• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 2024년 연구 성과와 비전"에 대한 통합 검색 내용이 603개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
오라클-AMD, 차세대 AI 확장성 지원 위한 파트너십 확대
오라클과 AMD는 고객이 AI 역량과 이니셔티브를 대규모로 확장할 수 있도록 지원하기 위한 양사의 오랜 다세대 협력 관계를 확대한다고 발표했다. 수년간의 공동 기술 혁신을 바탕으로, 오라클 클라우드 인프라스트럭처(OCI)는 AMD 인스팅트(AMD Instinct) MI450 시리즈 GPU 기반의 최초 공개형 AI 슈퍼클러스터의 출시 파트너가 될 예정이다. 초기 배포는 2026년 3분기부터 5만 개의 GPU로 시작되며, 2027년 이후까지 더욱 규모가 확대될 계획이다. 이번 발표는 2024년 AMD 인스팅트 MI300X 기반 셰이프(shape) 출시를 시작으로 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트(OCI Compute)의 정식 출시까지 이어지는 오라클과 AMD의 전략적 협업의 연장선상에 있다.  양사는 최종 고객에게 OCI 상의 AMD 인스팅트 GPU 플랫폼을 제공하기 위해 꾸준히 협업해 왔다. 이 플랫폼은 제타스케일 OCI 슈퍼클러스터(zettascale OCI Supercluster)에서 제공될 예정이다. 대규모 AI 컴퓨팅 수요가 급격히 증가함에 따라, 차세대 AI 모델은 기존 AI 클러스터의 한계를 뛰어넘고 있다. 이러한 워크로드의 훈련 및 운영을 위해서는 극한의 확장성과 효율성을 갖춘 유연하고 개방적인 컴퓨팅 설루션이 필요하다. OCI가 새롭게 선보일 AI 슈퍼클러스터는 AMD ‘헬리오스(Helios)’ 랙 설계를 기반으로 하며, 여기에는 ▲AMD 인스팅트 MI450 시리즈 GPU ▲차세대 AMD 에픽 CPU(코드명 베니스) ▲차세대 AMD 펜산도(Pensando) 고급 네트워킹 기능(코드명 불카노)가 포함된다. 수직적으로 최적화된 이 랙 스케일 아키텍처는 대규모 AI 모델의 훈련 및 추론을 위한 최대 성능, 탁월한 확장성, 우수한 에너지 효율성을 제공하도록 설계됐다. 마헤쉬 티아가라얀 OCI 총괄 부사장은 “오라클의 고객들은 전 세계에서 가장 혁신적인 AI 애플리케이션을 구축하고 있으며, 이를 위해서는 강력하고 확장 가능한 고성능의 인프라가 필수적이다. 최신 AMD 프로세서 기술, OCI의 안전하고 유연한 플랫폼, 오라클 액셀러론(Oracle Acceleron) 기반 고급 네트워킹의 결합으로 고객은 확신을 갖고 혁신 영역을 넓혀갈 수 있다. 에픽부터 AMD 인스팅트 가속기까지, 10년 이상 이어진 AMD와의 협력을 바탕으로 오라클은 탁월한 가격 대비 성능, 개방적이고 안전하며 확장가능한 클라우드 기반을 지속적으로 제공하여 차세대 AI 시대의 요구에 부응하고 있다”고 말했다. AMD의 포레스트 노로드(Forrest Norrod) 데이터센터 설루션 비즈니스 그룹 총괄 부사장 겸 총괄 매니저는 “AMD와 오라클은 계속해서 클라우드 분야의 AI 혁신에 앞장서고 있다. AMD 인스팅트 GPU, 에픽 CPU, 그리고 첨단 AMD 펜산도 네트워킹 기술을 통해 오라클 고객들은 차세대 AI 훈련, 미세 조정 및 배포를 위한 강력한 역량을 확보할 수 있다. AMD와 오라클은 대규모 AI 데이터센터 환경에 최적화된 개방적이고 안전한 시스템으로 AI 발전을 가속화하고 있다”고 말했다. AMD 인스팅트 MI450 시리즈 GPU 기반 셰이프는 고성능의 유연한 클라우드 배포 옵션과 광범위한 오픈소스 지원을 제공하도록 설계되었다. 이는 최신 언어 모델, 생성형 AI 및 고성능 컴퓨팅 워크로드를 실행하는 고객에게 맞춤형 기반을 제공한다. OCI상의 AMD 인스팅트 MI450 시리즈 GPU는 AI 훈련 모델을 위한 메모리 대역폭을 확장해 고객이 더욱 신속하게 결과를 달성하고, 복잡한 워크로드를 처리하며, 모델 분할 필요성을 줄일 수 있도록 지원한다. AMD 인스팅트 MI450 시리즈 GPU는 개당 최대 432GB의 HBM4 메모리와 20TB/s의 메모리 대역폭을 제공하여, 이전 세대 대비 50% 더 큰 규모 모델의 훈련 및 추론을 인메모리에서 수행할 수 있다. AMD의 최적화된 헬리오스 랙 설계는 고밀도 액체 냉각 방식의 72-GPU 랙을 통해 성능 밀도, 비용 및 에너지 효율이 최적화된 대규모 운영을 가능하게 한다. 헬리오스는 UALoE(Universal Accelerator Link over Ethernet) 스케일업 연결성과 이더넷 기반의 UEC(Ultra Ethernet Consortium) 표준에 부합하는 스케일아웃 네트워킹을 통합하여 포드 및 랙 간 지연을 최소화하고 처리량을 극대화한다. 차세대 AMD 에픽 CPU로 구성된 아키텍처는 작업 오케스트레이션 및 데이터 처리를 가속화하여 고객이 클러스터 활용도를 극대화하고 대규모 워크플로를 간소화할 수 있도록 지원한다. 또한, 에픽 CPU는 기밀 컴퓨팅 기능과 내장형 보안 기능을 제공하여 민감한 AI 워크로드의 종단간 보안을 개선한다. 또한, DPU 가속 융합 네트워킹은 대규모 AI 및 클라우드 인프라의 성능 향상과 보안 태세 강화를 위해 라인레이트(Line-Rate) 데이터 수집을 지원한다. 프로그래밍 가능한 AMD 펜산도 DPU 기술을 기반으로 구축된 DPU 가속 융합 네트워킹은 데이터센터에서 차세대 AI 훈련, 추론 및 클라우드 워크로드를 실행하는 데 필요한 보안성과 성능을 제공한다. AI를 위한 스케일아웃 네트워킹은 미래 지향적 개방형 네트워킹 패브릭을 통해 고객이 초고속 분산 훈련(distributed training)과 최적화된 집합 통신(collective communication)을 활용할 수 있도록 지원한다. 각 GPU에는 최대 3개의 800Gbps AMD 펜산도 ‘불카노’ AI-NIC를 장착할 수 있어, 손실 없는 고속의 프로그래밍 가능한 연결성을 제공하고, RoCE 및 UEC 표준을 지원한다. 혁신적인 UALink 및 UALoE 패브릭은 고객이 워크로드를 효율적으로 확장하고, 메모리 병목 현상을 줄이며, 수 조 파라미터 단위의 대규모 모델을 통합 관리할 수 있도록 지원한다. 확장 가능한 아키텍처는 CPU를 경유하지 않고 홉(hop)과 지연시간을 최소화하며, UALoE 패브릭을 통해 전송되는 UALink 프로토콜을 통해 랙 내 GPU 간 직접적이고 하드웨어 일관성 있는 네트워킹 및 메모리 공유를 가능하게 한다. UALink는 AI 가속기를 위해 특별히 설계된 개방형 고속 상호연결 표준으로 광범위한 산업 생태계의 지원을 받는다. 이를 통해 고객은 개방형 표준 기반 인프라에서 까다로운 AI 워크로드를 실행하는 데 필요한 유연성, 확장성 및 안정성을 확보할 수 있다. 한편, OCI는 대규모 AI 구축, 훈련 및 추론을 수행하는 고객에게 더 많은 선택권을 제공하기 위해 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트의 정식 출시를 발표했다. 이 제품은 최대 13만 1072개의 GPU로 확장 가능한 제타스케일 OCI 슈퍼클러스터에서 이용 가능하다. AMD 인스팅트 MI355X 기반 셰이프는 탁월한 가치, 클라우드 유연성 및 오픈소스 호환성을 위해 설계되었다.
작성일 : 2025-10-17
오라클, 대규모 클라우드 AI 클러스터 ‘OCI 제타스케일10’ 공개
오라클이 클라우드 환경 내의 대규모 AI 슈퍼컴퓨터인 ‘오라클 클라우드 인프라스트럭처(OCI) 제타스케일10(Zettascale10)’을 발표했다. OCI 제타스케일10은 여러 데이터센터에 걸쳐 수십만 개의 엔비디아 GPU를 연결하여 멀티 기가와트급 클러스터를 형성하며, 최대 16 제타플롭스(zettaFLOPS)에 이르는 성능을 제공한다. OCI 제타스케일10은 스타게이트의 일환으로 미국 텍사스주 애빌린에서 오픈AI(OpenAI)와 협력하여 구축한 대표 슈퍼클러스터를 구성하는 기반 패브릭이다. 차세대 오라클 액셀러론 RoCE(Oracle Acceleron RoCE) 네트워킹 아키텍처를 기반으로 구축된 OCI 제타스케일10은 엔비디아 AI 인프라로 구동된다. 오라클은 강화된 확장성, 클러스터 전반에 걸친 초저지연 GPU-GPU 통신, 가격 대비 높은 성능, 향상된 클러스터 활용도, 대규모 AI 워크로드에 필요한 안정성을 제공한다는 점을 내세운다. OCI 제타스케일10은 2024년 9월 출시된 첫 번째 제타스케일 클라우드 컴퓨팅 클러스터의 차세대 모델이다. OCI 제타스케일10 클러스터는 대규모 기가와트급 데이터센터 캠퍼스에 배치되며, 2킬로미터 반경 내에서 밀도를 높여 대규모 AI 학습 워크로드에 최적화된 GPU-GPU 지연 성능을 제공한다. 이 아키텍처는 오픈AI와 협력하여 애빌린 소재 스타게이트 사이트에 구축 중에 있다. OCI는 고객에게 OCI 제타스케일10의 멀티기가와트 규모 배포를 제공할 계획이다. 초기에는 최대 80만 개의 엔비디아GPU를 탑재한 OCI 제타스케일10 클러스터 배포를 목표로 한다. 이는 예측 가능한 성능과 강력한 비용 효율을 제공하며, 오라클 액셀러론의 초저지연 RoCEv2 네트워킹으로 높은 GPU-GPU 대역폭을 구현한다. OCI는 현재 OCI 제타스케일10 주문을 접수 중이라고 전했다. 이 제품은 2026년 하반기 출시 예정으로, 최대 80만 개의 엔비디아 AI 인프라 GPU 플랫폼을 기반으로 제공될 예정이다. 오라클의 마헤쉬 티아가라얀 OCI 총괄 부사장은 “OCI 제타스케일10을 통해 우리는 OCI의 혁신적인 오라클 액셀러론 RoCE 네트워크 아키텍처를 차세대 엔비디아 AI 인프라와 결합해 전례 없는 규모에서 멀티기가와트급 AI 용량을 제공한다. 고객은 성능 단위당 전력 소비를 줄이면서 높은 안정성을 달성해 가장 큰 규모의 AI 모델을 실제 운영 환경에 구축, 훈련 및 배포할 수 있다. 또한 강력한 데이터 및 AI 주권 제어 기능을 통해 오라클의 분산형 클라우드 전반에서 자유롭게 운영할 수 있다”고 말했다. 오픈AI의 피터 호셸레(Peter Hoeschele) 인프라 및 산업 컴퓨팅 부문 부사장은 “OCI 제타스케일10 네트워크 및 클러스터 패브릭은 오라클과 함께 구축한 슈퍼클러스터인 텍사스주 애빌린에 위치한 대표 스타게이트 사이트에서 최초로 개발 및 배포되었다. 고도로 확장 가능한 맞춤형 RoCE 설계는 기가와트 규모에서 패브릭 전체 성능을 극대화하면서도 대부분의 전력을 컴퓨팅에 집중시켜 준다. 오라클과 협력하여 애빌린 사이트를 비롯한 스타게이트 프로젝트 전반을 전개해 나갈 수 있어 매우 기쁘게 생각한다”고 말했다.
작성일 : 2025-10-16
2024년 가상증강현실(VR·AR)산업 실태조사 보고서
  가상증강현실(VR・AR) 산업은 글로벌 ICT 산업 성장의 키워드로 전 세계가 주목하고 있으며 그 규모가 점차 확대 되어 국가 미래산업 중 하나로 주목 국내 VR・AR산업의 매출, 인력, 수출, 연구개발(R&D) 현황 등을 객관적으로 확인할 수 있는 전문적이고 현 실태 중심의 국가승인 통계 생산   2024년 가상증강현실(VR·AR)산업 실태조사 보고서 목차 제 1 장  조사 개요 제 2 장  조사 결과 부 록   01     조사 목적 ················································································································   002 02   조사 연혁 ················································································································   002 03   조사 개요 ···············································································································    003 04   조사 대상 및 모집단 구축 ············································································    003 05   주요 조사 내용 ·····································································································   007 06   VR・AR산업  분류 ································································································   008 07     데이터 검증 ·············································································································   010 08   조사 회수 결과 ·····································································································   012 01    응답기업 일반현황 ·······························································································   016 02   기업 현황 ·················································································································   026 03   매출&판매 ···············································································································   032 04   수출 ····························································································································   045 05   인력 현황 ················································································································   053 06   산업 전망 ·················································································································   062 07     R&D  현황 ···············································································································   067 01     용어해설 ···················································································································   076 02   VR・AR산업  분류체계 연계표 및 해설서 ··············································    079 03   조사 결과표 ············································································································   085 04   조사표 ··························································································································   116   출처 : 과학기술정보통신부,  소프트웨어정책연구소  
작성일 : 2025-10-13
AI 팩토리 M.AX 얼라이언스, 2030 제조 AI 최강국 향한 혁신 가속화
산업통상부는 10월 1일 AI 팩토리 M.AX 얼라이언스 전략 회의를 개최하고, 대한민국 제조업의 인공지능 전환(M.AX)을 통한 2030 제조 AI 최강국 도약을 위한 성과와 전략을 점검했다. 삼성전자, 현대자동차, LG엔솔, 삼성중공업 등 국내 대표 제조 기업들이 한자리에 모여 제조 혁신의 의지를 다졌다. 김정관 장관은 "AI 시대는 속도와의 전쟁이다. AI 팩토리는 빠르게 세계 1위를 도전할 수 있는 분야"라며, "정책과 자원을 집중해 순풍을 만들겠다"고 밝혔다.   AI 팩토리 선도사업, 2030년까지 500개로 대폭 확대 AI 팩토리 선도사업은 제조 공정에 AI를 접목해 생산성을 획기적으로 높이고 제조 비용과 탄소 배출 등을 감축하는 핵심 프로젝트이다. 이날 회의를 계기로 삼성전자, 현대자동차, LG전자, LG엔솔, SK에너지, HD현대중공업, 농심 등 업종 대표 기업들이 신규 참여를 확정했다. 이에 따라 현재 102개인 AI 팩토리 선도 사업은 2030년까지 500개 이상으로 확대될 계획이다. 주요 기업들은 AI 팩토리를 통해 혁신적인 성과를 목표로 했다. 삼성전자는 AI를 통해 HBM(고대역폭메모리반도체)의 품질을 개선한다. HBM은 ’28년까지 연평균 100% 이상 급성장이 기대될 정도로 각광받는 AI 반도체이다. 삼성전자는 현재 전반적으로 사람이 수행중인 HBM 불량 식별 공정에 AI를 도입할 계획이다. AI가 발열검사 영상, CT 이미지 등을 분석해 품질검사의 정확도를 99% 이상 높이고, 영상·이미지 등의 비파괴 검사를 통해 검사시간도 25% 이상 단축할 것으로 기대된다. HD현대중공업은 함정 MRO용(Maintain 유지보수, Repair 수리, Overhaul 정비) 로봇 개발을 추진한다. 보통 선체의 10% 면적에 따개비·해조류 등의 오염물질이 부착되면 연료소비가 최대 40%까지 증가한다. HD현대중공업은 숙련공에 의존하던 해양생물 제거, 재도장 등의 작업을 AI 로봇에 맡겨, MRO효율을 80% 이상 향상시키고 작업자 안전사고 등을 방지할 계획이다. 현대자동차는 셀방식 생산방식에 핵심이 되는 AI 다기능 로봇팔을 개발한다. 자동차산업은 소품종 대량생산의 컨베이어벨트 방식에서, 제품별로 공정을 다르게 적용해 유연생산이 가능한 셀기반 방식으로 전환되고 있다. 현대차는 힌지·도어 조립, 용접품질 검사 등 다양한 공정을 자율적으로 수행가능한 AI 로봇팔을 공정에 도입하여, 시장수요 변화에 신속히 대응하고 생산성을 30% 이상 높일 계획이다. 농심은 라면 제조설비에 AI 기반 자율정비 시스템을 도입한다. 원료공급, 제면, 포장 등의 라면 제조공정은 연속작동 설비가 많아 한 부분의 예기치 못한 고장으로 생산라인 전체가 중단될 수 있다. 이에 각 공정별로 다양한 이상 징후를 조기에 탐지하는 자율정비 시스템을 도입해 설비 효율성을 10% 이상 제고하고, 유지보수 비용은 10% 이상 절감할 계획이다. 현재까지 AI 팩토리 선도사업에 참여중인 업종별 주요기업 자동차 반도체 전자(가전 등) 철강 조선 현대차, LG이노텍, 한국타이어, 기아 삼성전자, 케이씨텍, 이수페타시스 LG전자, 쿠첸, LS전선 포스코, KG스틸, 대한제강 삼성중공업, HD현대삼호 항공·방산 식품·바이오 이차전지 석유화학·섬유 기계·건설 대한항공, KAI. 한화시스템 농심, 삼양식품, 한국콜마 LG에너지솔루션, 삼성SDI SK에너지, GS칼텍스, 코오롱 HD현대건설기계, 코넥 휴머노이드 로봇, 금년부터 제조 현장 실증 본격 투입 AI 팩토리 전략의 한 축으로, 제조 현장 휴머노이드 로봇 투입을 위한 실증 계획도 공개되었다. 금년에는 디스플레이, 조선, 물류 등 6개 현장에 휴머노이드가 투입된다. 분야 수요기업 공급기업 휴머노이드 주요 과업 디플 삼성디스플레이 레인보우로보틱스 레이저 장비내 렌즈교체, 검사 JIG 교체 작업 등 조선 HD현대미포 에이로봇 각종 상황과 이음 형태에 맞는 용접 작업 수행   삼성중공업 에이로봇 다양한 장애물, 협소 공간, 비평탄면 등 극복을 통해 자율 이동하며 용접·청소 등 가전 LG전자 로브로스 인간 수준 핸들링 작업 및 보행을 바탕으로 가전제품 공장 내 조립·운송 화학 SK에너지 홀리데이로보틱스 석유화학 제품 검사, 유압/가스 밸브 등 조작, 시료 제조, 검사 시료 운송 등 수행 유통 CJ대한통운 레인보우로보틱스 피킹·분류·검수·포장 등 복잡한 물류 작업 동작을 다양한 상품에 맞게 자율적으로 수행 산업부는 올해부터 2027년까지 100개 이상 휴머노이드 실증 사업을 통해 핵심 데이터와 기술을 확보하고, 2028년부터는 본격적인 양산 체계에 돌입할 계획이다. 선도사업 성과 가시화, 세계 최고 업종별 제조 AI 모델 개발 착수 현재까지 진행된 AI 팩토리 선도 사업에서는 이미 가시적인 성과가 도출되고 있다. GS칼텍스는 AI를 통해 정유 공정 데이터를 분석해 연료 비용을 20%가량 감축했으며, 온실가스 배출 저감 효과도 달성했다. HD현대미포는 AI 로봇을 투입해 용접 검사·조립 작업시간을 12.5% 단축했다. 반도체 기업인 대덕전자와 신한다이아몬드는 AI 도입으로 기존 육안 품질 검사 시간을 각각 90%, 30% 단축하는 성과를 보였다. 이러한 성과를 바탕으로 AI 팩토리 M.AX 얼라이언스는 세계 최고 수준을 목표로 하는 업종별 특화 제조 AI 모델 개발에 착수했다. 제조 AI에 특화된 전문가를 비롯해 뉴욕대 조경현 교수, 멜버른대 한소연 교수 등 초거대 AI 모델 전문가 23명이 공동으로 참여한다. 개발된 모델은 2028년 완료를 목표로 하며, 제조 현장 배포 시 기업들은 개발 비용 50%, 개발 시간 40%를 줄일 수 있을 것으로 기대했다. '다크 팩토리' 구현 위한 AI 팩토리 사업 확대 전략 산업부는 AI 팩토리 사업을 확대·개편해 내년부터 완전 자율형 AI 공장인 AI 팩토리(다크 팩토리) 건설에 필요한 기술 개발과 실증 사업을 추진한다. 제조 공정뿐 아니라 공장 설계, 시생산, 공급망 관리, 물류, A/S 등 제조 전 단계를 아우르는 AI 모델을 개발·확산할 계획이다. 특히 엔비디아 CEO 젠슨 황이 강조한 디지털 트윈을 활용한 '가상공장(Virtual Factory)' 구현을 전략의 한 축으로 삼았다. 가상공장을 통해 기업은 시스템 변경, 설비 고장, 공급망 변동 등 다양한 상황에서 공정 가동을 미리 테스트하고, 실제 공장과 연동해 모니터링, 예지 보전, 원격 제어 등에 활용할 수 있게 된다. 이러한 기술을 바탕으로 2030년까지 우리나라가 세계 최고의 AI 팩토리 수출국으로 발돋움하는 것을 목표로 관련 전략을 수립했다.
작성일 : 2025-10-11
유아이패스-오픈AI, 엔터프라이즈 에이전틱 자동화 위해 협력
에이전틱 자동화 기술 기업인 유아이패스가 오픈AI와 협력해 ‘챗GPT 커넥터’를 선보인다고 발표했다. 이 커넥터는 오픈AI의 최첨단 모델을 유아이패스의 엔터프라이즈 오케스트레이션 기반의 워크플로와 통합해, 기업들이 에이전틱 AI를 통해 가치를 더 빠르게 실현하고 투자 대비 효과(ROI)를 높일 수 있도록 지원한다. 유아이패스의 에이전틱 자동화 역량과 오픈AI의 모델·API는 AI 에이전트 개발과 배포 과정을 간소화해 사용자가 복잡한 인프라에 구애받지 않고 비즈니스 목표에 집중할 수 있게 하며, 프로세스 관리자가 AI 에이전트에 대한 신뢰를 높일 수 있도록 한다.   오픈AI 모델은 이미 유아이패스 에이전트를 구동하고 있으며, 최근에는 유아이패스 에이전트 빌더(Agent Builder)에 최신 GPT-5 업데이트가 탑재됐다. 유아이패스와 오픈AI는 에이전틱 자동화에서 컴퓨터 활용 모델을 위한 벤치마크를 마련 중이다. 이 벤치마크를 통해 다양한 AI 모델의 컴퓨터 시스템 상호작용 성능을 보다 쉽게 평가하고 비교할 수 있다. 또한 에이전트 기능을 세밀하게 검증할 수 있으며, 실제 엔터프라이즈 환경을 위해 유연하고 확장 가능한 프레임워크를 제공하며, 에이전트가 발전함에 따라 새 시나리오까지 확장할 수 있다.   유아이패스 마에스트로(UiPath Maestro)는 업무 프로세스에서 유아이패스와 오픈AI 및 다양한 타사 AI 에이전트를 통합 관리해 기업용 대형 액션 모델(LAM)의 적용 범위를 넓힌다. 프로세스 관리자는 마에스트로의 단일 화면에서 업무 프로세스를 구축·관리·최적화할 수 있으며, 업무에 가장 적합한 에이전트를 활용해 에이전틱 자동화를 가속화할 수 있다.   또한 유아이패스는 MCP(모델 컨텍스트 프로토콜) 통합을 통해 챗GPT 사용자에게 자동화 기능을 제공한다. 사용자는 챗GPT 엔터프라이즈 내에서 무인 자동화, API 워크플로, 자율 에이전트, 마에스트로 워크플로를 직접 확인할 수 있다. 더 많은 조직이 챗GPT를 도입함에 따라, 유아이패스는 엔터프라이즈급 에이전틱 자동화와 오케스트레이션을 결합해 AI 자동화를 가속화할 수 있다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “유아이패스 플랫폼은 에이전틱 전환의 전 과정에서 중요하고 반복적인 프로세스를 식별하고, AI 에이전트를 구축하며, 워크플로를 관리할 때까지 지원해 기업이 성과와 ROI를 창출할 수 있도록 돕는다”면서, “챗GPT의 확산과 업계를 선도하는 모델이 유아이패스 플랫폼의 강력한 기능과 결합해 기업 고객에게 최적의 해법으로 자리 잡고 있다”고 말했다.   오픈AI의 지안카를로 리오네티(Giancarlo Lionetti) 최고상업책임자(CCO)는 “오픈AI는 기업용 컴퓨터 활용 에이전트를 빠르게 발전시키고 있으며, 성능 평가는 진행 상황을 가늠하고 더 높은 기준을 마련하는 핵심 수단”이라며, “유아이패스와의 협력을 통해 기업 환경에 맞는 성능 평가를 제공하고, 업계 전반의 수준을 끌어올릴 수 있다”고 말했다.
작성일 : 2025-10-02
[케이스 스터디] 확장현실로 건설 장비의 사용 교육과 운영 효율 강화
포지FX가 VR 훈련 설루션을 만드는 방법   콘크리트 레벨링 기술 기업인 소메로 엔터프라이즈(Somero Enterprises)는 포지FX(ForgeFX)와 파트너십을 맺고 S-22EZ 레이저 스크리드 장비용 몰입형 가상 현실(VR) 설루션으로 작업자 교육에 혁신을 가져왔다. 콘크리트 전문가를 위한 이 몰입형 교육 설루션은 높은 교육 비용과 물류 문제를 줄이는 동시에 작업자에게 안전하고 참여도가 높은 실습 학습 환경을 제공한다. 소메로와 같은 제조업체는 유니티(Unity)의 기술 및 XR 인터랙션 툴킷(XR Interaction Toolkit)과 같은 툴을 활용하여 교육 프로세스를 간소화하고, 운영자의 숙련도를 개선하며, 운영상의 제약을 줄일 수 있다. ■ 자료 제공 : 유니티 코리아     오늘날 건설 업계에서 숙련된 인재를 찾는 것은 인력 부족으로 인해 프로젝트가 중단될 위기에 처한 것과 마찬가지로 벅찬 일이다. 2024년 미국 건설업협회에 따르면, 현재 건설업체의 79%가 숙련된 인력을 구하기 어려워 프로젝트 일정과 비용에 영향을 받고 있다고 한다. 전미 주택 건설업자 협회에 따르면 2031년까지 인력의 41%가 은퇴할 것으로 예상되는 등 인력 고령화도 이러한 격차의 원인 중 하나이다. 건설업계의 기술 인력 부족에 대한 스마트 설루션의 필요성이 그 어느 때보다 커졌다.   기존 교육의 과제 소메로는 고품질의 평탄한 콘크리트 바닥을 만들기 위한 핵심 도구인 S-22EZ 레이저 스크리드 기계를 비롯한 레이저 유도 콘크리트 스크리드 장비 전문 업체이다. 이들의 목표는 높은 출장 비용, 장비의 마모, 물류의 한계 등 글로벌 수용 능력의 제약을 해결하면서, 안전하고 효율적으로 운영자를 교육할 수 있는 VR 시뮬레이터를 개발하는 것이었다. 교육생들은 물리적 기계 없이도 컨트롤을 다루고 공간 역학을 이해하는 경험이 필요했다. 콘크리트 평탄화 기술을 마스터하려면 단순한 도구가 아니라 수년간의 신체적 연습을 통해 연마한 기술을 전수받아야 한다. 소메로의 데이브 라사카(Dave Raasakka) 글로벌 고객 지원 담당 부사장은 “콘크리트는 부패하기 쉬운 제품이다. 일단 땅에 떨어지면 한 시간 내에 완료해야 한다. 그렇지 않으면 문제가 생길 수 있다”고 설명했다. S-22EZ 레이저 스크리드 장비와 같은 중장비 교육에는 일반적으로 기계 자체, 레이저 트랜스미터와 같은 특수 장비, 적절한 콘크리트 형태와 타설 조건을 갖춘 전용 교육 공간 등 광범위한 물리적 자원이 필요하다. 이러한 실제 시나리오는 종종 기계의 마모를 포함하여 높은 비용을 수반하며 장비 가용성, 악천후, 높은 부품에 접근하는 동안의 미끄러짐 및 추락과 같은 위험과 같은 요인으로 인해 방해를 받을 수 있다. 6개의 글로벌 서비스 센터와 연간 수백 명의 교육생을 보유한 소메로 콘크리트 인스티튜트(Somero Concrete Institute)는 이러한 물류, 재무 및 안전 문제를 효과적으로 해결할 수 있는 확장 가능한 설루션이 필요했다. 소메로는 그들의 요구 사항을 충족하고 제약 조건을 해결하는 일관된 고품질 학습 경험을 제공하기 위해 대체 교육 설루션으로 포지FX 시뮬레이션(ForgeFX Simulations)을 선택했다. 실제 기계로 작업하는 경험을 모방하는 데 필요한 촉각적 피드백과 시각적 사실감을 포착하는 등 레이저 스크리드의 작동을 정확하게 재현하는 몰입형 교육 시뮬레이터를 설계해야 하는 복잡한 과제에 직면했다. 유니티 기반의 이 설루션은 S-22EZ의 복잡한 컨트롤을 복제하여 교육생에게 가상 환경에서 실제와 같은 실습 경험을 제공하므로 학습 과정에서 물리적 장비가 필요하지 않다.     사실감을 높여주는 기술/기능 유니티의 XR(확장현실) 툴은 S-22EZ 레이저 스크리드 VR 시뮬레이터를 구동하여 사실적인 몰입형 3D 환경에서 장비 동작을 정밀하게 재현할 수 있다. 유니티 클라우드(Unity Cloud)의 예외 보고 기능은 실행 가능한 스택 추적을 제공하여 최소한의 수동 개입으로 QA 및 이슈 추적을 지원한다. 성능의 경우, 유니티의 CPU 및 GPU 프로파일러를 사용하여 병목 현상을 진단하고 프레임 속도를 최적화하여 원활하고 반응이 빠른 VR 경험을 보장한다. 이러한 도구는 특히 물리 계산에서 비효율적인 부분을 파악하고 해결하여, 원활한 상호 작용과 안정적인 시뮬레이션을 유지하도록 안내한다. XR 인터랙션 툴킷(XRITK)은 가상 상호작용을 간소화하는 직관적인 크로스 플랫폼 설루션으로, 소메로 트레이닝 시뮬레이터의 몰입도와 운영 효율을 높인다. 유니티는 XRITK를 사용하여 VR 릭을 관리함으로써 메타 퀘스트 3에서 컨트롤러와 고급 핸드 트래킹 기능을 지원하여 교육생의 몰입도를 극대화하는 원활하고 반응이 빠른 교육 환경을 만들 수 있었다. 이 설정은 스냅 회전, 순간 이동, 오브젝트 조작과 같은 인터랙션 구성 요소를 표준화하여 개발 시간을 최소화하고 향후 하드웨어 및 소프트웨어 업데이트에도 시뮬레이터가 적응력을 유지할 수 있도록 한다.   ▲ 충돌기가 작동하는 모습을 보여주는 개발자 화면   유니티의 잡 시스템을 사용하면 메인 스레드의 성능에 영향을 주지 않고 보조 스레드에서 콘크리트를 사실적으로 시뮬레이션할 수 있다. 트리거 충돌기를 바운딩 박스로 사용하여 의도적이든 비의도적이든 콘크리트에 영향을 줄 수 있는 요소(예 : 스크리드 헤드 또는 기계 타이어로 인한 요소)를 정의했다. 여기에는 강체(rigid body)가 없고 충돌(collision)에 대한 레이어 마스크가 아무것도 포함하지 않도록 설정되어 있으므로, 메인 스레드에서 최소한의 작업이 수행되고 있다. 작업 시스템을 사용하면 메인 스레드 성능에 영향을 주지 않고 독립형 퀘스트 헤드셋에서 최대 4개의 스레드를 동시에 실행할 수 있다.(메인 스레드에서는 콘크리트에 영향을 줄 수 있는 기계 조각을 나타내는 바운딩 박스의 위치를 추적한다.)   ▲ 핸드 트래킹을 통해 기계 컨트롤과 현실감 있게 상호작용할 수 있다.   유니티는 다음을 활용한다. 유니티 터레인(Unity Terrain)을 활용하여 콘크리트 표면을 사실적으로 렌더링하고 텍스처를 블렌딩하여 타설 전반에 걸쳐 다양한 마감과 일관성을 반영한다. 유니티 잡(Unity Job)은 커스텀 콘크리트 시뮬레이션의 계산을 오프로드하여 쟁기나 진동기와 같은 콘크리트 충돌기가 콘크리트의 매끄러움이나 거칠기에 미치는 영향과 표면에서 콘크리트를 밀고 당기는 방식을 결정하는 커스텀 콘크리트 시뮬레이션에 배포된다. ‘러프’ 및 ‘스무스’ 텍스처가 있으며, 기본값은 러프이다. 지형 높이 맵의 각 지점에서 얼마나 부드러운 텍스처를 표시할지에 대한 알파 값을 설정한다. 메인 스레드에는 작업에 쓰이는 하이트맵 및 알파 맵 데이터와 일치하도록 지형을 업데이트하는 두 가지 빠른 함수가 있다. 이러한 시스템은 사용자가 콘크리트 작업의 시각적, 촉각적 뉘앙스를 경험할 수 있는 몰입형 가상 환경을 강화하여 복잡한 건설 활동을 충실하게 재현함으로써 교육 효과와 사용자 참여를 높인다.   ▲ 워크어라운드 검사 강의 시연하기   고객 피드백 파일럿 단계가 끝날 무렵, 소메로는 VR 교육을 마친 후 22EZ 레이저 스크리드에서 작업자 기술이 향상되었음을 보여주는 두 가지 사례 연구를 수행했다. 사례 1 : 비사용자 직원이 VR 교육을 받고 성공적으로 기계 사용법을 시연할 수 있었다. 사례 2 : 교육을 받은 비사용자를 대상으로 설문조사를 실시한 결과, 기계 작동에 자신감이 생겼다고 응답했다.   시뮬레이터의 향후 계획 보다 효과적인 교육 소메로 S-22EZ 고급 레이저 스크리드 VR 교육 시뮬레이터는 건설 교육 기술의 도약을 상징한다. 이 몰입형 교육 플랫폼은 기존 교육 방법의 문제를 해결함으로써 전 세계 운영자에게 높아진 정확성, 접근성 및 참여도를 제공한다. 복잡한 실제 시나리오를 시뮬레이션하고 환경에 미치는 영향을 줄이며 기술 유지를 강화하는 기능을 갖춘 이 시뮬레이터는 작업자가 최적의 성과를 낼 수 있도록 준비할 뿐만 아니라 소메로가 더 높은 효율과 ROI를 달성할 수 있도록 지원한다.   시장 도달 범위 확대 이 시뮬레이터는 유통업체가 대규모 기계를 원격으로 대화형으로 시연할 수 있는 기능을 제공함으로써, 소메로의 글로벌 시장 진출에 긍정적인 영향을 미칠 것으로 보인다. 소메로는 판매 주기를 가속화하고, 고객의 의사 결정을 개선하며, 글로벌 입지를 확장하는 동시에 기존 장비 쇼케이스와 관련된 물류 비용과 환경에 미치는 영향을 줄일 수 있는 잠재력을 가지고 있다.   체계적인 수업 그 이상 소메로는 시뮬레이터 2단계에 대한 추가 테스트를 진행하면서 3단계 로드맵을 구상하고 있다. 다양한 슬럼프 수준이나 건조 단계와 같은 요소를 재현하는 고급 콘크리트 시뮬레이션, 구조화된 수업 단계를 넘어, 교육생이 가상 기계와 자유롭게 상호작용할 수 있는 샌드박스 스타일의 수업 등이 잠재적인 집중 분야이다. 포지FX와 소메로는 유니티 플랫폼에서 혁신을 거듭하면서, 제조 업계에서 혁신적인 교육 경험을 제공할 수 있는 가능성을 높이고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
시스코, 실시간 비즈니스 인사이트 위해 AI 에이전트로 옵저버빌리티 강화
시스코가 고객의 회복 탄력성 강화를 위한 새로운 기준을 제시하는 AI 에이전트 기반의 ‘스플렁크 옵저버빌리티(Splunk Observability)’를 발표했다. 강화된 스플렁크 옵저버빌리티 포트폴리오는 다양한 환경의 옵저버빌리티를 통합하고, 실행 가능한 비즈니스 맥락을 제공하며, 전체 인시던트 대응 라이프사이클에 걸쳐 AI로 구동되는 에이전트를 배포하고, 성능과 품질도 동시에 모니터링한다. 스플렁크에 통합된 시스코 기술로 고객은 네트워크, 인프라, 애플리케이션 전반에 걸쳐 데이터 인사이트의 가시성과 상관관계를 확보해 디지털 자산 전체의 안정성을 높일 수 있다. AI 에이전트는 선도적인 옵저버빌리티 체계를 구축하는 방식을 바꾸고 있다. AI 지원 코딩이 본격화되면서 점점 더 적은 인력으로 애플리케이션이 개발되고 있으며, 동시에 AI 기반 애플리케이션과 AI 에이전트가 새롭게 등장하면서 모델이 의도한 대로 작동하는지, 비즈니스 목적과 비용에 부합하는지를 확인하기 위해 특화된 텔레메트리가 요구되고 있다. 이러한 변화에 대응하기 위해 기업은 다양한 환경을 아우르고 맥락을 이해할 수 있는 통합된 가시성을 확보해야 하며, 비즈니스에 미치는 영향을 기준으로 문제의 우선순위를 정할 수 있어야 한다. 스플렁크는 새로운 AI 에이전트 혁신으로 강화된 스플렁크 옵저버빌리티 포트폴리오를 통해 시스코의 AgenticOps 비전을 한 단계 더 발전시키고 있다. 이번 혁신은 AI 에이전트를 활용해 텔레메트리 수집과 알림 설정을 자동화하고, 문제를 탐지하며, 근본 원인을 파악하고, 해결 방안을 제안함으로써 ITOps 및 엔지니어링 팀이 혁신에 집중할 수 있도록 지원한다. 이러한 발전에는 ▲인시던트를 자동으로 분석하고 잠재적인 근본 원인을 제시하여 사용자가 문제에 신속하게 대응할 수 있도록 돕는 ‘AI 트러블슈팅 에이전트(AI Troubleshooting Agents)’ ▲자동화된 알림 상관관계를 쉽게 설정할 수 있도록 해, 알림 소음을 줄이고 그룹화된 알림에 대해 명확한 맥락을 파악할 수 있도록 지원하는 ‘이벤트 iQ (Event iQ)’ ▲이벤트 iQ의 AI 기반 알림 상관관계와 함께, 그룹화된 알림의 경향과 영향, 근본 원인 등을 자동으로 개요 형태로 제공하여 문제 해결 속도를 높이는 ’ITSI 에피소드 요약(ITSI Episode Summarization)’ 등이 포함된다. 기업이 애플리케이션에 AI와 대규모 언어 모델(LLMs)을 통합하고 AI 에이전트를 도입함에 따라, 기업은 AI가 의도한 대로 작동하는지 확인하기 위해 특화된 분석 기능이 필요하다. 스플렁크는 에이전트, LLM, AI 인프라를 포함한 AI 애플리케이션 스택 전반의 상태, 보안, 비용을 사전에 모니터링할 수 있도록 다양한 같은 기능을 제공한다. 여기에는 모델이 비즈니스 목표에 맞게 의도한 대로 작동하고 있는지, 적절한 비용으로 운영되는지를 확인하는 ‘AI 에이전트 모니터링(AI Agent Monitoring)’과 AI 인프라의 상태와 소비를 모니터링하고 비용을 효율적으로 관리할 수 있도록 지원하는 ‘AI 인프라 모니터링(AI Infrastructure Monitoring)’ 등이 포함된다.   한편, 시스코는 스플렁크 앱다이나믹스와 스플렁크 옵저버빌리티 클라우드의 강점을 결합해 3계층(three-tier) 및 마이크로서비스 환경 전반에서 통합된 경험을 제공하고 있다고 소개했다. 시스코 사우전드아이즈(Cisco ThousandEyes)와의 통합도 한층 강화해 ITOps, NetOps, 엔지니어링 팀이 네트워크가 애플리케이션 성능과 최종 사용자 경험에 미치는 영향을 정확히 파악할 수 있도록 지원하고 있다. 스플렁크 옵저버빌리티의 패트릭 린(Patrick Lin) 수석부사장 및 총괄은 “스플렁크의 미션은 명확하다. 기업이 AI 애플리케이션과 에이전트를 활용하고 가시성과 통제력을 유지하도록 지원하는 것”이라면서, “최신 스플렁크 옵저버빌리티 혁신은 기업이 핵심 애플리케이션과 디지털 서비스를 더 쉽게 선제적으로 모니터링하고, 문제가 커지기 전에 해결하며, 옵저버빌리티 투자에 걸맞은 성과와 가치를 얻을 수 있도록 지원한다”고 말했다.
작성일 : 2025-09-18
오토데스크, “오토캐드 라인업 확장으로 사용자 선택 넓히고 AI 생산성 강화”
오토데스크가 한국에서만 제공되는 새로운 오토캐드를 출시하며 오토캐드 포트폴리오를 확장했다.고 전했다 오토데스크는 이번 포트폴리오 확장을 통해 데스크톱·웹·모바일 전반에 걸쳐 끊김 없는 설계 경험과 오토데스크 AI(Autodesk AI) 기반 생산성 기능을 바탕으로, 기초 설계부터 산업별 맞춤형 2D 및 3D 설계까지 다양한 선택지를 제공한다. 이는 정밀성과 유연성을 동시에 요구하는 건설, 건축, 제조 등 국내 산업 전반에서 AI 기반 설계 워크플로의 빠른 확산을 반영한다는 것이 오토데스크의 설명이다. 국내 제공되는 오토캐드 포트폴리오는 오토캐드 플러스(AutoCAD Plus), 오토캐드(AutoCAD), 오토캐드 LT(AutoCAD LT), 오토캐드 웹(AutoCAD Web)으로 구성된다. 이를 통해 고객은 프로젝트 규모 및 과제 난이도에 따라 적합한 서비스를 선택할 수 있다. 오토캐드 플러스는 7가지 산업별 전문 툴셋을 제공해 고도화된 설계 워크플로를 지원하며, 오토캐드는 2D 및 3D 설계의 자동화와 사용자화에 적합하다. 오토캐드 LT는 효율적인 2D 도면 작업, 오토캐드 Web은 작업 현장 접근성과 가벼운 편집을 지원한다.     이번에 추가된 오토캐드는 2D 및 3D 설계, 애드온과 API 확장 등 핵심 CAD 기능에 오토데스크 AI 기반 생산성 기능을 더했다. 대표 기능으로는 ▲맥락 기반 블록 배치 및 표준화를 지원하는 Smart Blocks ▲ 외부 피드백의 반영을 간소화하는 Markup Import 및 Markup Assist ▲ 설계 변경 사항을 추적하기 위한 Activity Insights 등이 있다. 2024년 처음 도입된 AI 기능은 반복 작업을 줄이고 프로젝트 일정을 단축하며 설계 정확도를 높이기 위해 더욱 강화되었다. 최신 버전에서는 Smart Blocks의 추천·탐지 정확도가 향상되고, Markup Assist의 주석 인식·자동 반영 기능이 고도화됐다. 또한 Activity Insights의 추적 범위가 확대돼 협업 과정에서 변경 사항을 더욱 투명하게 관리할 수 있다. 이와 함께 지원 파일 연결성 향상, Markup Import 개선, 중심선·중심표시(Centerline·Centermark) 기능 강화 등 설계 워크플로우 전반에 걸쳐 다양한 업데이트가 추가됐다. 아울러 오토리스프(AutoLISP)와 오토데스크 앱 스토어(Autodesk App Store)를 통한 서드파티 앱은 워크플로별 맞춤 자동화를 지원한다. 또한 오토데스크 독자 기술인 트러스티드DWG(TrustedDWG)는 설계 라이프사이클 전반에 걸쳐 데이터 신뢰성과 호환성을 제공한다. 오토캐드 플러스는 오토캐드의 모든 기능에 더해 건축(Architecture), 기계(Mechanical), 전기(Electrical), 기계·전기·배관(MEP), 플랜트 3D(Plant 3D), 맵 3D(Map 3D), 래스터 디자인(Raster Design) 등 7가지 산업별 전문화 툴셋을 포함한다. 이를 통해 분야별 기능과 콘텐츠에 맞춰 업계 표준 과제를 보다 빠르게 수행할 수 있도록 지원한다. 툴셋은 오토캐드 플러스에만 포함되며 오토캐드에는 제공되지 않는다. 오토캐드 LT는 정밀한 2D 설계에 초점을 맞춘 효율적인 선택지다. 오토캐드 웹은 별도 소프트웨어 설치 없이도 사용 가능하며, 웹과 모바일 환경에서 도면 열람 및 표식, 가벼운 편집 작업을 지원한다. 오토데스크는 이번 확장을 계기로 한국 시장에 대한 전략적 투자를 강화하며, AI 기반 설계 및 협업 역량 강화을 통해 고객들이 다양한 규모의 프로젝트를 보다 신속하고 효율적으로 수행할 수 있도록 지원할 계획이다. 오토데스크코리아의 오찬주 대표는 “오토캐드 라인업 확장을 통해 설계(design)와 제작(make) 과정에서 보다 명확하고 유연하며 자신 있게 작업할 수 있도록 지원하고 있으며, 현장 작업, 2D 도면, 다분야 협업, 업계 표준 설계까지 다양한 요구에 대응할 수 있는 더 많은 선택지를 갖추게 됐다”고 설명하며, “오토데스크 AI와 트러스티드DWG를 기반으로 반복 작업을 줄이고 프로젝트 수행 속도를 높이며 데이터 신뢰도를 높임으로써, 시장의 요구사항이 갈수록 복잡해지는 상황에서도 새로운 수준의 생산성을 실현할 수 있을 것”이라고 전했다.
작성일 : 2025-09-09