• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 플루언트"에 대한 통합 검색 내용이 130개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
앤시스 플루언트를 이용한 혈류 해석 워크플로
앤시스 워크벤치를 활용한 해석 성공 사례   다양한 산업에서 제품 설계 및 안정성 평가를 위한 실험에 많은 비용과 노력이 소요됨에 따라, 가상의 공간에서 사용자가 원하는 실험 환경을 구성하여 결과를 도출하는 방식이 증가하고 있다. 또한, 해석을 많이 활용하지 않던 산업군에서도 시뮬레이션을 도입하는 단계에 있다. 그 중 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 해석과 임플란트 해석에 대한 수요가 증가하고 있다. 해석 결과를 바탕으로 안정성과 구조적 성능을 평가하고, 이를 임상 결과 데이터로 보완하는 과정이 이루어지고 있다. 이번 호에서는 3D 슬라이서(3D Slicer)와 앤시스 플루언트(Ansys Fluent)를 활용하여 혈관 모델링부터 혈류 해석까지의 워크플로를 소개하고자 한다.   ■ 김지원 태성에스엔이 FBU-F1팀의 매니저로, 열 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   현재 대부분의 기업이 시뮬레이션을 적극 적용하고 있으며, 특히 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 분석에 대한 수요가 증가하고 있다. 이러한 분석은 혈관 협착증 및 인조혈관의 안정성과 구조적 성능을 평가하는 새로운 방법으로 중요한 역할을 한다. CT와 MRI 기술의 발달로 체내 모습을 3D 영상으로 시각화할 수 있게 되면서, 유체역학과 의학 간 융합 연구의 발전이 기대되고 있다. 특히 혈관 질환의 발생 원인을 규명하기 위해 혈류 해석을 기반으로 혈류 역학적 특성을 분석하는 추세다. 또한, 비침습적 방법을 활용하여 환자의 혈관을 진단하고 평가하는 기술이 주목받고 있다. 이번 호에서는 혈류 해석을 수행하기 위해 주요 혈관 모델링 툴을 활용한 혈관 추출 방법, 혈액의 물성치 설정, 그리고 경계 조건 설정 과정에 대해 다루고자 한다.   전처리(Pre-Processing) 대동맥 혈관의 3차원 영상 및 모델링 앤시스의 모델링 툴에는 환자의 3D CT 영상을 STL 파일로 직접 추출하는 기능이 존재하지 않는다. 따라서 이번 호에서는 상용 프로그램인 3D 슬라이서를 사용한다. 3D 슬라이서는 의료 이미징 데이터를 시각화하고 분석하는 오픈소스 소프트웨어 플랫폼으로 영상 분석, 3D 모델링, 디자인 등을 통해 종합적인 의료 영상 처리를 수행하는 전문 소프트웨어다. 이를 통해 DICOM 파일을 기반으로 3D 형상을 추출할 수 있다.    그림 1. 3D 슬라이서에서 혈관 추출   <그림 1>은 3D 슬라이서를 이용하여 혈관을 추출한 과정이다. CT 촬영 시 혈관 조직을 명확하게 구분하기 위해 조영제를 주입하면, HU(Hounsfield Units) 수치로 표현되어 특정 HU 값 범위에서 혈관을 쉽게 추출할 수 있도록 구성된다. 또한, 유동 해석을 위해 격자를 생성하는 과정에서 모델링 단계에서 패싯(facet)을 스무딩(smoothing)하는 옵션을 적용하여 형상을 정리한다. 혈관 모델링이 완료된 후, DICOM 파일을 STL 파일로 변환한다.    대동맥 혈관의 3차원 영상 및 모델링 앤시스 스페이스클레임(Ansys SpaceClaim)에서 변환한 STL 파일을 가져오면 패싯을 확인할 수 있으며, 이를 볼륨(volume) 형태로 변환하는 과정을 진행한다. 볼륨 형태로 변환하기 위해 모델을 확인하면, <그림 2>와 같이 돌출되거나 뚫린 패싯 등 변환이 어려운 영역이 존재한다.   그림 2. Faulty facet areas   그림 3. Converting from facet to volume   솔브(Solve) 혈액 물성치 이번 호에서는 혈류 해석을 수행하기 위해 플루언트를 사용하며, 혈액의 거동을 수치적으로 해석하기 위해 혈액의 밀도와 점성 계수를 입력한다. 혈액은 전단 응력에 따라 점도가 변하는 비뉴턴 유체이며, 이러한 특성을 반영하기 위해 Carreau 모델을 적용한다. Carreau 모델은 비뉴턴 유체의 점성 거동을 정의하는 구성 방정식이며, 이는 <그림 4>의 수식과 같이 계산된다.   그림 4. Carreau 모델 수식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
앤시스, 자사 소프트웨어 2종에 엔비디아 옴니버스 통합
앤시스가 시뮬레이션 성능 향상을 위해 엔비디아 옴니버스(NVIDIA Omniverse)와 자사 소프트웨어를 통합한다고 밝혔다. 오는 3분기부터 엔비디아 옴니버스와 통합될 소프트웨어는 유체 시뮬레이션 소프트웨어 앤시스 플루언트(Ansys Fluent)와 자율주행차 센서 모델링 및 테스트용 소프트웨어 앤시스 AV엑셀러레이트 센서(Ansys AVxcelerate Sensors) 등 2종이다. 앤시스는 “이번 통합을 바탕으로 데이터 수집 자동화와 고정밀 모델을 구현해 시뮬레이션 프로세스를 간소화하고 보다 깊이 있는 인사이트를 제공할 것으로 기대된다”면서, “이를 통해 엔지니어가 시뮬레이션의 결과를 의사 결정권자, 제품 이해관계자 및 잠재 고객에게 전달 시의 부담도 덜게 될 것으로 보인다”고 전했다.     시뮬레이션을 위한 대량의 데이터를 준비하려면 데이터의 품질, 상호운용성, 유연성을 확보해야 한다. 이는 일반적으로 사용자가 하나의 시뮬레이션 모델에 대한 매개변수를 준하기 위해 여러 소프트웨어를 사용함을 의미한다. 또한 모델의 매개변수화 이후 시각화를 위해 추가적인 전문 도구 및 지식이 필요한 경우가 많다. 앤시스의 소프트웨어는 엔비디아 옴니버스를 활용함으로써 3D 신(scene) 데이터의 상호운용성, 확장성 및 모듈성을 강화시킬 수 있는 개방형 생태계를 제공한다. 옴니버스를 통해 고객은 시뮬레이션 데이터를 쉽게 준비할 수 있으며, 이는 특히 앤시스 AV 액셀러레이트 센서에서 유용하게 활용할 수 있다. 사용자는 앤시스의 인터페이스 내에서 몰입감 있고 사실적인 모델을 렌더링할 수 있어 실시간 협업을 지원하고, 결과를 더욱 효과적으로 전달할 수 있다. 이에 더해 사용자가 앤시스 설루션 포트폴리오 전반에 적용해 광범위한 개발 생태계를 구축할 수 있는 오픈 소스 파이썬(Python) API 소프트웨어 패키지인 파이앤시스(PyAnsys)는 시뮬레이션 데이터를 자동으로 포맷하기 때문에, 시뮬레이션 실무자와 개발자는 엔비디아 옴니버스에 구축된 자체 앱 내에서 시뮬레이션을 쉽게 사용자 지정 및 자동화할 수 있다. 일례로 아스팔트 도로 건설, 골재 처리 및 콘크리트 생산을 위한 특수 장비를 제조하는 아스텍 인더스트리스(Astec Industries)는 앤시스 소프트웨어를 사용해 아스팔트 드럼 건조기와 수소 버너를 설계 및 최적화하고 있다. 아스텍 인더스트리스의 첨단 기술 디렉터인 앤드류 홉스(Andrew Hobbs) 박사는 “앤시스 플루언트에 옴니버스가 통합되면서 복잡한 물리 시뮬레이션을 시각화할 수 있게 되어 당사와 고객 모두 장비가 어떻게 작동하는지 직관적으로 파악, 놀라울 정도로 디테일한 인사이트를 얻을 수 있었다”면서, “장비의 내부처럼 실제 관측이 불가능한 환경을 시뮬레이션함으로써 제품이 실제로 어떻게 작동할 것인지에 대한 이해를 높일 수 있을 뿐만 아니라, 성능과 효율을 극대화해 최적화된 설계가 가능해졌다. 이로써 고객들에게 혁신적인 장비와 경쟁력을 제공할 수 있어 만족스럽다”고 말했다. 앤시스의 셰인 엠스와일러(Shane Emswiler) 제품 부문 수석 부사장은 “지금의 디지털 엔지니어링은 직관적이고 효율적이며 또 혁신적인 제품을 설계하기 위해 기술 간 호환성에 더욱 의존하고 있다. 앤시스는 이에 발맞춰 엔비디아와의 협력을 지속 강화해 고객이 시뮬레이션의 결과를 실제처럼 구현, 기존에는 얻기 힘들었던 인사이트를 확보할 수 있도록 지원하고 있다”면서, “이 모든 과정을 앤시스의 익숙한 인터페이스에서 손쉽게 수행할 수 있다는 점이 프로젝트의 일정을 단축하고 제품을 더 빠르게 시장에 출시하는 데에 큰 도움을 줄 것으로 기대한다”고 말했다. 엔비디아의 레브 레바레디언(Rev Lebaredian) 옴니버스 및 시뮬레이션 기술 담당 부사장은 “엔비디아 옴니버스의 강력한 시각화 기능과 앤시스 소프트웨어의 예측 정확도를 결합하면 시뮬레이션 인사이트에 대한 접근성을 확대하는 강력한 디지털 엔지니어링 환경을 구축할 수 있다”고 말했다.
작성일 : 2025-03-26
앤시스, 엔비디아와 협업으로 볼보자동차 CFD 시뮬레이션 속도 향상
앤시스가 엔비디아, 볼보자동차와 협력해 공기역학 시뮬레이션 분야에서 우수한 성과를 달성했다고 밝혔다. 앤시스는 엔비디아 블랙웰(NVIDIA Blackwell) GPU 8개를 시뮬레이션 솔버에 활용하고 CPU 코어를 메싱에 적용한 결과, 전체 시뮬레이션 실행 시간을 기존 24시간에서 6.5시간으로 단축했다. 앤시스는 이번 성과를 통해 반복적인 설계 작업을 가능케 하며, 배터리 전기차(BEV) 최적화 연구를 더욱 심도 있게 지원하고 개발 기간 단축과 시장 출시 속도 가속화에 기여할 것이라고 밝혔다. 또한, 이번 협업이 자동차 산업을 비롯한 항공우주, 모터스포츠, 소비자 전자제품 등 정밀한 유체 흐름 시뮬레이션이 요구되는 다양한 산업 분야에서 새로운 기준을 제시할 것으로 기대하고 있다. 볼보자동차는 전기차 배터리 성능 향상을 위해 고성능 컴퓨팅(HPC)과 전산유체역학(CFD)을 적극 활용하고 있다. 특히, 전기차의 주행 거리 향상에 큰 영향을 미치는 공기역학적 항력(aerodynamic drag)을 최소화하는 작업이 중요한 과제로 떠오르고 있는 가운데, 이를 최적화하기 위해 정밀한 시뮬레이션이 필수로 요구된다. 그러나 고정밀도의 CFD 시뮬레이션은 상당한 시간과 연산 자원을 요구하며, 높은 비용이 소요되는 동시에 최적화 기회가 제한되는 한계점이 있다.     앤시스와 볼보자동차는 EX90 전기자동차의 에너지 효율성 및 주행거리 향상을 위해 앤시스 플루언트(Ansys Fluent)를 엔비디아 블랙웰 GPU 8개로 확장해 메싱에 1시간, 솔버에 5.5시간이 소요되는 최적화된 엔드 투 엔드 워크플로를 구현했다. 기존에 2016개의 CPU 코어를 사용해 동일한 시뮬레이션을 실행한 경우와 비교하면 솔버 실행 시간이 2.5배 빨라진 것이다. 이러한 기술 결합은 볼보자동차가 CFD 시뮬레이션을 하루에 여러 차례 반복 실행하고, 다양한 설계 변수를 평가해 설계 최적화를 획기적으로 수행할 수 있도록 지원한다. 시뮬레이션 프로세스 속도가 빨라짐에 따라 볼보자동차는 배출가스 저감, 주행거리 연장, 효율성 향상 등 국제표준시험방식(WLTP)의 핵심 기준을 더욱 효과적으로 충족할 수 있을 것으로 기대하고 있다. 볼보자동차의 토르비욘 비르둥(Torbjörn Virdung) CFD 기술 총괄 책임자는 “앤시스 시뮬레이션을 활용하면 기존 방식보다 더욱 빠르게 설계를 최적화하고 가상 테스트까지 수행할 수 있다”며, “제품 효율을 높이기 위해서는 우리가 사용하는 툴과 설루션의 성능을 우선적으로 점검해야 한다”고 밝혔다. 또한 “앤시스 플루언트는 정밀한 분석이 가능한 데다 엔비디아의 인프라를 통해 계산 속도까지 대폭 향상돼 다양한 설계 옵션을 더욱 빠르고 폭넓게 검토할 수 있어, 결과적으로 우리가 최적의 차량 설계를 단기간에 구현할 수 있게 됐다”고 덧붙였다. 앤시스의 셰인 엠스와일러(Shane Emswiler) 제품 부문 수석 부사장은 “이번 사례는 GPU 기반의 시뮬레이션이 혁신을 촉진하고 제품 출시 기간을 단축할 수 있음을 보여준다”며, “정밀한 모델링과 빠른 연산 속도를 결합한 GPU 가속 시뮬레이션을 통해 고객은 보다 많은 시뮬레이션을 수행하고 최상의 성능을 가진 제품을 개발할 수 있다”고 말했다. 엔비디아의 팀 코스타(Tim Costa) CAE EDA 및 양자 부문 수석 이사는 “앤시스와 볼보자동차의 이번 협력은 엔비디아의 최신 블랙웰 인프라 설루션이 지닌 뛰어난 성능과 확장성을 엔지니어링 시뮬레이션 분야에서 입증한 것”이라며, “엔비디아는 앤시스와 같은 소프트웨어 파트너와 함께 컴퓨터 기반 엔지니어링의 미래를 선도하고 있으며, 전에 없던 뛰어난 성능과 높은 확장성을 제공해 고객들이 복잡한 엔지니어링 과제를 해결할 수 있도록 지원할 것”이라고 밝혔다.
작성일 : 2025-03-24
앤시스 2025 R1 : 클라우드·AI·데이터 혁신 가속화를 위한 디지털 엔지니어링 설루션
개발 및 공급 : 앤시스코리아 주요 특징 : 사용자 학습 데이터 기반의 AI로 후처리 과정에서 심층 인사이트 제공, 시스템 아키텍처 모델러에 SysML v2 지원 추가해 협업 촉진 및 제품 설계 최적화 가속, HPC 라이선스 없이 엔터프라이즈급 CFD 기능 제공하는 앤시스 CFD HPC 얼티메이트 출시 등   앤시스가 디지털 엔지니어링 혁신을 지원하는 AI 기반 엔지니어링 시뮬레이션 설루션인 ‘앤시스 2025 R1(Ansys 2025 R1)’을 발표했다. 앤시스 2025 R1은 정교한 디지털 엔지니어링 기술을 통해 기존 인프라와 원활하게 연계될 뿐 아니라, 업무 중단을 최소화하면서 보다 혁신적인 제품 개발을 위한 협업을 지원한다. AI, 클라우드 컴퓨팅, GPU 및 HPC의 강력한 성능을 기반으로 한 이번 업데이트는 더욱 신속하고 협력적인 의사 결정을 가능케 하며, 설계 탐색 범위를 확장하고 제품 설계 기간 단축에 기여할 전망이다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스 2025 R1은 더욱 강력한 통합 기능을 제공해, 제품 전체 수명 주기에 걸쳐 디지털 프로세스를 구축하고 개발 전후 데이터를 효율적으로 관리할 수 있는 다양한 도구와 설루션을 제공할 것”이라면서, “하나의 데이터 기반의 환경에서 서로 단절된 팀도 원활하게 협업할 수 있도록 지원하며, 이를 통해 비용 절감과 제품 출시 기간을 단축시켜 고객의 경쟁력 강화에 기여할 것”이라고 밝혔다. 제품이 점차 통합되고 복잡해짐에 따라 R&D 프로세스 또한 급변하는 시장 요구에 맞춰 지속적으로 발전해야 한다. 앤시스는 고객의 디지털 전환 과정을 원활하게 지원하며, 변화하는 시장 환경에 대응할 수 있도록 다양한 도구와 설루션을 제공할 예정이다.   ▲ 이미지 출처 : 앤시스 웹사이트 캡처   향상된 물리 솔버 제품 성능을 보장하려면 구성 요소부터 시스템 전반에 이르는 멀티피직스(multi-physics)를 이해하는 것이 필수이다. 앤시스 2025 R1은 신속하고 정밀한 물리 기반 시뮬레이션 결과를 제공하는 신제품뿐만 아니라, 기존 제품의 강화된 기능을 통해 엔지니어링 팀이 설계 초기 단계에서 보다 신뢰성 높은 의사 결정을 내릴 수 있도록 지원할 전망이다. 앤시스 디스커버리(Ansys Discovery) 3D 시뮬레이션 소프트웨어는 전열(electrothermal) 분석, 오소트로픽(orthotropic) 전도, 내부 팬(fans) 기능을 추가해 써멀 모델링 역량을 확장했으며 속도 및 사용 편의성을 개선했다. 구조 해석 설루션은 소음·진동·마찰(NVH)에 대한 통합 설루션을 제공하며, 주파수 응답 함수(FRF) 계산 속도가 10배 향상됐다. 또한 진동음향(vibro-acoustics) 매핑, 최적화된 메싱, 모드 기여도 분석 기능 등을 탑재했다. 앤시스 일렉트로닉스(Ansys Electronics)는 앤시스 소프트웨어 제품 간 연결성을 강화해 3D 집적 회로에 중요한 메싱을 개선하며 자동화된 워크플로우 기능, 향상된 시뮬레이션 성능 등을 제공한다. 새로운 폴리머 FEM(Polymer FEM) 제품은 높은 정확도의 모델을 적용해 실제 재료의 거동을 정밀하게 포착하며, 고객의 고급 재료 시뮬레이션 요구 사항을 충족한다.   클라우드/HPC/GPU 클라우드 컴퓨팅, 고성능 컴퓨팅(HPC) 및 GPU의 강력한 성능은 최신 제품의 엔지니어링 속도를 혁신적으로 변화시키고 있다. 이 과정에서 접근성, 상호 운용성, 확장성은 핵심 요소로 작용하며, 고객이 데스크톱 애플리케이션의 한계를 넘어서서 보다 혁신적인 제품을 협업하여 설계할 수 있도록 지원한다. 앤시스 2025 R1은 GPU 솔버의 성능을 한층 강화했으며, 다양한 애플리케이션에 웹 기반 온디맨드(on-demand) 기능을 추가 제공한다. 앤시스 플루언트(Ansys Fluent)  멀티 GPU(multi-GPU) 유체 시뮬레이션 솔버는 자동차 외부 공기 역학과 같은 대규모 메시 셀(mesh cell)을 포함한 고해상도 해석을 지원한다. 또한, 전체 시뮬레이션 속도 저하 없이 매개변수 추가 및 정확도 개선을 설계자에게 제공한다. 앤시스 CFD HPC 얼티메이트(Ansys CFD HPC Ultimate)는 추가 HPC 라이선스 없이 단일 작업에서 여러 CPU 코어 또는 GPU를 활용할 수 있는 엔터프라이즈급 전산유체역학(CFD) 기능을 제공한다. 앤시스 루메리컬 FDTD(Ansys Lumerical FDTD)의 새로운 GPU 가속 3D 전자기 시뮬레이션은 기존 CPU 솔버 대비 메모리 사용량을 50% 절감하며 메싱 시간을 20% 줄인다. 앤시스 메커니컬(Ansys Mechanical)의 GPU 직접 가속 구조 유한 요소 해석(FEA) 솔버는 기존 설루션 대비 최대 6배 빠른 성능을 제공하며, 반복 솔버(iterative solver)는 CPU 전용 솔버 대비 6배 빠른 속도를 구현한다. 앤시스 디스커버리(Ansys Discovery)의 클라우드 버스트 컴퓨팅(Cloud Burst Compute) 기능을 활용하면 1000개의 설계 변형을 10분 만에 해결할 수 있다. 엔비디아 GPU를 활용한 디스커버리의 매개변수 연구(parametric study) 속도는 100배 이상 향상된다. 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute) 기능은 앤시스 메카니컬 (Ansys Mechanical), 앤시스 플루언트(Ansys Fluent) 및 앤시스 HFSS(Ansys HFSS) 고주파 전자기 시뮬레이션 소프트웨어를 위한 유연하고 확장 가능한 온디맨드(on-demand) HPC 성능을 제공한다.   인공지능 앤시스는 인공지능(AI) 기반 기술을 통해 포트폴리오를 지속적으로 확장하며, 컴퓨터 지원 엔지니어링(CAE) 산업에 혁신적인 속도와 접근성을 제공한다. 앤시스 AI는 신규 및 기존 데이터를 활용해 빠르게 설계를 분석하고 AI 모델을 신속하게 학습시켜 제품 출시 기간을 단축시키는 한편 비용 절감 효과를 극대화한다. 직관적인 인터페이스를 갖춘 데이터 처리 도구 지원을 통해 SimAI 모델링을 위한 데이터 준비 과정을 간소화한다. 앤시스 SimAI는 사용자가 모델 학습 데이터를 확장해 후처리 과정에서 더욱 정교한 분석을 수행할 수 있도록 지원한다. 앤시스 일렉트로닉스 AI+(Ansys Electronics AI+)는 AI 기반 기술을 활용해 앤시스 멕스웰(Ansys Maxwell) 전기기장(electromagnetic field) 해석 솔버, 앤시스 아이스팩(Ansys Icepak), 전자기 냉각 시뮬레이션 소프트웨어, HFSS 등에서 수행되는 전자기 시뮬레이션의 필요 리소스 실행 시간을 정밀하게 예측한다. 앤시스 RF 채널 모델러(Ansys RF Channel Modeler)의 고급 합성 레이더 시뮬레이션 기능은 지상에서 AI를 활용한 표적 식별을 위해 폭넓은 학습 및 검증 데이터 세트를 제공하여, 디지털 미션 엔지니어링 분야를 지원한다.   ▲ 이미지 출처 : 앤시스 웹사이트 캡처   연결된 에코시스템 최첨단 연구개발(R&D) 환경에서는 모델 기반 시스템 엔지니어링(MBSE) 및 자동화 설계를 도입하여 연구개발 워크플로를 원활하고 효율적으로 유지하는 것이 중요하다. 앤시스 엔지니어링 설루션은 기존 인프라에도 새로운 기술을 쉽게 통합할 수 있도록 높은 호환성과 확장성을 갖춰 제품 설계의 혼선을 방지할 수 있다. 앤시스 2025 R1은 디지털 전환을 더욱 원활하게 지원할 수 있도록 MBSE 기능과 데이터 관리 기능이 강화되었다. 앤시스 모델센터(ModelCenter) MBSE 소프트웨어와 앤시스 시스템 아키텍처 모델러(System Architecture Modeler : SAM)는 SysML v2 지원을 강화해 엔지니어링 조직 전반에서 제품 요구 사항의 접근성과 확장성을 높이고, 팀 간 협업을 더욱 긴밀하게 연결하여 개발 시간 단축에 기여한다. 앤시스 모델센터(ModelCenter)는 MBSE 연결성이 향상되어 호환성을 높였고, 카펠라(Capella) 커넥터 기능이 강화되었으며, 앤시스 적으로 제공한다. SAM과의 더욱 긴밀한 통합을 통해 검색, 저장 및 수정 기능을 보다 직관적으로 제공한다. 앤시스 미네르바(Ansys Minerva) 시뮬레이션 프로세스 및 데이터 관리 소프트웨어인 미네르바는 일반 커넥터 개선을 통해 외부 데이터 연동을 표준화하며, 업로드 전 문제점 검증을 가능케 하여 제품 생산 시간 및 비용 절감에 기여한다. 커넥터는 새로운 비동기 작업 실행 기능이 추가돼 엔지니어의 생산성을 개선한다.   기타 앤시스 2025 R1의 주요 특징 앤시스 옵티슬랭(Ansys optiSLang) 프로세스 통합 및 설계 최적화 소프트웨어로 인터페이스, 분산 컴퓨팅, 고급 알고리즘 등 전반적인 개선으로 설계 워크플로의 유연성과 성능을 강화한다. 앤시스 그란타 MI(Ansys Granta Materials Intelligence) 제품군은 컴퓨터 이용 공학(CAE), 컴퓨터 지원 설계(CAD), 제품 수명주기 관리(PLM) 등의 소프트웨어와 공통 사용환경을 제공하여, 그란타(Granta) 최종 사용자 인터페이스와 통합 인터페이스 간 일관된 사용자 경험을 제공한다. 앤시스 플루언트(Ansys Fluent)의 내결함성 메싱(FaultTolerant Meshing : FTM)과 수밀 메싱(watertight meshing)에 적용된 작업 기반 성능을 개선해 메싱 속도를 가속화한다.  전력 필드 효과 트랜지스터(FET) 및 전력 관리 집적회로(PMIC)의 분석, 시뮬레이션, 최적화를 위한 신규 도구로 앤시스 파워X(Ansys PowerX)를 제공한다.    ▲ 이미지 출처 : 앤시스 웹사이트 캡처     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-03-06
앤시스, 클라우드·AI·데이터 혁신 가속화를 위한 ‘앤시스 2025 R1’ 발표
앤시스가 디지털 엔지니어링 혁신을 위한 AI 기반 엔지니어링 시뮬레이션 설루션인 ‘앤시스 2025 R1(Ansys 2025 R1)’을 발표했다. 앤시스 2025 R1은 정교한 디지털 엔지니어링 기술을 통해 기존 인프라와 원활하게 연계될 뿐 아니라, 업무 중단을 최소화하면서 보다 혁신적인 제품 개발을 위한 협업을 지원한다. 앤시스는 “AI, 클라우드 컴퓨팅, GPU 및 HPC의 강력한 성능을 기반으로 한 이번 업데이트가 더욱 신속하고 협력적인 의사 결정을 가능케 하며, 설계 탐색 범위를 확장하고 제품 설계 기간 단축에 기여할 전망”이라고 전했다. 제품이 점차 통합되고 복잡해짐에 따라 R&D 프로세스 또한 급변하는 시장 요구에 맞춰 지속적으로 발전해야 한다. 앤시스는 고객의 디지털 전환으로의 과정을 원활하게 지원하며, 변화하는 시장 환경에 대응할 수 있도록 다양한 도구와 설루션을 제공할 예정이다.     제품 성능을 보장하려면 구성 요소부터 시스템 전반에 이르는 멀티피직스(Multi-Physics)를 이해하는 것이 필수이다. 앤시스 2025 R1은 신속하고 정밀한 물리 기반 시뮬레이션 결과를 제공하는 신제품뿐만 아니라, 기존 제품의 강화된 기능을 통해 엔지니어링 팀이 설계 초기 단계에서 보다 신뢰성 높은 의사 결정을 내릴 수 있도록 지원할 전망이다. 앤시스 디스커버리(Ansys Discovery) 3D 시뮬레이션 소프트웨어는 전열(electrothermal) 분석, 오소트로픽(orthotropic) 전도, 내부 팬(fans) 기능을 추가해 서멀 모델링 역량을 확장했으며 속도 및 사용 편의성을 개선했다. 구조 해석 설루션은 소음·진동·마찰(NVH)에 대한 통합 설루션을 제공하며, 주파수 응답 함수(FRF) 계산 속도의 10배 향상, 진동-음향(vibro-acoustics) 매핑, 최적화된 메싱, 모드 기여도 분석 기능 등을 탑재했다. 앤시스 일렉트로닉스(Ansys Electronics)는 앤시스 소프트웨어 제품 간 연결성을 강화해 3D 집적 회로에 중요한 메싱 개선, 자동화된 워크플로 기능, 향상된 시뮬레이션 성능을 제공하며, 새로운 폴리머 FEM(Polymer FEM) 제품은 높은 정확도의 모델을 적용해 실제 재료의 거동을 정밀하게 포착 및 고객의 고급 재료 시뮬레이션 요구 사항을 충족한다. 클라우드 컴퓨팅, HPC 및 GPU의 강력한 성능은 최신 제품의 엔지니어링 속도를 혁신적으로 변화시키고 있다. 이 과정에서 접근성, 상호 운용성, 확장성은 핵심 요소로 작용하며 고객이 데스크톱 애플리케이션의 한계를 넘어서서 보다 혁신적인 제품을 협업하여 설계할 수 있도록 지원한다. 앤시스 2025 R1은 GPU 솔버의 성능을 한층 강화했으며, 다양한 애플리케이션에 웹 기반 온디맨드(on-demand) 기능을 추가 제공한다. 앤시스 플루언트(Ansys Fluent)  멀티 GPU 유체 시뮬레이션 솔버는 자동차 외부 공기 역학과 같은 대규모 메시 셀(mesh cell)을 포함한 고해상도 해석을 지원. 전체 시뮬레이션 속도 저하 없이 매개변수 추가 및 정확도 개선을 설계자에게 제공한다. 앤시스 CFD HPC 얼티메이트(Ansys CFD HPC Ultimate)는 추가 HPC 라이선스 없이 단일 작업에서 여러 CPU 코어 또는 GPU를 활용할 수 있는 엔터프라이즈급 전산유체역학(CFD) 기능을 제공한다. 앤시스 루메리컬 FDTD(Ansys Lumerical FDTD)의 새로운 GPU 가속 3D 전자기 시뮬레이션은 기존 CPU 솔버 대비 메모리 사용량을 50% 절감 및 메싱 시간 20% 단축하며, 앤시스 메커니컬(Ansys Mechanical)의 GPU 직접 가속 구조 유한 요소 해석(finite element analysis, FEA) 솔버는 기존 설루션 대비 최대 6배 빠른 성능을 제공한다. 앤시스 디스커버리(Ansys Discovery)의 클라우드 버스트 컴퓨팅(Cloud Burst Compute) 기능을 활용하면 1000개의 설계 변형을 10분 만에 해결할 수 있으며, 엔비디아 GPU를 활용한 디스커버리의 매개변수 연구(parametric study) 속도는 100배 이상 향상된다. 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute) 기능은 앤시스 메커니컬(Ansys Mechanical), 앤시스 플루언트(Ansys Fluent) 및 앤시스 HFSS(Ansys HFSS) 고주파 전자기 시뮬레이션 소프트웨어를 위한 유연하고 확장 가능한 온디맨드(on-demand) HPC 성능을 제공한다. 또한, 앤시스는 AI 기반 기술을 통해 포트폴리오를 지속적으로 확장하며 컴퓨터 지원 엔지니어링(CAE) 산업에 혁신적인 속도와 접근성을 제공한다고 소개했다. 앤시스 AI는 신규 및 기존 데이터를 활용해 빠르게 설계를 분석하고 AI 모델을 신속하게 학습시켜 제품 출시 기간을 단축시키는 한편 비용 절감 효과를 극대화한다. 앤시스는 직관적인 인터페이스를 갖춘 데이터 처리 도구를 지원해 심AI(SimAI) 모델링을 위한 데이터 준비 과정을 간소화할 수 있도록 한다. 앤시스 심AI는 사용자가 모델 학습 데이터를 확장해 후처리 과정에서 더욱 정교한 분석을 수행할 수 있도록 지원한다. 앤시스 일렉트로닉스 AI+(Ansys Electronics AI+)는 AI 기반 기술을 활용해 앤시스 멕스웰(Ansys Maxwell) 전기기장(electromagnetic field) 해석 솔버, 앤시스 아이스팩(Ansys Icepak), 전자기 냉각 시뮬레이션 소프트웨어, HFSS 등에서 수행되는 전자기 시뮬레이션의 필요 리소스와 실행 시간을 정밀하게 예측할 수 있다. 앤시스 RF 채널 모델러(Ansys RF Channel Modeler)의 고급 합성 레이더 시뮬레이션 기능은 지상에서 AI를 활용한 표적 식별을 위해, 폭넓은 학습 및 검증 데이터 세트를 제공하여 디지털 미션 엔지니어링 분야를 지원한다. 한편, 앤시스는 자사의 엔지니어링 이루션이 기존 인프라에도 새로운 기술을 쉽게 통합할 수 있도록 높은 호환성과 확장성을 갖춤으로써 제품 설계의 혼선을 방지할 수 있다고 덧붙였다. 앤시스 2025 R1은 디지털 전환을 더욱 원활하게 지원할 수 있도록 MBSE 기능과 데이터 관리 기능이 강화되었다. 이외에도 앤시스 2025 R1에는 프로세스 통합 및 설계 최적화 소프트웨어인 앤시스 옵티슬랭(Ansys optiSLang), CAE/CAD/PLM 등 소프트웨어와 공통 사용환경을 제공하는 앤시스 그란타 MI(Ansys Granta Materials Intelligence) 제품군, 메싱 속도를 높인 앤시스 플루언트(Ansys Fluent), 전력 필드 효과 트랜지스터(FET) 및 전력 관리 집적회로(PMIC)의 분석, 시뮬레이션, 최적화를 위한 신규 도구인 앤시스 파워X(Ansys PowerX) 등이 제공된다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스 2025 R1은 더욱 강력한 통합 기능을 제공해, 제품 전체 수명 주기에 걸쳐 디지털 프로세스를 구축하고 개발 전후 데이터를 효율적으로 관리할 수 있는 다양한 도구와 설루션을 제공할 것”이라며, “하나의 데이터 기반의 환경에서 서로 단절된 팀들도 원활하게 협업할 수 있도록 지원하며, 이를 통해 비용 절감과 제품 출시 기간을 단축시켜 고객의 경쟁력 강화에 기여할 것”이라고 밝혔다.
작성일 : 2025-02-10
해석 사례로 살펴보는 플루언트의 iFSI 기능
앤시스 워크벤치를 활용한 해석 성공 사례   앤시스 플루언트(Ansys Fluent)의 iFSI 기능은 구조 연성 해석에서 매우 유용한 기능이다. 이번 호에서는 Thermo-elasticity Model을 적용한 바이메탈 열변형 해석 사례를 통해, 플루언트 iFSI 기능의 장단점을 살펴보고자 한다.    ■ 정세훈 태성에스엔이 FBU-F5팀의 수석 매니저로 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   앤시스에서 제공하는 FSI(Fluid-Structure Interaction : 유동-구조 연성 해석) 해석 방법은 크게 ‘extrinsic FSI’와 ‘intrinsic FSI’로 나뉜다. Extrinsic FSI는 CFD 및 메커니컬 솔버의 결과(유체-구조 상호작용 경계면에서의 압력, 열 및 변위)를 시스템 커플링 또는 External Data와 같은 별도의 프로그램을 통해 특정 반복(iteration)/시간(time)마다 주고받는 연성 해석 방법이다. 반면, ‘intrinsic FSI(iFSI)’는 별도의 커플링 프로그램 및 FEA 솔버 없이 앤시스 플루언트 솔버 단독으로 FSI 해석을 수행하는 방법으로, 앤시스 2019R1 버전에서 베타 기능으로 처음 소개되었으며 2020R1 버전에서 정식 기능으로 추가되었다. 2024R2 버전 기준으로, iFSI 해석 시에는 다음과 같은 제한 및 주의 사항이 있다. 다면체(polyhedral) 셀을 지원하지 않음 FSI 솔루션이 초기화 또는 시작된 경우 격자를 교체할 수 없음 유체와 고체 영역은 반드시 양면 벽(즉, wall/wall-shadow)에 의해 분리되어야 함 구조 모델을 활성화하려면 도메인에 적어도 하나의 고체 영역이 있어야 함 다음 동적 메시 옵션은 지원되지 않음 : in-cylinder, six DOF, 접촉 감지(contact detection)  Dynamic Mesh Zones 대화 상자에서 양면 벽(즉, 벽 또는 벽 그림자) 바로 옆의 유체 셀 영역(벽 대화 상자의 Adjacent Cell Zone 필드에 의해 표시됨)에 대해서만 선택 가능 DEFINE_PROFILE과 같은 다른 경계 조건 프로파일 또는 UDF는 사용할 수 없음 shell conduction, mesh adaption, mesh morpher, optimizer, adaptive time stepping 기능은 사용할 수 없음 구조 모델은 앤시스 워크벤치에서 앤시스 플루언트를 실행할 때 사용할 수 없음 선형 탄성(linear elasticity) 구조 모델은 고체 재료의 항복 강도를 초과하지 않는 응력 하중에 적합함   Thermal-elasticity Model thermal-elasticity model은 앤시스 플루언트 솔버에 탑재된 다음과 같은 구성 방정식을 통해 열하중에 의한 구조물의 변형을 예측하는 기능이다.   εt = total strain vector ∆T= T – Tref , Tref = Starting(reference) temperature  {α} = vector of coefficients of thermal expansion  {β} = vector of thermos elastic coefficients = [D]{α}  [D]  = elastic stiffness matrix <그림 1>에서 Energy Equation을 선택하고, <그림 2>와 같이 Structural Model에서 Thermal Effect 항목을 설정하면 해당 기능을 사용할 수 있다.   그림 1. Energy Equation 선택   그림 2. Structural Model 설정   바이메탈 열변형 해석 사례 <그림 3>은 유동장 내부의 바이메탈 변형량을 예측하기 위한 iFSI 해석 사례의 개략도이다.   그림 3. 바이메탈 연성 해석 개략도   이 사례에서 바이메탈 하부 재료(steel1)는 상부 재료(steel2)에 비해 더 높은 열팽창 계수를 가지고 있으며, 각 재료의 물성은 <표 1>과 같다. 유체는 이상기체로 가정했다. 바이메탈이 뜨거운 유체에 의해 가열되어 발생하는 열팽창과 굽힘 차이를 예측하기 위해 Thermal-elasticity Model을 적용한 iFSI 기법으로 해석을 진행했다.   표 1. 바이메탈 물성값     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-01-06
엔비디아, CAE에 실시간 디지털 트윈의 활용 돕는 ‘옴니버스 블루프린트’ 공개
엔비디아가 ‘슈퍼컴퓨팅 2024(SC24)’ 콘퍼런스에서 ‘엔비디아 옴니버스 블루프린트(NVIDIA Omniverse Blueprint)’를 발표했다. 이는 소프트웨어 개발업체가 항공우주, 자동차, 제조, 에너지, 기타 산업의 컴퓨터 지원 엔지니어링(CAE) 고객들이 실시간 상호작용이 가능한 디지털 트윈을 제작할 수 있도록 지원한다. 알테어, 앤시스, 케이던스, 지멘스와 같은 소프트웨어 개발업체는 실시간 CAE 디지털 트윈을 위한 엔비디아 옴니버스 블루프린트를 사용해 고객이 개발 비용과 에너지 사용량을 절감하면서 시장 출시 기간을 단축할 수 있도록 지원한다. 엔비디아는 이 블루프린트가 1200배 빠른 시뮬레이션과 실시간 시각화를 달성하기 위한 엔비디아 가속 라이브러리, 물리-AI 프레임워크, 대화형 물리 기반 렌더링을 포함하는 레퍼런스 워크플로라고 설명했다. 블루프린트의 첫 번째 적용 분야 중 하나는 전산유체역학(CFD) 시뮬레이션이다. 이는 자동차, 비행기, 선박 등 여러 제품의 설계를 가상으로 탐색하고 테스트하며 개선하는데 있어 중요한 단계이다. 기존의 엔지니어링 워크플로는 물리 시뮬레이션부터 시각화와 설계 최적화에 이르기까지 완료하는 데 몇 주 또는 몇 달이 걸릴 수 있다. 실시간 물리 디지털 트윈을 구축하려면 실시간 물리 솔버(solver) 성능과 대규모 데이터 세트의 실시간 시각화라는 2가지 기본 기능이 필요하다. 옴니버스 블루프린트는 이러한 기능을 달성하기 위해 엔비디아 쿠다-X(CUDA-X) 라이브러리를 활용해 솔버 성능을 가속화한다. 또한, 엔비디아 모듈러스(Modulus) 물리-AI 프레임워크를 사용해 플로 필드를 생성하기 위한 모델을 훈련하고 배포한다. 마지막으로, 엔비디아 옴니버스 애플리케이션 프로그래밍 인터페이스를 통해 3D 데이터 상호운용성과 실시간 RTX 지원 시각화를 제공한다.      앤시스는 옴니버스 블루프린트를 채택해 유체 시뮬레이션 소프트웨어인 앤시스 플루언트(Ansys Fluent)에 적용해 전산 유체 역학 시뮬레이션을 가속화했다. 앤시스는 텍사스 첨단 컴퓨팅센터에서 320개의 엔비디아 GH200 그레이스 호퍼 슈퍼칩(Grace Hopper Superchip)으로 플루언트를 실행했다. 2,048개의 x86 CPU 코어에서는 거의 한 달이 걸리던 25억 셀의 자동차 시뮬레이션을 6시간 만에 완료했다. 이를 통해 밤새 고충실도 CFD 분석을 수행할 수 있는 실현 가능성을 향상시키고 새로운 업계 벤치마크를 수립했다. 루미너리 클라우드 또한 블루프린트를 채택하고 있다. 엔비디아 모듈러스를 기반으로 구축된 이 회사의 새로운 시뮬레이션 AI 모델은 GPU 가속 CFD 솔버에서 생성된 훈련 데이터를 기반으로 기류장과 자동차 형상 간의 관계를 학습한다. 이 모델은 솔버 자체보다 훨씬 빠른 속도로 시뮬레이션을 실행해 옴니버스 API를 사용해 시각화된 실시간 공기 역학 흐름 시뮬레이션을 가능하게 한다. 엔비디아와 루미너리 클라우드는 SC24에서 가상 풍동을 시연했다. 이는 터널 내부에서 차량 모델을 변경하더라도 실시간으로 상호작용하는 속도로 유체 역학을 시뮬레이션하고 시각화할 수 있다. 엔비디아는 알테어, 비욘드 매스, 케이던스, 헥사곤, 뉴럴 컨셉, 지멘스, 심스케일, 트레인 테크놀로지스 등이 자체 애플리케이션에 옴니버스 블루프린트 도입을 검토하고 있다고 밝혔다. 옴니버스 블루프린트는 아마존 웹 서비스(AWS), 구글 클라우드, 마이크로소프트 애저를 비롯한 주요 클라우드 플랫폼에서 실행할 수 있다. 엔비디아 DGX 클라우드(DGX Cloud)에서도 사용할 수 있다.  리스케일은 엔비디아 옴니버스 블루프린트를 사용해 단 몇 번의 클릭만으로 맞춤형 AI 모델을 훈련하고 배포할 수 있도록 지원한다. 리스케일 플랫폼은 전체 애플리케이션-하드웨어 스택을 자동화하며, 모든 클라우드 서비스 제공업체에서 실행될 수 있다. 조직은 어떤 시뮬레이션 솔버를 사용해도 훈련 데이터를 생성하고, AI 모델을 준비, 훈련, 배포하며, 추론 예측을 실행하고, 모델을 시각화하고 최적화할 수 있다. 엔비디아의 젠슨 황(Jensen Huang) CEO는 “우리는 모든 사물이 디지털 트윈을 가질 수 있도록 옴니버스를 구축했다. 옴니버스 블루프린트는 엔비디아 옴니버스와 AI 기술을 연결하는 레퍼런스 파이프라인이다. 이는 선도적인 CAE 소프트웨어 개발자가 설계, 제조부터 운영에 이르기까지 세계 최대 산업을 위해 산업 디지털화를 혁신할 획기적인 디지털 트윈 워크플로를 구축할 수 있도록 지원한다”고 말했다.
작성일 : 2024-11-19
[무료다운로드] 설계자를 위한 해석 프로그램, 앤시스 디스커버리
디스커버리 익스플로어 스테이지의 유동해석 주요 업데이트 및 활용법   앤시스 디스커버리(Ansys Discovery)는 설계부터 해석까지 하나의 환경 안에서 진행할 수 있는 앤시스의 시뮬레이션 프로그램이다. 해석 과정 중 하나인 익스플로어 모드(Explore mode)에서는 격자를 생성하지 않고 다른 해석 전문 프로그램에 비해 경계 조건 설정 및 사용법이 간단하여 유동, 구조 해석에 익숙하지 않은 설계 엔지니어들이 많이 사용하고 있다. 이번 호에서는 디스커버리를 이용하여 유동해석을 진행하려 할 때, 설계자 관점에서 디스커버리가 활용할 수 있는 방법과 디스커버리의 주요 신규 기능에 대하여 소개하겠다.   ■ 김현재 태성에스엔이 FBU-F4팀에서 근무하고 있으며, 유동해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   설계자를 위한 해석 프로그램 디스커버리는 하나의 프로그램으로 설계부터 해석까지 모든 과정을 진행할 수 있는 프로그램이다. Model(3D 모델링), Explore(해석), Refine(해석) 등 총 세 가지의 스테이지(작업 환경)를 지원하며, 사용자는 그 목적에 따라 스테이지를 선택하며 작업을 수행할 수 있다. 익스플로어(Explore) 스테이지에서는 별도의 격자 생성 없이 경계조건과 물성치 입력만으로도 해석을 진행할 수 있다. 리파인(Refine) 스테이지에서는 Pro 레벨(Mechanical, CFD, Electromagnetics)의 라이선스가 추가로 필요하며, 정확한 결과를 얻기 위하여 격자를 생성하여 해석을 진행하게 된다.  이때, 유동해석에 익숙하지 않은 사용자(설계 엔지니어)라면 익스플로어 스테이지, 리파인 스테이지 관계 없이 내/외부 유동장 추출을 진행하기 위해 3D 모델링을 클린업(clean up)하는 단계부터 어려움을 겪게 된다. 디스커버리는 설계자를 위한 프로그램답게 이러한 어려움을 인지하고 있으며, 통합 프로그램 출시 이후 지속적인 기능 업데이트를 통하여 사용자의 편의성을 개선하고 있다.  디스커버리는 앞서 소개한 것과 같이 설계자도 쉽게 사용할 수 있도록 새로운 버전에서 업그레이드도 지속적으로 이루어지고 있다. 설계 엔지니어가 디스커버리를 이용할 시 설계자 관점에서 디스커버리를 활용할 수 있는 방법과 디스커버리를 이용하여 유동해석 시 사용할 수 있는 주요 신규 기능에 대해 소개하겠다. 설계 엔지니어가 디스커버리를 활용할 수 있는 방법은 <그림 1>에서 확인할 수 있으며, 다음과 같다.   그림 1. 설계 엔지니어 디스커버리 활용 방법   그림 2. Discovery Engineering notebook   Ribbon → Detail 탭에 위치한 엔지니어링 노트북(Engineering notebook)을 이용하여 작업한 모델을 도면화할 수 있다. 생산자에게 단순한 설계 도면, 물성치와 최대 하중량과 같은 단편적인 정보를 전달하는 것이 아니라, 익스플로어 모드의 해석 결과를 바탕으로 컨투어(contour)를 생성한 뒤 신(scene)으로 저장하여 도면 내(Engineering notebook) 디스커버리 해석의 결과값을 포함할 수 있다.   그림 3. 리파인 모드 및 Transfer to Fluent 기능   설계 엔지니어가 디스커버리를 이용하여 익스플로어 스테이지에서 해석을 진행하였다면, 이후 해석 엔지니어는 제공받은 디스커버리 파일을 토대로 리파인 모드(Refine mode)에서 해석을 하거나 Transfer to Fluent 기능을 이용하여 해석한 경계조건 및 물성치를 플루언트(Fluent)로 트랜스퍼(transfer)할 수 있다. 플루언트로 트랜스퍼할 때 리전(region)이 2개 이상인 경우에는 메시 인터페이스(mesh interface) 처리가 되어 해석이 진행되기 때문에, 플루언트로 정보를 이관받은 뒤에는 반드시 검토가 필요하다.   그림 4. Ansys Cloud with Discovery   앤시스 클라우드(Ansys Cloud)를 이용하며 디스커버리를 사용하고 있는 사용자라면 <그림 4>와 같이 마이크로소프트 365와 연동하여 특정 장소(Sharepoint, 로컬 저장소, Teams)에 설계 파일을 저장할 수 있다. 또한, 저장 시 파일의 버전이 기록되며 이전 버전도 확인 가능하다. 따라서, 최종 설계 전후로 생산이 어렵거나 불가피할 때, 디스커버리 플랫폼 내에서 메모 기능을 이용하여 설계자, 생산자, 해석자 모두의 의견을 취합하고 문제점을 논의할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-10-07
[포커스] 태성에스엔이, “CAE와 AI의 융합으로 제품 개발 혁신”
태성에스엔이는 9월 11일 서울 aT센터에서 'CAE×AI 세미나 2024'를 개최했다. 이날 세미나에는 300명 이상의 업계 전문가들이 참석한 가운데, 앤시스의 해석 프로그램과 AI의 접목을 통한 혁신적인 해석 기법들이 소개되었다. 참석자들은 최신 CAE 해석 기술과 AI의 융합을 통해 향후 제조업과 설계 분야의 발전 가능성에 대한 인사이트를 얻었다. ■ 박경수 기자      AI/ML을 활용한 해석 혁신 이번 세미나에서는 AI/ML 기술의 CAE 해석 적용을 주제로 앤시스 심AI(Ansys SimAI)와 앤시스GPT(AnsysGPT)를 포함한 다양한 AI 트렌드가 소개되었으며, 이를 활용해 더 빠르고 효율적인 해석 결과를 도출할 수 있는 방법이 논의되었다.  태성에스엔이 노은솔 매니저와 김도현 매니저는 ‘기초 이론과 사례로 살펴보는 인공지능’을 주제로, AI 도입으로 해석 부문이 어떤 변화가 생겼는지 설명했다. 이어 윤진환 이사는 '태성에스엔이와 Ansys의 AI 기술과 고객 서비스'를 소개하며, AI 기술이 CAE 해석에 어떻게 실질적으로 적용되고 있는지 설명했다. 권기태 수석매니저는 ‘태성에스엔이가 제공하는 시뮬레이션 데이터 기반 AI/ML 서비스’를 주제로, AI가 시뮬레이션 데이터를 활용해 성능을 최적화하는 방법에 대해 심도 깊은 논의를 진행했다.    Stochos와 AI 응용사례 CADFEM Germany GmbH의 다니엘 수쿠프(Daniel Soukup)는 Stochos라는 온프레미스 기반 AI 프로그램을 소개했다. Stochos는 신경망과 가우시안 프로세스를 결합한 Deep Infinite Mixture of Gaussian Processes(DIM-GP) 알고리즘을 통해 소량의 데이터로도 높은 예측 정확도를 제공하는 기술이다. 특히, 확률론적 머신러닝을 도입해 예측 결과의 신뢰도를 함께 제시하여 엔지니어들이 AI 결과를 더욱 신뢰할 수 있도록 만들어 준다. 이 기술은 복잡한 시뮬레이션 문제 해결에 있어 뛰어난 성능을 발휘하며 관심을 끌었다.   CAE와 AI 융합의 미래 이외에도 이번 행사에서는 앤시스의 최적화 전용 프로그램인 옵티스랭(optiSLang)에서 AI 사용 방법, 심AI, 앤시스GPT, 트윈AI(Ansys TwinAI) 등 AI를 접목한 앤시스의 최적화 기술이 차례로 소개되었고, 다양한 시각에서 AI 기술이 CAE에 어떻게 접목될 수 있는지 소개됐다.  태성에스엔이는 CAE와 AI의 결합을 통한 미래 산업의 변화 가능성에 대해 참석자들과 함께 토론하는 시간을 가지며 세미나를 마무리했다. AI 기반의 CAE 해석 기술은 향후 설계 및 제조 산업의 혁신을 주도할 중요한 요소로 자리잡을 것으로 기대된다.   ‘CAE×AI 세미나 2024’ 인터뷰  CAE×AI 세미나 2024 행사 관련해 태성에스엔이의 석진 영업본부 이사, 윤진환 기술본부 이사, 권기태 기술본부 AI 팀 수석매니저와 이야기를 나눴다. Q. 이번 세미나에서 발표된 AI/ML 기술 적용 사례 중, 특히 성공적인 사례를 하나 꼽는다면? 해당 사례에서는 어떤 방식으로 해석 프로세스를 개선했는지? ■ 윤진환 : 많은 분들이 AI/ML의 도입은 아직 시기상조이거나, 중견기업 이상의 대형 기업에서만 시험적으로 적용되고 있다고 생각할 수 있다. 하지만, 태성에스엔이의 AI 팀이 개발한 AI/ML 솔루션은 이미 국내 중소기업에서 실사용 되고 있는 사례를 보여드리고자 했다. 이 프로그램은 AI 모델 자동 생성 프로그램으로, 앤시스 일렉트릭 데스크톱(Ansys Electric Desktop)에서 계산된 시뮬레이션 결과를 기반으로 AI 모델을 자동으로 생성한다. 해석자가 앤시스 일렉트릭 데스크톱에서 설계 형상에 대한 변수만 지정해 두면, 본 프로그램은 자동으로 해당 변수를 추출해 실험계획법(DoE)을 기반으로 여러 번의 해석을 진행한 뒤, AI 모델을 구축한다.   ▲ 해석팀 : 해석 변수 자동 추출 및 AI모델 생성 자동화    이후, 설계자는 구축된 AI 모델을 기반으로, 임의의 설계 변수 값을 입력해 실시간으로 해당 설계안에 대한 예측 결과값을 확인할 수 있다.   ▲ 설계팀 : AI 모델을 통한 실시간 성능 예측   이후 설계자는 구축된 AI 모델을 바탕으로 임의의 설계 변수 값을 입력해 실시간으로 해당 설계안에 대한 예측 결과를 확인할 수 있다. 이 기능 덕분에 해석자는 설계팀으로부터 반복되는 동일 작업 요청을 줄일 수 있었고, 더 높은 수준의 분석이나 추가적인 AI 모델 구축에 시간을 투자할 수 있게 되었다. 설계팀 또한 실시간 예측을 통해 빠른 결과 분석을 반영해 작업 효율을 크게 향상시킬 수 있었다. 이 프로그램은 유사한 환경에서 구조해석, 열해석 등에도 적용 가능하며, 맞춤형 UI와 다양한 AI 기능을 구현할 수 있어 여러 기업으로부터 관심을 받고 있다.   Q. 심AI와 앤시스GPT와 같은 최신 기술 및 제품 트렌드가 CAE 해석 분야에서 어떤 변화를 가져올 것으로 기대하나? 이 기술들이 현장에서 어떻게 적용되고 있으며, 궁극적으로 해석 결과의 품질에 어떤 영향을 미칠 것으로 보는지? ■ 석진 : 심AI와 같은 AI 기반 도구는 반복적인 작업을 자동화하여 사용자가 모델링부터 해석에 이르는 전 과정을 보다 신속하게 수행할 수 있도록 지원한다. 설계 초기 단계에서 최적화를 진행할 수 있는 가능성이 높아지며, 이를 통해 설계 주기가 단축될 것이다. 또한, 인적 오류를 최소화함으로써 실험과 프로토타입 제작에 소요되는 비용과 시간을 절감하여 궁극적으로 시장 출시 주기를 획기적으로 단축시킬 것으로 기대된다. AI 기술을 활용해 대량의 해석 데이터를 분석하고 패턴을 인식함으로써 더 나은 설계 결정을 지원할 수 있으며, 앤시스GPT는 앤시스 공식 웹사이트 내에서 사용자 질문에 대한 정확하고 신뢰할 수 있는 답변을 제공하거나 최적의 설계 옵션을 제안하는 데 유용할 것이다. 이러한 기술은 CAE 도구의 사용을 더욱 쉽게 만들어 준다. 예를 들어, 복잡한 해석 과정이나 설정에 대한 자동 안내 및 추천 기능은 비전문가들도 손쉽게 접근할 수 있도록 도와준다. 또한, 다양한 팀과 부서 간 협업도 향상될 것이다. AI 기반 도구는 설계, 해석, 생산 팀 간의 원활한 커뮤니케이션을 지원하여 더 통합된 접근 방식을 가능하게 한다. 결론적으로, 심AI, 앤시스GPT, 앤시스 AI+ 등 앤시스의 AI 솔루션은 CAE 해석의 정확성, 효율성, 접근성을 크게 향상시킬 것으로 기대하며, 이는 산업 전반에 혁신적인 변화를 가져올 것이다.   Q. CAE 프로그램에 AI를 접목했을 때 해석 속도와 정확도는 얼마나 향상되었는지? 이런 기술적 통합이 실무 현장에서 얼마나 실질적인 성과를 보여주고 있다고 보는지? ■ 권기태 : 앤시스는 다음 그림과 같이 CAE 프로그램에 순차적으로 AI 기능을 추가하고 있다.  그 중 앤시스 CFD AI+ 기능을 하나의 사례로 소개하겠다. 플루언트(Ansys Fluent)에서 제공하는 Generalized k-ω Model(GEKO) 난류 모델은 사용자가 직접 계수를 설정해야 하며, 도메인 내에서도 각기 다른 계수를 설정해야 하는 어려움이 있다. 이러한 문제를 해결하기 위해 앤시스 CFD AI+는 Adjoint Solver와 Neural Network/Machine Learning 기법을 결합하여 GEKO 모델의 계수를 자동으로 조정하는 기능을 제공한다.  AI 기술의 효과를 확인하기 위해 S805 Airfoil 문제에 GEKO 모델 계수의 자동 튜닝 기능을 적용한 결과 GEKO 기본 계수를 사용할 때 오차는 기준값 대비 13.2%였지만, AI 기반 자동 튜닝 계수를 적용한 경우 오차가 0.2%로 크게 감소한 것을 확인할 수 있었다. 앤시스 AI+를 통해 CAE 프로그램과 AI 기술을 기술적으로 통합함으로써 해석 속도와 정확도를 개선하고 있다. 또한, 시뮬레이션 결과 데이터에 AI 기술을 적용하여 실무 현장에서 많은 성과를 보이고 있다. 심AI 프로그램은 형상과 시뮬레이션 필드 결과 데이터를 활용해 시뮬레이션 솔버를 대체할 수 있는 인공지능 모델을 제작할 수 있는 사례를 보여 준다. 이 모델을 사용하면 형상을 입력하여 기존 시뮬레이션 솔버에 비해 10배에서 최대 1000배 더 빠르게 필드 결과를 예측할 수 있다.  디지털 트윈 분야에서는 복잡한 물리 기반의 시뮬레이션 모델을 ROM(축소 차수 모델)이라는 머신러닝 기법을 통해 시스템 수준의 해석 모델로 전환하여, 실시간 물리적 예측이 가능하며 빠른 속도와 높은 정확도를 제공한다.  향후 품질 및 생산 관리와 같은 측정 데이터 기반 인공지능 모델이 많이 사용되는 영역에서도 시뮬레이션 데이터 기반 인공지능 모델의 사용이 활발해질 것으로 기대된다. 이를 통해 시뮬레이션 기술은 설계 단계에만 머무르지 않고, 공정 및 품질 개발, 생산 및 품질 관리, 그리고 디지털 트윈과 같은 장치의 효율적인 운용 단계까지 그 활용 범위가 더욱 확장될 것이다.   Q. Stochos와 같은 온프레미스 기반의 AI 프로그램이 다른 클라우드 기반 AI 프로그램과 비교했을 때 어떤 차별화된 장점이 있다고 보나? 특히 보안성과 데이터 처리 측면에서 어떤 이점이 있는지? ■ 윤진환 : CAE 분야에서 클라우드 기반의 AI를 이용하는 이유는 사용자의 접근성을 높이기 위한 목적도 있지만, AI 학습을 위해서는 고가의 고성능 GPU가 필요하며 때로는 여러 대의 GPU를 묶어야 학습이 가능하기 때문에 장비 구축 비용이 매우 높다는 현실적인 이유도 있다. 다시 말해 온프레미스 환경에서 CAE에 대한 AI를 학습할 수 있다는 것은 기존의 AI 알고리즘과 달리 상대적으로 적은 계산 장비 리소스만으로도 정확하고 빠르게 학습할 수 있는 AI 기술을 보유하고 있다는 의미다.  Stochos는 일반적인 신경망 기반의 AI와 Gaussian Process기법을 결합한 DIM-GP 기법을 이용하여 적은 샘플수로도 높은 정확성의 AI모델을 만들어 내며, 저가의 GPU 또는 CPU만으로도 빠른 속도로 학습할 수 있다. 또한 Scalar, Signal, 이미지, 3D 형상, 정상상태, 과도상태 등의 다양한 해석 데이터와 일반 정보에 대한 AI 모델을 만들 수 있어서 활용도도 넓다. 특히 AI 모델 생성 시의 내부변수 설정(하이퍼파라미터)을 별도로 조절할 필요가 없으며, 자동으로 노이즈를 처리하는 기능이 있어 복잡한 AI 설정 과정이 필요 없는 것이 큰 장점이다.  보안성과 데이터 처리 부분에서는 클라우드 기반의 AI와 비교했을 때 사내 장비에서 모든 작업을 할 수 있어 데이터 유출이나 유실의 우려를 원천적으로 차단할 수 있으며, 사내망에서 구동되므로 데이터 전송 및 예측 속도가 빠르다는 장점이 있다. 따라서 보안 문제에 대한 우려가 있거나 사내 AI 장비 구축 비용에 부담을 느끼고 있다면, 이 솔루션이 훌륭한 대안이 될 수 있다고 생각한다.      Q. 태성에스엔이는 향후 AI 관련 기술을 어떻게 발전시켜 나갈 계획인지? 앞으로 예상되는 CAE 해석 관련 기술 발전 방향 및 비전에 대한 설명도 부탁드린다. ■ 윤진환 : 태성에스엔이는 열유동/구조/전기전장/시스템/광학/최적화 등의 분야에 대한 100여명의 전문엔지니어를 보유하고 있으며, 앤시스 AI+, 심AI, 앤시스GPT에 대해서는 모든 엔지니어가 각자의 해석분야와 산업분야에 대한 초기 대응을 수행하고 있다.  이에 더해 태성에스엔이에는 AI를 위한 전문 그룹이 구성되어 있다. 이 그룹은 기술 엔지니어 중에서 AI 분야의 전문성을 가진 인원들로 이루어졌으며, 다양한 산업군에서 필요로 하는 CAE AI 응용 방안을 고객과 논의하여 선제적이고 맞춤형 서비스를 제공하는 것을 목적으로 하고 있다.  그리고 상용 AI 프로그램인 Stochos과 오픈소스를 활용해 맞춤형 AI 환경을 구축하거나 AI 모델 생성 서비스를 제공하는 것도 주요 사업 중 하나이며, 엔비디아 옴니버스(Omniverse)와의 협업을 통해 3차원 실시간 그래픽 플랫폼에 CAE AI를 적용하는 작업도 병행하고 있다. 각종 학회, 기업체 연구소, 프로그램 개발 업체 등에서 CAE에 AI 기술을 접목하고 응용 방안을 연구하는 활동이 그 어느 때보다 활발히 진행되고 있다. CAE 자체의 해석 속도와 전후 처리 속도 향상, 그리고 편의성 증대는 전문 해석자의 업무 부담을 덜어줄 것이다. 또한, CAE AI 모델 구축을 통한 빠른 예측과 실시간 결과 도출은 설계자와 해석자 간의 협업을 더욱 긴밀하게 하여 해석이 실제 업무 현장에 더 활발하게 활용될 것으로 예상된다. 이에 따라 해석자는 CAE를 통해 AI 모델을 구축하고 배포하며, 이를 사내에서 쉽게 활용할 수 있도록 하는 플랫폼 환경 구축 업무가 꾸준히 증가할 것으로 예상된다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-10-04
앤시스 2024 R2 : AI 기반 멀티피직스 시뮬레이션 솔루션
개발 : Ansys 주요 특징 : 워크플로 연동과 통합적인 AI 지원, 복잡한 엔지니어링 작업의 최적화를 바탕으로 협업 및 디지털 혁신을 촉진, 통합적이고 진일보한 멀티피직스 시뮬레이션 인사이트 제공을 통해 제품 설계 프로세스를 간소화 공급 : 앤시스코리아   새롭게 선보이는 ‘앤시스 2024 R2(Ansys 2024 R2)’는 오늘날 등장하고 있는 복잡한 제품에 대해, 제품 설계의 경계를 넘나들며 고객들이 다차원적인 인사이트를 얻도록 돕는 멀티피직스(multi-physics, 다중 물리 현상 분석) 시뮬레이션 솔루션이다. 앤시스 2024 R2는 해석 시간을 단축하고 해석 처리 용량을 확장하며, 디지털 혁신을 지원하고, 하드웨어 유연성을 제공하는 등 기존 버전보다 한층 쉽고 강력해졌다. 또한 보다 향상된 워크플로 연동성을 통해 사용자들은 협업 효율과 생산성을 다방면으로 향상시킬 수 있다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스 2024 R2는 앤시스의 시뮬레이션 포트폴리오를 그 어느 때보다 더 깊고 넓고 스마트하게 함과 동시에 연결성을 강화하는 솔루션이 될 것이다. 고객들은 앤시스 R2를 통해 시스템 시뮬레이션에서 디지털 트윈에 이르기까지 보다 넓은 범주에서 광범위한 지원을 받을 수 있을 것으로 기대하고 있다. 이처럼 앤시스가 제공하는 시뮬레이션 인사이트와 고객만족 팀이 제공하는 전문성을 바탕으로 진정한 혁신을 이룰 수 있기를 바란다”고 전했다.   복잡한 문제에 필요한 종합 솔루션 앤시스 2024 R2는 멀티피직스 워크플로를 간소화해, 여러 도메인에서 서로 다른 다양한 소프트웨어 기술을 연결하는 복잡한 과정을 간편하게 만든다. 이번 업데이트는 사용자가 복잡한 반도체 칩부터 전기차 파워트레인에 이르기까지 제품 수명 주기 전반에 걸쳐 비용과 성능을 종합적으로 평가할 수 있도록 지원한다. 차세대 IC의 핵심인 첨단 패키징 기술은 차세대 IC의 성능 향상은 보장하지만, 반대로 IC 설계의 복잡성을 증가시킨다. 새로운 앤시스 HFSS-IC(Ansys HFSS-IC) 솔버는 오늘날의 복잡한 첨단 IC 설계 및 어드밴스드 패키징 기술에 따르는 문제의 해결을 가능하게 한다. 앤시스의 전자 및 반도체 기술을 통합한 새로운 고급 솔버는 전력(PI) 및 신호 무결성(SI) 분석에 사용되며, 테이프아웃(tapeout) 전에 IC의 사인오프(signoff)를 위한 전자기 정밀 분석에 필요한 성능과 기술을 제공한다. 사용자는 설계와 사인오프 분석의 반복(iteration)을 통해 차세대 IC 및 전자 장치에서 요구되는 고성능과 안정성을 제공한다. 점점 더 복잡해지는 멀티피직스 설계에 대한 요구는 자동차를 포함한 거의 모든 산업에 영향을 미치고 있다. 기업들이 전기자동차(EV) 기술을 발전시키려고 노력하는 가운데, EV 모터의 소음·진동·마찰(NVH)의 최적화는 차량 성능과 안전에 매우 중요한 요소가 되고 있다. 전기 파워트레인(e-powertrain) 워크플로를 위한 앤시스 메카니컬(Ansys Mechanical) 구조 시뮬레이션 소프트웨어의 향상된 기능은 보다 정확한 음향 시뮬레이션과 테스트의 상관관계를 제공하며, 시뮬레이션 속도 개선을 통해 NVH 분석에 전반적인 생산성을 향상시킨다. 또한 앤시스 2024 R2에는 앤시스 지멕스(Ansys Zemax) 광학 시스템 설계 소프트웨어와 앤시스 스피오스(Ansys Speos) 광학 성능 분석 솔버 간의 원활한 데이터 호환 및 연동이 포함된다. 이를 통해 복잡한 필드와 파장이 있는 대규모 시스템의 광학 설계를 보다 효율적으로 평가하고 최적화할 수 있다. 예를 들어, 이 통합을 통해 광학 시스템의 미광 분석 워크플로를 간소화하여, 사용자가 광학 시스템의 렌즈 플레어, 빛 누출 및 광산란(light scattering)으로 인한 원치 않는 광효과를 분석하고 제거할 수 있다.   ▲ PCB 어셈블리의 패키지 내 인터포저를 활용해 종합적인 IC부터 시스템 레벨까지 시뮬레이션 및 분석이 가능하다.   다양한 영역에서 솔루션을 강화하는 앤시스 AI 앤시스는 앤시스 트윈AI(Ansys TwinAI) 소프트웨어를 포트폴리오에 추가해 AI(인공지능)에 대한 새로운 활용 사례를 제공하고 있다. 앤시스 트윈AI 소프트웨어는 최첨단 AI 기술을 기반으로, 실제 데이터에서 얻은 인사이트와 멀티도메인(multidomain) 모델을 결합하여 정확성을 높인다. 앤시스 2024 R2에는 클라우드 또는 에지로 확장 배포할 수 있도록 지원하는 개선사항이 포함되어 있어, 고객이 실제 데이터에서 추가적인 인사이트를 확보할 수 있도록 돕는다. 앤시스 미션 AI+(Ansys Missions AI+) 솔루션은 앤시스 디지털 미션 엔지니어링(Digital Mission Engineering : DME) 제품군의 성능 향상을 위한 알고리즘을 제공하는 신기술이다. 엔지니어는 제어 모델을 기반으로 궤도 솔루션의 품질을 자동으로 평가하여 전문가 수준으로 분석할 수 있으며, 비행 루틴의 안정성도 높일 수 있다. 앤시스 DME 솔루션이 AI를 도입함으로써, 다양한 시뮬레이션 전문 지식을 보유한 사용자가 쉽게 기술에 접근하고 배포할 수 있게 되었다. 또한, 앤시스 제품 및 서비스 전반에 걸친 AI 통합은 나노미터 규모의 반도체 애플리케이션을 위한 설계 효율성을 창출하고 있다. 전자기 모델링 소프트웨어 앤시스 랩터X(Ansys RaptorX)는 아날로그 및 무선통신용 초고주파(Radio Frequency IC, RF IC) 설계에서 전자기 커플링 문제를 완화하는 AI 기반의 IC 플로어플랜 최적화 솔루션이 포함되었으며, 이상적인 IC 레이아웃을 도출할 수 있게 되었다. 앤시스 랩터X 솔버의 강력한 성능과 AI의 결합을 통해 사용자들은 회로 면적을 줄이고 설계 시간을 몇 주에서 며칠로 단축할 수 있다.   하드웨어 파트너와 개방형 생태계로 더욱 빠른 시뮬레이션 앤시스 2024 R2는 확장성이 높은 고성능 컴퓨팅(HPC)의 배포를 다양하고 쉽게 할 수 있는 것도 특징이다. 중앙처리장치(CPU)에서의 실행이 최적화되어 있는 첨단 솔버 기술 및 다양한 그래픽처리장치(GPU) 하드웨어에 최적화되어 있는 솔루션도 지속적으로 늘어나고 있다. GPU에 최적화된 솔루션 중에 하나인 앤시스 AV엑셀러레이트 센서(Ansys AVxcelerate Sensors)는 자율주행차 센서 모델링 및 테스트용 소프트웨어로써, 장거리 물체 감지를 위한 적응형 그리드 샘플링 기능을 갖추었다. 적응형 그리드 샘플링을 통해 사용자는 가상 주행 시나리오 내에서 특정 객체에 초점을 맞춰, 보다 타기팅된 데이터를 수집할 수 있게 되었다. 주행 시나리오 내에 모든 데이터를 수집해 과샘플링을 초래하는 글로벌 샘플링과 비교할 때, 앤시스 AV엑셀러레이트 센서의 향상된 기능은 동일하거나 더 나은 수준의 객체 감지 및 예측 정확성을 유지한다. 또한 향상된 GPU 가속 기술은 3배 빠른 시뮬레이션 속도와 6.8배 적은 GPU 메모리 소비를 제공한다. 유체 시물레이션 소프트웨어인 앤시스 플루언트(Ansys Fluent)는 AMD GPU와의 새로운 하드웨어 호환성을 제공하며 보다 폭넓은 하드웨어 옵션을 지원한다. 음향, 반응 유동 또는 아음속/초음속(Subsonic/Transonic) 압축성 유동을 연구하는 사용자는 이제 다중 GPU 솔버를 활용해 물리 모델링 기능 확장과 함께 빠른 속도로 시뮬레이션을 실행할 수 있다. 내장형 파라메트릭 최적화를 통해 설계 옵션에 대한 추가 탐색을 지원하는 소프트웨어 플랫폼 앤시스 옵티스랭(Ansys optiSLang)을 통해 더 많은 설게 옵션을 탐색할 수 있도록 지원하기도 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-09-03