을 세웠다고 한다. 이때 세운 원칙대로 만들어진 것이 금영 측우기이다. 강우량 측정의 표준이 필요함을 절감하고 표준을 정해서 시행한 셈이다. 오늘날의 표준화 작업과 품질관리가 실행된 구체적인 사례이다. 도량형 표준이 측우기에도 적용된 셈이다. 금영 측우기의 제작 시기와 크기 등은 바깥 면 가운데쯤에 새겨진 명문(銘文)을 통해 알 수 있다. 명문에 따르면 이 측우기는 헌종 3년(1837년)에 만들었으며 높이는 1자(尺) 5치(寸), 지름 7치, 무게 11근으로 제작되었다. 상·중·하단의 3개의 금속 부품으로 구성되었으며, 상부가 약간 넓고 하부가 약간 좁게 만들어져 서로 끼워서 조립하는 형태의 구조이다. 금속 부품을 끼우는 접합부는 대나무 마디처럼 두껍게 만들어 부품의 모양이 변형되지 않도록 고안된 형태이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
[무료 다운로드] 통합 3D CAD/CAM 설루션의 전략적 가치
제조업의 미래를 위한 ZW3D 2026   ZW3D 2026은 기계/제조 분야에 특화된 3D CAD/CAE/CAM 소프트웨어이다. 제조업의 미래를 위한 올인원 CAD/CAM 통합 설루션을 지향하는 ZW3D 2026은 2D와 3D 데이터 모두를 활용하여 가공 데이터를 생성하고, 프로세스 최적화를 통해 디지털 전환과 스마트한 혁신을 가속화할 수 있다.   ■ 자료 제공 : 지더블유캐드코리아, www.zwsoft.co.kr   올인원 CAD/CAM 프로세스 최적화의 필요성 제조 산업 분야에서는 설계, 엔지니어링, 제작 전 과정을 얼마나 효율적으로 연계하는지가 기업의 경쟁력을 좌우한다. 하지만 여전히 많은 현장은 2D 도면 기반 작업에 의존하고 있으며, 복잡한 형상과 보다 정밀한 방식의 수요가 증가하면서 2D 작업 방식의 한계가 뚜렷하게 나타나고 있다. 분리된 CAD/CAM 시스템은 데이터 변환 과정에서 발생할 수 있는 데이터 손실이나 이를 복원하지 못해 생산성 저하와 품질 리크스로 직결되고, 곡면이나 자유 형상이 많은 부품은 2D 도면만으로 해석하는 데에 많은 시간과 노력이 필요하다. 또한 작업자 숙련도에 따라 가공 결과가 매우 달라지기도 한다. 이러한 한계를 극복하기 위해서는 설계와 가공이 단절 없이 연결되는 통합 설루션이 필수이다. ZW3D 2026은 통합된 CAD/CAM 소프트웨어 환경을 제공함으로써, 앞에서 언급한 프로세스의 문제를 획기적으로 개선할 수 있다.   ZW3D 2026의 산업별 특화 기능 2.5D 부품 가공 설루션 ZW3D CAM의 서드파티 모듈인 캠포커스(CAM Focus)는 2.5D 밀링 가공에 특화된 옵션으로, 기본 프로세스만으로도 작업이 가능하지만 캠포커스를 활용하면 더욱 효율적이고 체계적인 가공이 가능하다. 소재 정의, 좌표계 설정, 공구통 관리 등을 지원하는 설정 패널과 툴패스를 생성하는 2X 가공 패널, 그리고 도면 수정이나 정보 조회에 활용할 수 있는 곡선 편집 및 유틸리티 기능까지 하나의 환경에서 제공되어 작업 흐름을 단순화한다. 특히 2D 도면과 3D 모델을 구분하지 않고 동일한 방식으로 작업할 수 있어, 사용자는 보다 직관적이고 일관된 환경에서 가공을 수행할 수 있다.     설정 프로세스의 단축 ZW3D는 2D 도면을 불러오면 3D CAD 환경에서 작업이 시작된다. 도면의 불필요한 요소를 정리한 후, 간단한 버튼 클릭만으로 CAM 모드로 전환해 가공 작업을 진행한다. 가공 소재(스톡)와 좌표계(G54, G55 등) 설정도 직관적으로 이루어진다. 스톡(소재) 설정은 3D 모델이 있는 경우 자동으로 박스를 생성해주며, 도면의 경우 Z값을 입력하면 손쉽게 생성할 수 있도록 구성되어 있다. 좌표계 설정 또한 모델이나 스톡 기준으로 간편하게 원하는 지점을 선택하여 생성할 수 있다.     공구 DB에서는 공구통을 생성하고 자주 사용하는 공구를 등록해두고 툴패스 생성 시 사용할 수 있다. 공구에는 기본 정보뿐만 아니라 절삭 조건 피드와 스핀들 값도 입력해두고 툴패스 생성시 해당 값을 불러오도록 설정할 수 있다.     최적화된 부품 가공 프로세스 ZW3D는 다양한 가공 환경에 최적화된 툴패스를 제공한다. 윤곽 가공이나 포켓 가공 시, 사용자는 도면 또는 모델의 곡선을 선택해 가공 영역을 지정하고, 공구 선택과 가공 조건 입력까지 하나의 창에서 모두 설정할 수 있다. 포켓 및 윤곽 가공은 유형 선택 후 체인으로 영역을 지정하며, 공구와 조건을 설정하는 동시에 사전 드릴점을 지정해 해당 지점으로 안전하게 진입하도록 할 수도 있다. 또한, 동일한 창에서 추가 가공 기능을 활용해 기존 공구가 닿지 못한 영역만 자동으로 작은 공구로 잔삭 처리할 수 있다. 정삭 역시 공구와 조건만 설정하면 손쉽게 툴패스를 생성할 수 있다. 이처럼 캠포커스 인터페이스를 통해 모든 설정을 직관적으로 제어할 수 있으며, 불필요한 반복 작업을 줄여 CAM 작업 시간을 최소화하고 생산성을 높일 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
크레오 시뮬레이션 라이브를 활용한 제품 설계 최적화
제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (3)   크레오 시뮬레이션 라이브(Creo Simulation Live)는 설계자 중심의 실시간 통합 해석 설루션으로, 빠르고 쉽게 구조·열·모달·유체 해석을 수행할 수 있는 설루션이다. 크레오 12.0 크레오 시뮬레이션 라이브에서는 더욱 향상된 기능으로 제품 개발 효율과 품질을 동시에 높일 수 있다. 이번 호에서는 크레오 12.0에서 추가된 패스너(fastener) 추가 및 예비 하중(preload) 조건 적용, 자동 접촉(contact) 감지 및 생성을 기반으로 하여 구조 해석을 진행해보자.   ■ 김주현 디지테크 기술지원팀의 차장으로 크레오 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   이번 호에서는 다음과 같은 어셈블리를 해석해보자. 해석하고자 하는 모든 부품에 필요한 재료를 지정한다.     해석을 하기 위해 메뉴에서 ‘라이브 시뮬레이션’을 선택한다.     ‘시뮬레이션 추가’에서 원하는 해석 유형을 선택한다. 이번 호에서는 구조해석을 하기 위해 ‘구조 시뮬레이션 검토’를 선택한다.     어셈블리를 모두 해석하지 않고 원하는 부품만 해석하기 위해 ‘범위’를 통해 부품을 지정한다. ‘B02482.prt’, ‘B02400.prt’ 이 두 부품을 제외하고 나머지 부품을 모두 선택한다.     다음으로 제약조건을 설정해 보자. ‘고정’ 아이콘을 선택한다.     고정하고자 하는 서피스 면을 선택한 후 확인한다. 예제에서는 그림과 같이 네 개의 구멍을 선택한다.     다음으로는 베어링 하중을 부여한다. 크레오 12.0 라이브 시뮬레이션에서는 베어링 하중을 부여할 수 있다. 베어링 하중을 부여하는 경우 힘이 핀/구멍 연결로 적용되며, 하중 분포는 지정된 방향으로 원통의 절반에 걸쳐 자동으로 적용된다. 베어링 하중은 완전 원통형에서만 지원되고, 강도 및 방향의 기준으로 정의되거나 방향 컴포넌트의 기준으로만 정의될 수 있다. 베어링 하중을 부여할 수 있게 되면서 핀/구멍 연결 하중을 좀 더 정확하게 시뮬레이션할 수 있게 되었다. 메뉴에서 ‘베어링 하중’을 선택한다.     그림과 같이 ‘B02521.prt’의 안쪽 면을 참조로 선택한 후 방향에 값을 입력한다. 이번 호에서는 X 방향으로 ‘-500N’, Z 방향으로 ‘-200N’을 입력한 후 확인한다.     다음으로 두 번째 베어링 하중을 입력한다. 베어링 하중 아이콘을 선택한 후 이번에는 ‘GB6LASTSN001228.prt’의 서피스 면을 참조면으로 선택한다. 하중의 값은 X 방향으로 ‘-200N’, Z 방향으로 ‘50N’의 힘을 입력한 후 확인한다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
데이터 분석 로코드 설루션을 배워보자 Ⅱ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (3)   지난 호에서는 로코드 분석 솔루션인 KNIME(나임)에 대해 알아보고 전력 판매량(Electric Power Sales) 예측에 대한 따라하기를 진행해 보았다. KNIME을 통해 ‘데이터 불러오기’와 ‘데이터 병합’에 대한 분석을 진행하였다. 이를 통해 KNIME이 어떻게 동작하는지 그리고 어떻게 데이터 분석을 시작할 수 있는지 대략적으로는 파악할 수 있었을 것으로 생각하고 있다. 이번 호에서는 지난 호에 이어서 나머지 전력 판매량 예측 따라하기 부분을 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   규칙 엔진과 데이터 전처리   그림 1   우선 진행해야 할 부분은 Rule Engine(규칙 엔진)이다. Rule Engine이 무엇이고 어떤 데이터 노드인지 알아보자.   그림 2   KNIME 왼쪽 상단의 info 탭을 클릭해서 Rule Engine에 대한 설명을 찾아보도록 하자. 대략의 내용을 읽어보면 Rule Engine은 사용자가 정의할 수 있는 규칙(Rule) 목록을 설정하는 기능인데, 해당 규칙에 매칭이 이루어지면 칼럼(Column)이 새롭게 추가된다. 여기서 규칙은 해당 라인(line)별로 정의되어야 하며, 해당 칼럼은 $name$로 표현되어야 한다.   그림 3   Rule Engine을 통해 시간대별 발전량에서 발전량이 있는 경우를 1, 없는 경우를 0으로 분류하고 ‘is_y_positive’라는 칼럼을 생성하였다. Rule은 $9H$ > 0 => 1로 설정하면 되고, Append column = is_y_positive로 입력한다.   그림 4   노드를 실행(Excute)해 보면 ‘is_y_positive’라는 칼럼이 추가된 것을 알 수 있다.   그림 5   이제 is_y_positive 컬럼이 추가되었으니, 우선 발전량이 있는 경우와 없는 경우로 나누어 각각 얼마나 되는지 카운트해보자.(Value counter 노드)   그림 6   노드를 실행(Excute)해보면 <그림 7>과 같이 발전량이 없는 경우가 12건이 있고, 발전량이 있는 경우는 1448건이라는 것을 알 수 있다.   그림 7     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
프로세스 자동화 Ⅲ - 유로 형상 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (8)   이번 호에서는 파이프 유로 형상 설계 최적화를 위해 NX CAD와 심센터 스타-CCM+(Simcenter STAR-CCM+)를 사용하여 CAD 치수 변수를 수정하며 유동해석의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다. ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   이번에 사용할 심센터 스타-CCM+는 2006년에 첫 버전이 공개되었으며, 통합된 환경과 클라이언트-서버 접근 방식은 당시의 CFD 해석 방법에 새로운 패러다임을 제시했다. 첫 출시 이후 주요 기능이 빠르게 확장되었는데, 대표적으로 코드의 기반이 되는 ‘메시 파이프라인(mesh pipeline)’과, 산업용 CFD 최초로 다면체(polyhedral) 메시 기술을 도입한 점이 큰 변화였다. 2010년에는 컴퓨팅 하드웨어의 가격이 저렴해지는 반면, 라이선스 비용이 하드웨어 활용의 제약이 된다는 시장의 목소리를 반영해 ‘파워 세션(Power Session) 라이선스’를 도입하였고, 이를 통해 하나의 고정 비용으로 무제한 코어에서 대규모 병렬 해석을 수행할 수 있게 되어, 소프트웨어 사용 비용과 하드웨어 활용 간의 한계를 완전히 해소하는 사용 환경을 마련하였다. 2012년에는 업계 최초로 ‘오버셋 메시(overset meshes)’ 기능을 도입해 실제 현장에서 움직이는 격자 기반 해석을 더욱 직관적으로 구현할 수 있게 되었고, 2015년에는 산업용 CFD를 넘어 유체-구조 연성 등 진정한 다중물리 해석을 지원하기 위해 유한요소(finite elements) 해석 솔버를 통합했으며 전자기 해석까지 기능을 확장했다. 오늘날 스타-CCM+는 자동화 기능, 설계 탐색 도구, 포괄적인 다중물리 해석, 그리고 산업을 선도하는 데이터 분석 및 협업형 가상현실 환경까지 지원하며 그 성장을 지속하고 있다. 그 외에도 다양한 혁신적 진보를 이루었지만, 이 내용만으로도 지난 짧은 기간 내 스타-CCM+가 얼마나 빠르게 발전했는지 잘 보여준다고 할 수 있다.   그림 1   프로세스 자동화 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시 설계 및 분석에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 다이렉트 인터페이스 포털(Direct Interface Portal)이 필요하다. HEEDS(히즈)에서는 심센터 스타-CCM+를 위한 포털(Portal)을 제공하므로 빠른 설정이 가능하다. 그림 2는 HEEDS에서 제공하는 다양한 설루션의 다이렉트 인터페이스 포털 목록이다.   그림 2   <그림 3>은 파이프 유로 설계 최적화 자동화 워크플로의 주요 단계와 각 툴의 역할을 요약한다.   그림 3   첫째, NX_CAD 포털에서는 HEEDS가 NX CAD의 파트 파일(*.prt)을 NX Expressions를 활용하여 변수(치수 등)를 자동으로 수정한다. 수정된 파이프 형상이 파라솔리드(parasolid) 형식(*.x_t)으로 내보내지는데, 이 파일에는 해석에 필요한 Named Face(경계면) 정보를 포함한다. 둘째, STAR-CCM+ 포털에서는 스타-CCM+ 해석 파일(*. sim)이 전달받은 신규 형상(*.x_t)을 읽고, 메시 업데이트와 경계조건 수정이 자동으로 적용된다. 이후 유동 해석이 수행된 뒤, 결과값은 HEEDS가 자동 추출한다. <그림 3>은 NX CAD와 스타-CCM+ 간의 입력/출력 파일 흐름, 형상 전송, 변수-응답 데이터 매핑 관계를 시각적으로 정리한다. 이처럼 각 단계를 자동화로 설정하면 설계 변수 변경부터 해석 실행 및 결과 평가까지 전체 최적화 과정을 빠르고 효율적으로 반복할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
터보기기 해석을 위한 플루언트 터보 워크플로
앤시스 워크벤치를 활용한 해석 성공 사례   터보기기 해석에 많이 쓰이는 앤시스 설루션으로 앤시스 CFX(Ansys CFX)가 있다. 앤시스 플루언트(Ansys Fluent)를 이용하여 터보기기를 해석할 수 없는 것은 아니었지만, 굳이 애써서 할 필요성은 없었다. 하지만 플루언트의 GPU 솔버가 적극적으로 도입된 이 시점에서, GPU를 이용하여 터보기기를 해석할 수 있다면 해석 속도에 있어서 상당한 이점을 가져올 수 있다. 플루언트의 터보 워크플로(Turbo Workflow)는 사용자 편의성을 갖추어 손쉽게 터보기기 해석을 할 수 있도록 지원하고 있다. 플루언트의 터보 워크플로를 이용하여 터보기기를 해석하는 방법을 예제를 통하여 알아보자.   ■ 한성훈 태성에스엔이 FBU-F3팀에서 수석매니저로 근무하고 있으며, 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   해석 모델 이번 호에서 다루는 해석 모델은 TFD Hannover 축류압축기이며, <그림 1>과 같이 앞쪽에서부터 총 3 Rows(1.5 단)를 해석 대상으로 한다. 각 단은 IGV – Rotor – Stator로 구성되어 있다. 격자 파일은 플루언트 튜토리얼 turbo_workflow.zip을 다운로드하여 압축을 해제하면 얻을 수 있으며, 앤시스 터보그리드(Ansys TurboGrid)로 생성된 세 개의 파일(IGV.gtm, R1.gtm, S1.gtm)로 구성된다. IGV는 26개, Rotor는 23개, Stator는 30개로 이루어져 있으며, 해석에서는 주기 경계조건을 적용하여 각각 1개의 섹터만을 모델링한다.   그림 1. Schematic Rows   터보 워크플로 시작하기 터보 워크플로는 다음의 경로에서 터보 워크플로를 활성화하여야 시작할 수 있다. Domain → Turbomachinery → Turbo Workflow → Enable Workflow   그림 2. 터보 워크플로 활성화   활성화가 되면 <그림 3>과 같이 Workflow 작업 메뉴들이 생성된다.   그림 3. Turbo Workflow Task   Turbo와 관련된 환경설정 Cell과 Face zone 및 Turbo Topology에 적절한 영역을 할당하기 위해 연관성 설정을 수행한다. 이를 통해 플루언트가 특정 문자열 구성을 일정한 순서로 인식하도록 지시하여, 영역 매핑을 보다 쉽게 수행할 수 있다. File → Preference → Turbo Workflow에서 <그림 4>와 같이 세팅한다.   그림 4. Preference turbo workflow   Describe Component Component Type : Axial Compressor Component Name : hannover Number of Rows : 3 Row1 : name – igv, Type – stationary, #sectors – 26, End Wall Gap – no Row2 : name – r1, Type – rotating, #sectors – 23, End Wall Gap – yes Row3 : name – s1, Type – stationary, #sectors – 30, End Wall Gap – no   그림 5. Describe component     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02