• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 해석"에 대한 통합 검색 내용이 4,136개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
오토폼엔지니어링, “기술 지원부터 인재 양성까지… 한국서 디지털 금형 생태계 본격 조성” 
오토폼엔지니어링이 올리비에 르퇴르트르(Olivier Leteurtre) CEO의 방한과 함께 한국 시장을 위한 기술 협력과 인재 양성 전략을 발표했다. 이번 전략은 국내 고객과의 디지털 협업을 확대하고, 지역 기반 산학협력을 통해 디지털 금형 생태계를 구축하는 데 중점을 두고 있다. 르퇴르트르 CEO는 “제조업의 미래는 디지털 협업 생태계 위에서 결정된다. 오토폼은 금형 산업의 복잡한 공정과 데이터를 정밀하게 연결해, 더 이상 ‘경험’이 아닌 ‘데이터’로 예측하고 판단하는 환경을 만들어가고 있다”면서, “특히 한국은 자동차 산업의 글로벌 중심지이자, 디지털 제조 혁신이 가장 빠르게 진화하는 시장으로, 이 전환의 최전선에 서 있다. 오토폼은 이곳에서 디지털 트윈과 시뮬레이션을 통해 제조 방식의 새로운 기준을 제시하고, 산업의 미래를 주도해 나가겠다”고 밝혔다.     오토폼은 국내 주요 자동차 및 전자 산업의 OEM 기업과 협력하며 금형 설계, 시뮬레이션, 공정 최적화 등 다양한 디지털 전환 프로젝트를 전개하고 있다고 소개했다. 특히 ‘디지털 프로세스 트윈’을 구현함으로써 설계 초기부터 품질을 예측하고 리스크 줄이는 시스템을 현실화해 불량률을 줄이며, 실제 제조 현장에서의 리드타임 단축과 생산성 향상에 기여하고 있다. 이 같은 기술은 ESG 경영 요구에 대응하는 스마트 제조 구현에도 핵심 역할을 하고 있다는 것이 오토폼의 설명이다. 또한 오토폼은 국내 제조업 밸류체인 전반의 디지털 역량 강화를 위해, 중소 협력업체 지원에도 적극 나서고 있다고 밝혔다. 경일대학교 내에 설립 예정인 ‘디지털 트라이아웃 랩(Digital Tryout Lab)’은 고가의 소프트웨어나 전문 인력 없이도 시뮬레이션 기반 공정 해석을 적용할 수 있도록 돕는 기술 거점으로, 기존에 디지털 전환에서 소외됐던 2차·3차 벤더의 실질적 변화와 기술 내재화를 지원한다. 이 센터는 아진산업 등과 연계해 실무 중심의 시범 프로젝트를 수행하고 있으며, 향후 다양한 협력사들이 활용할 수 있는 공동 인프라로 확대될 예정이다. 오토폼은 기술 지원과 더불어 인재 양성 측면에서도 산학 협력을 강화하고 있다. 오토폼은 경북기계공업고등학교와 디지털 금형 분야 인재 양성을 위한 업무협약(MOU)을 체결하고, 지역 기반의 실무형 교육 생태계 조성에 나선다고 전했다. 이번 협약은 교내 실습과 인턴십, 산업 현장과의 채용 연계를 포함한 통합형 프로그램으로 구성되며, 디지털 제조 환경에 특화된 현장 맞춤형 기술 인재를 체계적으로 육성하는 데 초점을 맞추고 있다. 이외에도 오토폼은 국립창원대학교에 600억 원 규모의 소프트웨어를 3년간 기증해 ‘글로컬 산업기술거점센터’를 설립하고, 지역 기업과 연계한 실무 교육 및 취업 연계 프로그램을 운영하고 있으며, 성균관대학교와는 복합재료 기반의 공동 연구와 실무형 교육을 통해 차세대 제조 인재를 양성하고 있다. 오토폼엔지니어링코리아의 조영빈 대표는 “디지털 전환은 더 이상 대기업만의 과제가 아니며, 금형 산업의 디지털화는 선택이 아닌 생존의 문제다. 오토폼은 중소 협력사를 포함한 밸류체인 전반을 디지털 협업 구조로 연결해, 제조 생태계 전체의 경쟁력을 함께 끌어올리고자 한다”면서, “기술은 나눌 때 그 가치가 배가되고, 사람은 연결될 때 성장한다고 믿는다. 특히 기술과 인재를 지역 현장에서 직접 연결하는 산학협력 모델을 통해, 지속 가능한 산업 성장의 토대를 함께 만들어가겠다”라고 전했다.
작성일 : 2025-05-08
디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder
주요 디지털 트윈 소프트웨어 디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder 개발 : Ansys, www.ansys.com 자료 제공 : Ansys Korea, 02-6009-0500, www.ansys.com   Ansys Twin Builder는 디지털 트윈(Digital Twin) 기술을 활용하여 실제 물리 시스템을 가상 환경에서 시뮬레이션하고 최적화할 수 있는 솔루션이다. 멀티피직스 시뮬레이션 기술을 기반으로 물리 모델과 실시간 센서 데이터를 결합하여 예측 유지보수 및 성능 최적화를 지원한다. 제조, 자동차, 항공우주, 전자, 에너지, 의료 등 다양한 산업에서 활용된다.   1. 주요 특징 (1) Physics 기반의 디지털 트윈 구축 IoT 데이터 및 시뮬레이션 모델을 결합하여 정밀한 디지털 트윈 모델 생성 (2) 실시간 시뮬레이션 및 예측 유지보수 지원  센서 데이터를 활용하여 장비의 고장 가능성 예측 및 유지보수 최적화 (3) 멀티피직스 통합 분석  전자기, 유체, 구조, 열 해석을 통합하여 복잡한 시스템 성능 분석 가능 (4) AI 및 머신러닝 연계 가능  OptiSLang을 활용한 AI 기반 최적화 및 데이터 분석 지원 (5) IoT 및 클라우드 플랫폼과 연계  AWS, Microsoft Azure, PTC ThingWorx 등 다양한 IoT 플랫폼과의 호환성 제공 2. 주요 기능 (1) 디지털 트윈 생성 및 실행  시뮬레이션 모델을 물리 데이터와 연결하여 실시간 가상 시뮬레이션 수행 (2) Model-Based Systems Engineering(MBSE) 지원  시스템 레벨 설계를 위한 MBSE 기반 시뮬레이션 제공 (3) 고급 시뮬레이션 및 자동화  MATLAB, Simulink, FMI 모델과 통합 가능하여 복잡한 시스템 해석 (4) PLM 및 데이터 관리 통합  Siemens Teamcenter, PTC Windchill 등 주요 PLM 시스템과 연계하여 제품 수명주기 관리 지원 (5) Predictive Maintenance 기능 내장  실시간 데이터 분석을 통해 유지보수 전략 개선 3. 도입 효과 ■ 설비 가동률 향상: 디지털 트윈을 활용한 사전 예측 유지보수로 시스템 다운타임 감소 ■ 제품 개발 기간 단축: 프로토타입 제작 없이 가상 환경에서 제품 설계 검증 가능 ■ 운영 비용 절감: 최적화된 유지보수 전략을 통해 운영 및 유지보수 비용 절감 ■ 설계 품질 향상: 실제 운영 데이터를 기반으로 제품 설계 개선 및 성능 최적화 4. 주요 고객 사이트 ■ 제조업: 두산 그룹, POSCO  ■ 자동차: 현대자동차그룹, LS Automotive Technologies, HL Mando ■ 항공우주: Korea Aerospace Industries (KAI), Hanwha Aerospace ■ 반도체/전자: Samsung Electronics, SK Hynix, LG Electronics, Samsung Electro-Mechanics, Samsung Display, LG Display, LG Innotek, LX Semicon ■ 에너지: LG Energy Solution, SK On, Samsung SDI, Hyundai Electric & Energy Systems, Doosan Enerbility, Hanwha Solutions   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-04
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
아키텍처 모델과 1D 모델의 전략적 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (1)   제조산업에서 설계 효율 향상과 개발 기간 단축을 위해 모델 기반 개발(MBD)을 적극 도입하고 있지만, 아키텍처 모델과 1D 모델 간의 연계 부족으로 인해 개발 단계에서 모델의 실질적인 활용과 의사결정 지원이 어려운 경우도 많다. 이번 호에서는 MBD의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 제시하고, 이를 통한 설계 효율 및 개발 정확성 향상의 전략적 방향을 살펴본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   최근 제조산업은 제품의 개발 기간 단축과 다품종 생산이라는 트렌드에 대응하기 위해 개발의 효율성을 극대화하고 반복 설계를 최소화하는 방향으로 변화하고 있다. 이러한 흐름 속에서 모델 기반 개발(Model-Based Development : MBD)은 이미 많은 제조업체가 적극 추진하고 있으며, 이를 통해 설계 초기부터 제품의 동작을 예측하고 최적화할 수 있는 기반을 마련하고자 한다. 그러나 모델 기반 개발을 도입하고 실제로 모델을 구축했음에도 불구하고, 현업에서 모델이 제대로 활용되지 못하는 경우가 많다. 이는 구축된 모델이 단지 형식적으로 존재할 뿐, 제품 개발의 맥락 속에서 아키텍처적, 1D적 연결성을 갖추지 못해 실질적인 의사결정과 개발 단계에서 활용되지 못하고 있기 때문이다. 즉, 원래 의도한 목적이나 아키텍처적 요구와 연계되지 않은 모델이기 때문에, 사용자는 해당 모델이 ‘내 일에 어떻게 쓰이는지’를 이해하지 못하고 거리감을 느끼는 것이다. 이러한 문제를 극복하기 위해서는 아키텍처 모델과 1D 모델을 유기적으로 연계하고, 이를 기반으로 아키텍처 요구사항을 구체화할 수 있어야 한다. 아키텍처 모델이란 제품의 구조, 기능, 물리적 메커니즘 등 아키텍처적 개념을 설명하는 모델이며, 1D 모델은 이러한 개념을 수학적으로 해석하고 시뮬레이션 가능한 형태로 정형화한 것이다. 따라서 아키텍처 모델과 1D 모델 간의 연계는 제품 개발의 전체 V자 프로세스에서 핵심 역할을 하며, 상호보완적으로 작용하여 제품 성능 검증 및 요구사항 만족 여부를 평가하는 데 기여한다.   그림 1. 아키텍처 모델 – 1D 모델 연계   <그림 1>은 이러한 개념을 시각적으로 설명한다. 초기의 아키텍처 설계 단계에서 아키텍처 요구와 구조를 정의한 뒤 이를 바탕으로 1D 모델이 생성되고, 시뮬레이션 및 해석을 통해 결과를 도출하며, 이 결과는 다시 상위의 아키텍처 요구사항에 대한 검증으로 이어진다. 이처럼 상향식-하향식 피드백 루프를 통해 아키텍처 모델과 1D 모델이 반복적으로 연계되어야 진정한 의미의 모델 기반 개발이 실현될 수 있다. 특히 설계자와 개발자는 1D 모델은 제품을 해석하고 튜닝하는 강력한 도구라고 인식하지만, ‘왜 이 설계를 했는가’, ‘서브시스템 간 구조는 어떻게 되는가’, ‘요구사항은 어떻게 충족되는가’와 같은 질문에는 답하지 못한다. 그 해답을 주는 것이 바로 아키텍처 모델(MBSE)이며, 이 두 모델을 연결해야만 설계의 정확성, 추적성, 협업성이 동시에 확보된다.   다양한 유형의 아키텍처적 측정 간의 관계   그림 2. ISO/IEC 15288 System Life Cycle Technical Processes & Life Cycle   ISO/IEC 15288(그림 2)은 시스템 수명주기 전반에 걸친 아키텍처 프로세스의 흐름과 체계를 정의한 국제 표준이다. 특히 이 표준은 모델 기반 시스템 엔지니어링(Model-Based Systems Engineering : MBSE) 관점에서 시스템 개발 활동을 구조화한 것으로, 시스템 수명 주기(V 모델)를 기반으로 요구 분석, 설계, 검증 및 확인, 유지보수 등 각 단계의 아키텍처적 활동과 그 상호 관계를 정립한다. 시스템 엔지니어링 활동을 통해 성공적인 시스템을 구축하기 위해서는 다양한 아키텍처적 성과 지표와 측정 지표가 필요하며, 이를 통해 시스템의 목표 달성 여부를 판단할 수 있다. 대표적인 지표로는 다음과 같은 세 가지가 있다. MOE(Measure of Effectiveness, 효과성 측정지표)는 시스템이 실제 운용 환경에서 얼마나 효과적으로 임무를 수행할 수 있는지를 평가하는 지표로, 주로 고객 요구사항이나 운용 목표 달성 여부에 초점을 맞춘다.  MOP(Measure of Performance, 성능 측정지표)는 시스템의 성능 수준을 수치적으로 정량화한 것으로, 설계 명세나 요구된 성능 기준을 얼마나 충족하는지를 평가한다.  TPM(Technical Performance Measure, 아키텍처 성과 측정지표)은 개발 과정 중 아키텍처 적인 목표 도달 여부를 지속적으로 모니터링하고 예측하는 데 사용되는 지표로, 시스템 개발 리스크를 조기에 식별하고 관리하는 데 활용된다. 이러한 측정 지표는 예측 차이나 실측 차이를 바탕으로 비교 분석할 수 있으며, 시스템 개발 단계에서 시스템의 위험 요인에 대한 조기 탐지와 개선 대책의 선제 적용이 가능하도록 지원한다. 이는 곧 사업의 비용 효율성 제고와 일정 준수에 기여하며, 전체 수명주기 동안 긍정적인 영향을 유도할 수 있다.  <그림 2>는 ISO/IEC 15288의 V-모델과 아키텍처적 측정 지표가 어떻게 연계되는지를 보여준다. 요구사항 도출과 검증, 설계와 확인 간의 대응 관계를 통해 아키텍처적 활동이 체계적으로 연결되며, 수명주기 전체에서 MOE, MOP, TPM이 통합적으로 작동하여 아키텍처적 리스크를 관리하고 시스템의 성공적인 구현을 가능하게 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅳ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21)   이번 호에서는 다양한 유형의 난류 모델과 사용 시기, 그리고 복잡한 형상을 위한 고충실도 난류 모델링에 있어 케이던스 밀레니엄 M1(Cadence Millennium M1) CFD 슈퍼컴퓨터가 어떻게 혁신을 가져오는지에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   자동차 산업은 거의 매일 새로운 혁신과 개발이 등장하며 끊임없이 발전하고 있다. 자동차 업계는 전기 구동 차량과 대량 생산이 증가하는 추세에 발맞춰 보다 지속 가능한 미래를 만들기 위해 노력하고 있다. 자동차 생산량은 꾸준히 늘고 있지만, 업계는 여러 디자인 또는 새로운 헤드라이트, 스플리터, 사이드 스커트 추가와 같은 아주 작은 디자인 변경에 대해서도 풍동 테스트 또는 프로토타입 테스트를 수용하면서 연비 기준을 충족해야 하는 과제에 직면해 있다. 그 결과, 항력 계수 등 관심 있는 유동장 정보와 성능 관련 수치를 예측하여 필요한 실험 횟수를 크게 줄일 수 있는 시뮬레이션 기반 접근 방식이 점점 더 인기를 얻고 있다.   그림 1   유체 흐름의 난류를 이해하고 전산 유체 역학(CFD) 시뮬레이션을 통해 동일한 난류를 재현하려면 다양한 난류 모델을 사용해야 한다. 자동차 애플리케이션과 리소스 가용성에 따라 적합한 난류 모델을 선택하면 설계 주기를 단축하는 데 도움이 될 수 있다.    난류의 모델링 기법 ‘난류’는 압력과 속도의 혼란스러운 변화를 특징으로 하는 불규칙한 흐름을 일컫는 용어이다. 우리는 일상 생활에서 난류를 경험하며 공기 역학, 연소, 혼합, 열 전달 등과 같은 다양한 엔지니어링 응용 분야에서 중요한 역할을 한다. 하지만 유체 역학을 지배하는 나비에-스토크스 방정식은 매우 비선형적인 편미분 방정식이며 난류에 대한 이론적 해법은 존재하지 않는다. 난류는 광범위한 공간적, 시간적 규모를 포함하기 때문에 모델링과 시뮬레이션이 어려울 수 있다. 일반적으로 큰 와류는 난기류에 의해 생성된 에너지의 대부분을 전달하고 작은 와류는 이 에너지를 열로 발산한다. 이 현상을 ‘에너지 캐스케이드’라고 한다. 몇 년에 걸쳐 다양한 난기류 모델링 접근법이 개발되었으며, 가장 일반적인 세 가지 접근법을 간략히 설명한다. Direct Numerical Simulation(DNS) : DNS에서는 모델이나 근사치 없이 미세한 그리드와 매우 작은 시간 단계를 사용하여 모든 규모에서 난기류를 해결한다. DNS의 계산 비용은 엄청나게 높지만 결과는 가장 정확하다. DNS 시뮬레이션은 난류장에 대한 포괄적인 정보를 제공하기 위한 ‘수치 실험’으로 사용된다. Large-Eddy Simulation(LES) : 이름에서 알 수 있듯이 이 난류 모델링 기법은 큰 소용돌이를 해결하고 보편적인 특성을 가진 작은 소용돌이를 모델링한다. LES 시뮬레이션은 최소 길이 스케일을 건너뛰어 계산 비용을 줄이면서도 시간에 따라 변화하는 난기류의 변동 요소를 자세히 보여준다. Reynolds-Averaged Navier-Stokes Model(RANS) : RANS 방정식은 나비에-스토크스 방정식의 시간 평균을 취하여 도출되었다. 난기류 효과는 미지의 레이놀즈 응력 항을 추가로 모델링하여 시뮬레이션한다. RANS 시뮬레이션은 평균 흐름을 해결하고 난류 변동을 평균화하므로 다른 두 가지 접근 방식보다 훨씬 비용 효율적이다.   올바른 선택 : DNS, LES 또는 RANS 올바른 난류 모델을 선택하는 것은 모든 시뮬레이션의 중요한 측면이며, 이는 주로 시뮬레이션의 목적, 흐름의 레이놀즈 수, 기하학적 구조 및 사용 가능한 계산 리소스에 따라 달라진다. 학술 연구의 경우 DNS 시뮬레이션은 난류의 근본적인 메커니즘과 구조를 이해하는 데 가장 적합한 결과를 제공한다. DNS는 레이놀즈 수가 낮은 경우에 적합하지만, 막대한 시간과 리소스가 필요하기 때문에 대부분의 산업 분야에서는 실용적인 선택이 아니다. 반면에 LES는 일반적으로 레이놀즈 수가 높은 복잡한 형상을 포함하는 산업용 사례를 처리하는 데 적합한 옵션이다. LES가 생성하는 고충실도 결과물은 경쟁이 치열한 자동차 시장에서 중요한 한 차원 높은 성능 개선이 가능한 설계를 가능하게 한다.   그림 2    RANS 시뮬레이션은 LES에 비해 근사치의 범위가 넓기 때문에 정확도가 떨어진다. 그러나 정확도와 계산 비용 간의 균형으로 인해 RANS는 계산 리소스와 시뮬레이션 시간이 제한된 업계 사용자에게 일반적인 설루션이다. 이 방법은 또한 짧은 시간 내에 여러 사례를 분석해야 할 때 널리 사용된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
앤시스 LS-DYNA의 리스타트 기능 및 활용 방법
앤시스 워크벤치를 활용한 해석 성공 사례   해석을 하다 보면 사용자의 실수나 다른 외부 문제로 진행 중이던 해석이 중단되는 경우가 발생한다. 이러한 경우, 앤시스 LS-DYNA(엘에스 다이나)의 ‘리스타트(Restart)’ 기능을 활용하면 해석 시뮬레이션을 처음부터 다시 수행하지 않고 해석이 중단된 특정 시점부터 재시작할 수 있다. 또한 이미 완료된 해석에 대해 조건을 변경하여 해석 시뮬레이션을 이어서 진행할 수도 있다. 이번 호에서는 LS-DYNA의 리스타트 기능에 대해 소개하고, 예제를 통해 LS-PrePost(엘에스 프리포스트)와 워크벤치(Workbench) 환경에서 활용하는 방법을 알아본다.   ■ 김혜영 태성에스엔이 MBU팀에서 수석매니저로 근무하고 있으며, LS-DYNA 해석 기술지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   리스타트 해석의 수행 조건 리스타트 해석을 사용하기 위해서는 다음과 같은 조건이 필요하다.  동일한 실행 솔버(Executable)를 사용하는가?(예 : lsdyna_sp.exe)  동일한 CPU 개수인가?  Dump 파일이 생성되었는가? 덤프(Dump) 파일은 리스타트를 위한 바이너리 아웃풋(Binary Output) 파일로 특정 시점의 응력, 변형률, 변형량 등 해석 결과를 완전히 기록한다. LS-DYNA에는 두 가지 유형의 덤프 파일이 있다. 그 중 한 유형인 D3DUMP 파일은 특별히 설정하지 않아도 해석이 정상 종료되면 d3dump01 파일이 생성된다. 이 파일에 대하여 *DATABASE_BINERY_ D3DUMP 키워드를 통해 사용자가 정의한 간격에 따라 D3DUMP 파일을 주기적으로 생성할 수 있고, 생성된 파일 뒤에 숫자가 붙어 주기마다 증가하고 해석 폴더 내에서 d3dump01, d3dump02 등으로 확인할 수 있다. 다른 유형의 덤프 파일은 RUNRSF로 *DATABASE_BINERY_RUNRSF 키워드를 통해 사용자가 정의한 간격에 따라 파일을 생성하지만, NR 매개변수가 사용되지 않는 한 동일한 파일에 덮어씌워져서 생성된다. 이 두 가지 덤프 파일은 함께 사용할 수 있다. <그림 1>은 D3DUMP 파일을 주기적으로 저장하기 위한 *DATABASE_BINARY_D3DUMP 키워드 예시이다.   그림 1. D3DUMP 저장 간격 키워드 예시   리스타트 타입 LS-DYNA의 리스타트 타입(Restart Type)은 이전 해석에 이어서 수행하는 기능으로, 크게 세 가지로 나눌 수 있다. 심플 리스타트(Simple Restart) 스몰 리스타트(Small Restart) 풀 리스타트(Full Restart) 그러면, 이전 해석에 이어서 진행해야 하는 몇 가지 상황에 따라 어떤 타입의 리스타트 기능을 사용하는지 알아보자.    실수로 해석창을 닫았어요! – 심플 리스타트 심플 리스타트는 종료시간(Termination Time) 이전에 해석이 중단된 경우에, 사용자가 설정한 주기마다 저장된 d3dump 파일을 사용하여 특정 시점부터 해석을 다시 시작하는 기능이다. 따라서 변경 사항이 없어 입력 파일(Keyword Input Deck)이 필요하지 않고 d3dump 파일만 활용한다.    그림 2. 일반적인 해석 실행 화면(LS-RUN)   그림 3. 일반적인 해석 실행 화면(CMD 창)   <그림 2>와 같이 LS-RUN을 사용하여 해석을 수행한 경우 <그림 3>과 같은 CMD 창이 팝업되고, 해석 진행에 따른 메시지를 바로 확인할 수 있다. <그림 1>의 키워드 예시처럼 사용자가 덤프 파일의 저장 주기를 미리 설정하였다면, CMD 창에 나타난 메시지처럼 지정된 주기인 5000 사이클마다 덤프 파일이 저장되고 있음을 알 수 있다.  만약 1만 사이클 이후 실수로 해석 CMD 창을 닫아 해석이 중단되었다면, d3dump02를 사용하여 리스타트 해석을 수행할 수 있다. <그림 4>처럼 LS-RUN의 Expression 설정에서 i=$INPUT 대신 r=d3dump02로 명령어를 수정하면 덤프 파일을 사용하여 해석을 이어갈 수 있다.   그림 4. 심플 리스타트 해석 실행 화면(LS-RUN)   그림 5. 심플 리스타트 해석 실행 화면(CMD창)     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
변화와 흐름의 관찰
시점 – 사물이나 현상을 바라보는 눈 (5)   지난 호에서는 ‘정적 이미지’와 ‘동적 이미지’에 관하여 정의하고 두 이미지의 차이를 살펴보았다. 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보았다. 또한 정적 이미지에 시간 요소를 비롯한 새로운 차원의 요소를 추가하는 방법의 고안과 활용의 필요성을 강조하였다. 이번 호에서는 정적 이미지와 동적 이미지의 활용이라는 측면에서 ‘변화와 흐름의 관찰’ 방법과 관찰된 결과를 가시화 및 시각화하는 구체적인 사례를 함께 생각해 보기로 한다. 변화와 흐름의 본질부터 응용에 이르기까지 구체적인 사례를 소개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com    그림 1. 당구공 움직임 궤적의 가시화   변화와 흐름의 본질‘변화’는 사물의 성질, 모양, 상태 따위가 바뀌어 달라지는 것을 의미하고, ‘흐름’은 흐르는 것, 또는 한 줄기로 잇따라 진행되는 현상을 비유적으로 이르는 말로 일상적으로 사용된다. 두 가지 개념 모두 시간과 관계가 있다. 시간 역시 흐름의 하나이다. 다만 시간은 불가역적으로 과거로 돌아갈 수 없다. 시간이 실재하는 것인가 하는 것은 철학적인 이야기에 가깝다. 다만 시간의 특성을 이해하고 여러 가지 현상을 관찰하면 변화와 흐름을 발견하게 된다. 우리도 시간의 흐름과 더불어 나이를 먹고 늙어 간다. 모든 생명체에게 공통된 현상이다. 눈으로 확인하기도 어려운 현상이나 추상적인 주제에 관해서 설명하기보다는 눈으로 확인할 수 있는 것이 이해하기 쉽다.  당구는 경도가 높은 압축 플라스틱 재질로 만든 공을 사용하는 경기이다. 당구공은 충돌 시의 반발계수가 1에 가까운 완전 탄성체이다. 따라서 당구공끼리 충돌하는 것은 두 물체가 부딪친 후에도 운동 에너지의 합이 변하지 않는 ‘완전 탄성충돌’에 가깝다. 정면에서 충돌할 경우 운동량 보전 법칙이 성립하여 공이 서로의 속도를 교환한다. 물리법칙을 이해하고 공을 치는 방향과 힘을 조절해서 다른 공을 맞히는 게임이다. 공을 치게 되면 공이 움직이게 되니 시시각각으로 위치와 속도가 달라진다. 즉 시간에 따른 위치 변화와 흐름이 발생한다.  <그림 1>은 당구대의 위쪽에 고정된 카메라로 노란 당구공을 쳐서 초록색 당구공을 오른쪽 위 귀퉁이에 넣는 장면을 촬영한 동영상에서 적당한 시간 간격으로 프레임을 발췌하여 합성한 이미지를 소개하였다. 하나의 이미지에서는 같은 시간 간격으로 프레임을 발췌하여 합성한 것이므로, 여러 개의 노란색 공의 위치는 같은 시간 간격으로 촬영된 것이다. 녹색 공 또한 마찬가지이다. 같은 색 공 사이의 간격이 넓은 것은 공의 이동 속도가 빨랐다는 것을 의미하고, 간격이 좁은 것은 그 공의 이동 속도가 빠르지 않았음을 의미한다. 공과 공 사이의 거리를 측정해서 프레임 간의 시차로 나누면 해당 구간의 속도를 구할 수도 있다. 고속으로 촬영해서 이미지를 합성하면 공이 전부 연결되어 공이 지나간 궤적을 그려낼 수 있을 것이다. 이러한 이미지를 합성해서 변화와 흐름을 시각화하는 방법을 포함해서 다양한 방법이 활용되고 있으며, 앞으로도 새로운 개념의 방법도 나타날 것으로 기대한다. 어떤 방법들이 고안되었으며 활용되고 있는지 살펴보도록 한다.   일상적으로 사용되는 흐름을 측정하는 기기 흐름에는 무엇이 있을까? 바람이 불면 공기의 흐름이 있고 강에는 물이 흐른다. 보도에는 사람들의 흐름이 있고 도로에는 차량의 흐름이 있다. 비가 오거나 눈이 내리는 것도 자연스러운 물의 순환(흐름)이다. 일상생활에서도 흐름을 측정하는 기기들이 셀 수 없이 많이 있다. 전류계, 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터 등이다.(그림 2) 실험용 전류계는 실시간으로 흐르는 전하량을 전류로 표시하고 있다. 전체적으로 얼마나 사용했는지는 알 수 없다. 전류가 흐르지 않으면 그 순간 0을 표시하기 때문이다. 전체적인 흐름의 양을 알려고 하면 시시각각의 흐름을 적산해서 표시해야 한다. 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터는 사용량을 적산하는 방식을 채용하여 사용량에 맞춰 요금을 부과하는 방식이다.  흥미롭게도 여기에서 소개한 흐름을 측정하는 모든 기기는 전선이나 배관을 통해서 흐르는 것이다. 전기는 누전되지 않는 한 전선을 벗어나서 흐르는 일이 없다. 물과 가스 또한 누수 또는 가스의 누출이 없는 상태에서 사용한다. 즉 모든 흐름의 측정은 폐쇄회로에서 이루어진다. 그런 의미에서 <그림 1>의 당구대 평면 상의 당구공 위치 변화를 동영상 정보를 바탕으로 추적한 사례는 특이한 경우로 볼 수 있다.    그림 2. 주변에서 흔히 볼 수 있는 흐름을 측정하는 기기     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
알테어, kt 클라우드에서 시뮬레이션·AI 분석 설루션 제공
알테어가 kt 클라우드(kt cloud)와 업무협약(MOU)을 맺고 kt 클라우드 인프라 기반에서 자사의 시뮬레이션, 인공지능(AI) 및 데이터 분석 설루션을 제공하기 위한 협력을 본격화한다고 밝혔다.   이번 협약을 통해 알테어는 자사 소프트웨어 플랫폼 ‘알테어 하이퍼웍스’와 ‘알테어 래피드마이너’의 제품을 kt 클라우드 플랫폼에 최적화된 형태로 제공할 예정이며, 이를 통해 고객은 별도의 설치나 복잡한 환경 구축 없이 브라우저 기반으로 손쉽게 설루션을 활용할 수 있게 된다.   알테어는 특히 메시리스(meshless) 기반 구조 해석 설루션, 노코드·로코드 기반 AI 프로젝트 관리 설루션 등 접근성 높은 제품들이 클라우드 환경에서 제공됨으로써, 다양한 수준의 사용자가 복잡한 엔지니어링 및 데이터 분석 업무를 보다 빠르고 효율적으로 수행할 수 있게 될 것으로 보고 있다.   또한, 양사는 이번 협력을 시작으로 클라우드 기반 고성능 컴퓨팅(HPC) 환경에서의 사용자 경험을 강화하고, 기술 도입 장벽을 낮춰 산업 전반의 디지털 혁신을 가속화하는 데 기여할 계획이다.     kt 클라우드의 공용준 본부장은 “알테어와 협력을 통해 산업용 클라우드 서비스의 혁신을 가속화하며, 산업 전반에 걸쳐 보다 효과적인 디지털 전환이 가능해질 것으로 기대한다”며, “다양한 파트너사와의 협력을 이어가며 최적화된 클라우드 서비스를 제공하고 고객 만족도 향상에 최선을 다할 것”이라고 밝혔다.   한국알테어의 김도하 지사장은 “kt 클라우드 인프라 기반에서 알테어 설루션을 제공함으로써, 고객은 더 빠르고 유연하게 시뮬레이션과 AI 분석을 실행할 수 있는 환경을 갖추게 됐다”며, “앞으로도 알테어는 클라우드 전환을 지원하고, 누구나 전문 기술을 쉽게 활용할 수 있는 구조를 만들어 가겠다”고 밝혔다.
작성일 : 2025-04-30