• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 프로세스 시뮬레이트"에 대한 통합 검색 내용이 3,745개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
지멘스, NEC와 협력해 로봇 훈련 자동화 설루션 개발
지멘스 디지털 인더스트리 소프트웨어가 NEC와 기술 파트너 프로그램 협약을 맺고 로봇 3D 시뮬레이션 분야에서 글로벌 설루션을 확대한다고 발표했다. 양사는 지멘스의 테크노매틱스(Tecnomatix) 포트폴리오 내 프로세스 시뮬레이트(Process Simulate) 소프트웨어와 ‘NEC 로봇 태스크 플래닝(NEC Robot Task Planning)’ 디지털 트윈 서비스를 결합한 로봇 티칭(robot teaching) 자동화 설루션을 공동 개발할 예정이다. 이는 제조업계의 고객들이 작업 현장을 최적화하고, 생산성을 향상하며, 사실 기반 관리로 전환할 수 있도록 지원할 전망이다.     NEC의 블루스텔라(BluStellar) 이니셔티브의 일환으로 제공되는 NEC 로봇 태스크 플래닝 소프트웨어는 다수의 로봇이 협력 작업을 수행하도록 최적화하고, AI를 활용해 로봇 동작 계획을 자동으로 생성하는 독자 알고리즘을 탑재하고 있다. 이전까지 많은 로봇의 동작 계획은 숙련된 엔지니어가 ‘티칭(teaching)’이라는 과정을 통해 수동으로 수행했다. 이 과정은 매우 복잡하며, 제조 현장에서 단일 제품을 생산하기 위한 로봇 동작 계획을 설계하는 데 상당한 비용이 소요된다. 그 결과 여러 로봇을 사용하는 생산 라인의 가동 개시가 지연되는 경우가 많다. 이번 협력을 통해 NEC 로봇 태스크 플래닝은 프로세스 시뮬레이트의 사용자 인터페이스에 통합돼, 사용자는 클릭 한 번으로 로봇 동작 계획을 생성할 수 있게 됐다. 그 결과, 로봇 티칭에 필요한 작업 부담을 줄일 수 있다. 이 기능은 현재 프로세스 시뮬레이트에서 제공되고 있는 자동 경로 계획(automatic path planning) 및 로봇 프로그래밍 도구를 보완한다. 이와 함께 생산 라인 셋업 기간 단축, 사이클 타임(cycle time) 최적화, 사실 기반 관리를 구현하며, 전문가 개개인의 전문지식에 의존하던 운영 노하우의 공유와 이전을 용이하게 한다. 지멘스 디지털 인더스트리 소프트웨어의 호리타 쿠니히코(Kunihiko Horita) 일본 지역 매니저 겸 부사장은 “지멘스는 디지털 트윈 기술과 AI 역량을 활용해 NEC가 로보틱스 분야의 글로벌 리더십을 강화할 수 있도록 지원하게 된 것을 자랑스럽게 생각한다. NEC의 첨단 로봇 태스크 플래닝 설루션과 지멘스의 프로세스 시뮬레이트를 통합함으로써, 제조업체는 로봇 티칭 속도를 획기적으로 높이고, 셋업 시간을 단축하며, 생산성을 새로운 수준으로 끌어올릴 수 있다”고 전했다. 또한 “이번 협력은 지멘스가 디지털 전환과 지능형 자동화를 위한 지속적인 노력을 통해 NEC와 같은 고객 및 파트너들이 전 세계 고객들에게 더욱 스마트하고 빠르며 탄력적인 제조 설루션을 제공하도록 돕고 있음을 보여준다”고 덧붙였다. NEC의 히다시마 코스케(Kosuke Hidashima) 기술 서비스 소프트웨어 사업부 총괄 매니저는 “이번 협력으로 AI 기반의 디지털화, 분석, 시뮬레이션을 통해 현장 최적화를 촉진하는 ‘NEC 로봇 태스크 플래닝’ 디지털 트윈을 지멘스의 프로세스 시뮬레이트 소프트웨어와 통합함으로써 DX(디지털 전환) 시대의 제조 혁신을 실현할 것이다. 또한 고객의 생산성과 경쟁력 향상에 기여하며 새로운 가치를 창출할 것”이라고 말했다.
작성일 : 2025-11-10
프로세스 자동화Ⅳ - 다물리 시스템 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (9)   이번 호에서는 자동차의 승차감과 연료 소모량 최소화를 위한 시스템 최적화를 위해 심센터 아메심(Simcenter Amesim)을 사용하여 차량의 다양한 시스템에 대한 변수를 제어하여 최적화의 목적을 달성하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   이번에 사용할 심센터 아메심은 오늘날의 복잡한 엔지니어링 환경을 위한 종합 시뮬레이션 플랫폼이다. 수 많은 설계자가 직면하고 있는 제품 설계의 성공 여부는 혁신적인 아키텍처를 통합하지 않으면 성능, 안전 및 효율에 대한 증가하는 요구 사항을 충족할 수 없다. 심센터 아메심은 광범위하고 강력한 모델링 기능을 통해 메카트로닉스 시스템(Thermal & Fluid, Mechanical, Electrification, Battery, Vehicle, Aerospace & Marine, Renewable Energies Control 등)을 분석할 수 있으며, 가상 테스트 환경을 통해 실제 프로토타입을 제작하기 전에 최적의 설루션을 발견할 수 있다. 심센터 아메심에서 제공하는 다중 물리 시스템 시뮬레이션 접근 방식은 단일 플랫폼에서 다양한 아키텍처와 기술을 사용하여 시스템 간 영향에 대한 완전한 분석을 수행하여 다양한 지표에 대한 시스템의 영향을 설계하고 평가할 수 있다. <그림 1>은 자동차 파워트레인 전동화를 위해 엔진, 변속기 및 열 통합과 관련된 모든 중요한 전기 서브시스템을 시뮬레이션하는 데 필요한 모델링을 나타낸다. 배터리 사이징, 전기 기계 설계, 아키텍처 생성부터 상세 설계를 포함한 통합까지 엔지니어링 작업을 지원하는 효율적인 모델링 워크플로를 구성할 수 있다.   그림 1   설계자는 심센터 아메심에서 제공하는 기능을 활용하여 기본 물리 현상을 심층적으로 이해할 수 있는 등 강력한 분석 도구를 통해 시뮬레이션에서 얻은 지식을 강화할 수 있다. 또한 앱을 사용하면 애플리케이션에 맞게 맞춤 제작된 사용자 인터페이스와 프로세싱의 유연성을 활용하여 시스템 분석을 강화할 수 있다. 또한 모든 기능을 갖춘 API(애플리케이션 프로그래밍 인터페이스) 세트를 통해 스케치 생성을 자동화하고 시뮬레이션의 다양성을 추가할 수 있다. 시뮬레이션 자동화에는 파이썬(Python), 매트랩(MATLAB), 싸이랩(Scilab) 및 Visual Basic for Applications(VBA)와 같은 언어로 애플리케이션 프로그래밍을 지원하는 스크립트 세트를 제공한다. 이를 통해 배치 실행 설정, 복잡한 전처리 및 후처리 수행, 매개변수 연구 수행, 외부 애플리케이션 내 심센터(Simcenter) 모델 통합 등 모델과의 상호 작용을 자동화할 수 있다. 설계 또는 검증에서는 전체 동작에 직접적인 영향을 미치는 전역 파라미터에 액세스하여 설계 탐색, 최적화 및 견고성 분석을 위한 기능을 사용할 수 있고, 더 나아가서 고급 분석과 더 나은 자동화 프로세스 통합을 위해 HEEDS(히즈)를 활용하여 모델을 처리할 수 있다. 심센터 아메심은 시스템 라이프사이클 전반에 걸쳐 다양한 시뮬레이션 툴을 통합하여 디지털 연속성과 워크플로 효율을 향상시킨다. PLM 시스템 연결, 모델 기반 제어 개발 및 기능적 목업 인터페이스(FMI)를 사용한 상호 작용을 지원하며 머신 러닝, 선형 대수학 및 통계 기법으로 ROM(차수 축소 모델) 생성을 지원하여 실행 가능한 디지털 트윈으로 실시간 운영이 가능하므로 의사 결정 및 운영 효율이 향상된다. 임베디드 3D CFD는 열유체 시스템 모델에 대해서 연결된 커플링 시뮬레이션을 통해 3D와 1D 간에 상호 작용이 전달되어 시스템의 중요한 부분을 더욱 상세하게 해석할 수 있으므로 정확도, 설루션 안정성 및 결과에 대한 신뢰도를 높일 수 있다.  Simulation Based Characterization(SBC)을 사용하면 3D CFD를 사용하여 압력 강하 및 열 거동과 관련하여 구성 요소를 특성화하고 시스템 환경에 원활하게 통합되어, 전체 시스템 동작을 정확하게 분석할 수 있다. 차량 동역학 및 파워트레인 물리 거동을 포함하는 모델은 심센터 프리스캔(Simcenter PreScan)과 함께 사용하면 환경 및 센서 정보를 기반으로 첨단 운전자 보조 시스템(ADAS) 및 자율 주행 시스템을 보완하고 대규모 시뮬레이션의 효율을 높여 안전, 승차감, 연료 및 전기 에너지 소비, 오염 물질 배출 평가를 수행할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-11-04
HP Z2 미니 G1a 리뷰 : BIM 엔지니어의 실무 프로젝트 성능 검증
HP Z2 미니 G1a(HP Z2 Mini G1a)는 소형 폼팩터로 설계된 미니 워크스테이션이다. 테스트에 사용된 장비는 AMD 라이젠(Ryzen) AI Max+ PRO 395 프로세서(16 코어, 32 스레드, 최대 5.1GHz) 와AMD 라데온(Radeon) 8060S 내장 그래픽, 64GB LPDDR5x 메모리, NVMe SSD 2TB 구성을 갖추고 있다. 썬더볼트 4, 미니 디스플레이포트 2.1, 10GbE LAN, USB-A(10Gbps), USB-C(40Gbps), 와이파이 7을 지원하며, 내장형 300W 전원 공급장치가 포함되어 있어 별도의 어댑터 없이 바로 사용할 수 있다. 최대 128GB 메모리 확장, 8TB 듀얼 NVMe 스토리지, RAID 구성, 그리고 ISV 인증과 MIL-STD 810H 내구성 기준을 충족해 전문 워크스테이션으로서의 안정성을 확보했다.    ▲ HP Z2 미니 G1a 제품 사진   직접 마주한 첫인상은 단순히 ‘작다’는 한 마디로 표현하기 어려웠다. 박스를 열자마자 느껴진 크기는 갤럭시 폴드 스마트폰과 비슷했고, 책상 위 공간도 거의 차지하지 않았다. 전원선을 연결하자마자 바로 부팅되며, 데스크톱이라기보다 정교하게 만들어진 소형 기기 하나를 설치한 느낌에 가까웠다. 손바닥만한 본체가 조용히 구동되는 모습을 보며, ‘이 작은 장비가 과연 얼마나 버텨줄까’ 하는 기대감이 자연스럽게 따라왔다.    ▲ HP Z2 미니 G1a 데스크톱 위에 갤럭시 폴드 6를 올려놓은 놓은 모습   광고에서 흔히 볼 수 있는 AEC 소프트웨어 시연 화면은 대개 단순한 차량 모델이나 소규모 건축물이다. 시연 화면은 화려하고 매끄럽지만, 실제 토목 BIM 엔지니어가 다루는 데이터는 다르다. 도로, 철도, 교량, 항만과 같은 메가 규모의 모델이 대상이며, 수십만에서 수억 개 단위의 객체가 얽혀 있는 데이터가 일상적으로 다뤄진다. 필자가 주목한 것은 바로 이 점이었다. “작은 본체가 과연, 이러한 초대형 데이터를 견딜 수 있는가?” 현장이나 합사 파견 시 주로 노트북을 사용하지만, 무거운 모델을 검토하고 복잡한 시뮬레이션을 돌리면 한계를 드러내기 마련이다. 따라서 이번 테스트에서는 소형 데스크톱인 HP Z2 미니 G1a를 파견 장비로 실제 활용할 수 있는지 여부를 검증하고자 했다. 단순히 문서 작업이나 뷰어 확인에 그치지 않고, BIM 모델링, 시뮬레이션, 데이터 가공, 시연 등 실무 프로젝트와 동일한 조건을 적용해 성능을 확인했다. 이번 리뷰에서는 장비가 어느 정도까지 버텨주는지, 그리고 어떤 한계를 드러내는지를 프로젝트별로 기록했다.   ▲ HP Z2 미니 G1a 테스트 프로젝트 요약   테스트 1 - 베트남 Starlake Tay Ho Tay(나비스웍스)    ▲ 나비스웍스 단지 전체 모델 검토 기능 테스트   이번 테스트는 단지·도로·관로 등 복합 시설물 모델을 대상으로 나비스웍스(Navisworks)의 정적 모델 취합 및 검토 기능을 검증하기 위해 진행되었다. 테스트 환경에서는 마이크로스테이션(MicroStation)으로 제작된 여러 개의 3D 모델 파일을 나비스웍스로 동시에 불러와, 하나의 장면 안에서 구조 정합성과 좌표 일치 여부를 확인했다.  HP Z2 미니 G1a에서의 구동 결과는 기대 이상으로 안정적이었다. 복수의 모델을 동시에 불러와도 시스템이 멈추거나 끊기는 현상은 없었으며, 로딩 이후에도 화면 회전과 확대·축소 시 반응 속도가 일정하게 유지되었다. 각 객체의 형상 확인, 단면 전환, 재질 적용, 뷰 이동 등 일반적인 모델 취합 및 검토 작업이 모두 원활하게 수행되었다. 특히 여러 모델이 중첩된 복잡한 단지 구조에서도 그래픽 품질 저하나 노이즈 현상이 발생하지 않았다. 뷰 전환 시에도 지연 없이 매끄럽게 이어져, 실시간 회의나 발주처 브리핑 환경에서도 무리 없이 사용할 수 있었다. 결론적으로 HP Z2 미니 G1a는 나비스웍스의 대규모 모델 취합 및 형상 검토 기능을 안정적으로 처리할 수 있는 수준의 성능을 보여주었다.   테스트 2 - 이라크 Khor Al Zubair 침매터널(레빗)   ▲ 레빗 철근 모델 검토 및 수정 기능 테스트   이번 테스트는 해저 밑바닥면에 구조물을 설치하는 침매터널(Immersed Tunnel) 구조물을 대상으로 수행되었다. 침매터널은 일반적인 굴착식 터널과 달리, 해저에 미리 제작된 콘크리트 세그먼트를 정밀하게 가라앉혀 연결하는 방식이다. 따라서 설계·시공 단계에서 철근 배치의 정확도와 세그먼트 간 접합부(Key Segment) 형상 정합성이 핵심 검토 항목이 된다. 테스트는 레빗(Revit) 환경에서 철근 모델링 파일을 직접 열어 모델 검토 및 수정 기능을 확인하는 시나리오로 진행되었다. PC 세그먼트 한 구간을 선택해 내부 철근 배근을 확인하고, 일부 보조철근의 위치를 수정하여 간섭 반응과 반응 속도를 측정했다.  HP Z2 미니 G1a에서 모델을 로드하는 데에는 약 30분이 소요되었다. 모델 크기와 철근 데이터의 밀도를 고려하면 이는 현실적인 수준이다. 모델이 완전히 열리고 나서는 클릭 한 번에 약 10초 정도의 지연이 있었으나, 시스템이 멈추거나 종료되는 일은 없었다. 철근 객체의 선택, 이동, 피복값 수정 등의 기본 편집 과정이 모두 수행 가능했으며, 시스템 안정성 면에서는 충분히 실무 검토용으로 사용할 수 있는 수준이었다. 철근 모델링은 단순히 주근만이 아니라 보조철근, 전기·기계 매립부, 세그먼트 간 피복 간격까지 반영해야 하므로 수정 과정이 빈번하다. 이번 테스트에서 HP Z2 미니 G1a는 이 복잡한 구조를 다루는 동안 메모리 한계나 그래픽 깨짐 없이 끝까지 버텼다. 작업 속도가 빠르다고 표현하기는 어렵지만, 소형 워크스테이션으로서 대형 레빗 철근 모델을 안정적으로 열고 편집할 수 있다는 점은 인상적이었다. 결론적으로 HP Z2 미니 G1a는 Revit의 철근 모델 검토 및 수정 작업에서 실무 활용이 가능한 수준의 안정성을 보여주었다.   테스트 3 - 동부재정 4공구(블렌더)   ▲ 블렌더 락볼트 모델 검토 및 수정 기능 테스트   이번 테스트는 동부간선지하도로 구간의 락볼트(rock bolt) 모델 검토 및 수정 기능을 확인하기 위해 진행됐다. 이 구간은 GTXA, GTX-C, 성남–강남, 삼성–동탄, 위례–신사 등 여러 도시철도 및 도로 프로젝트가 인접해 있어, 공사 간섭이 빈번하게 발생하는 구간이다. 실제로 락볼트가 인접 공구의 구조물과 충돌하는 사례가 확인되어, 문제 구간을 단면화하고 일부 모델을 직접 수정해야 했다. HP Z2 미니 G1a에서의 테스트는 블렌더(Blender) 환경에서 수행하였다. 레빗과 다이나모(Dynamo)로 생성된 락볼트 모델은 스크립트 기반으로 제작되어, 개별 객체만 직접 수정하면 기존 자동화 코드가 깨질 위험이 있었다. 이 때문에 버텍스(정점) 편집이 자유로운 블렌더를 이용해, 시각적으로 간섭 부위를 잘라내고 재형성하는 방식으로 접근하였다. 테스트 시 약 6만 개의 락볼트 모델을 포함한 전체 파일을 불러오는 데 약 30분이 소요되었다. 로딩 과정은 길었지만, 모델이 완전히 열린 이후에는 뷰 회전·확대·축소가 안정적으로 유지되었으며, 버텍스 단위 편집에서도 시스템이 멈추거나 지연되는 현상은 발생하지 않았다. 단일 객체 수정, 형상 재조정, 도면화를 위한 분할 단면 추출 과정이 모두 정상적으로 수행되었고, GPU 가속을 사용하는 뷰포트에서 화면 품질 저하도 없었다. 레빗·나비스웍스가 구조 중심의 정적 검토 도구라면, 블렌더는 자유도 높은 3D 편집기다. HP Z2 미니 G1a는 이 편집 자유도를 실제 토목 모델링 작업에서도 유지할 만큼의 그래픽·CPU 성능을 보여주었다. 결론적으로 HP Z2 미니 G1a는 대규모 락볼트 모델의 검토·수정 업무에서도 안정적인 작업 환경을 제공하는 수준의 성능을 보였다. 다중 객체를 로딩한 뒤에도 프레임 저하가 크지 않았으며, 블렌더의 버텍스 편집 기능을 활용한 국부 수정 테스트에서 실무 투입이 가능한 반응성과 내구성을 확인할 수 있었다.   테스트 4 - GTX-B 민간투자사업(인프라웍스)   ▲ 인프라웍스 대규모 노선 모델 임포트 및 뷰어 성능 테스트   이번 테스트는 GTX-B 민자사업 구간(총 연장 약 80 km)을 대상으로 진행되었다. 테스트 목적은 대용량 지형 데이터와 위성 사진을 통합한 후, 인프라웍스(InfraWorks)의 모델 임포트 및 뷰어 성능을 검증하는 것이다. 이 프로젝트는 국토지리정보원으로부터 제공받은 현황 도면과 위성사진 데이터의 총 용량이 약 100GB에 달했다. 이전까지 수행한 대부분의 철도·터널 BIM 업무보다 데이터 규모가 훨씬 컸으며, 필자가 처음으로 ‘기존 BIM 워크플로로는 처리 효율이 한계에 달한다’는 사실을 체감한 사례였다. 이후 유사 규모의 프로젝트에서는 SRTM(Shuttle Radar Topography Mission) 지형 데이터를 기반으로 단순화한 방식이 더 효율적이라는 판단을 내리는 계기가 되었다. 테스트는 시빌 3D(Civil 3D)와 래스터 디자인(Raster Design)에서 좌표계 및 기준점을 세팅한 데이터를 인프라웍스에 불러와 확인하는 방식으로 진행되었다. HP Z2 미니 G1a에서 모델 로드를 시작하자, 인프라웍스의 타일 로딩 방식이 구간별로 작동하여 데이터가 점진적으로 표시되었다. 전체 80 km 구간이 완전히 로딩되기까지 약 5분이 소요되었으며, 이후 뷰 이동이나 확대·축소, 태그 생성, 노선 추가 등의 작업은 끊김 없이 매끄럽게 동작했다. 특히 고해상도 위성 사진을 겹쳐 놓은 상태에서도 프레임 저하가 거의 없었고, 장시간 뷰 이동을 반복해도 과열이나 랙 현상이 나타나지 않았다. 이전 세대 노트북에서 동일 데이터를 열 때 수시로 멈춤이 발생했던 점을 고려하면, 소형 데스크톱 장비로 이 정도의 안정성을 확보한 것은 인상적이다. 결론적으로 HP Z2 미니 G1a는 인프라웍스에서의 대규모 노선 모델 임포트 및 뷰어 성능 검증을 충분히 통과했다. 100GB급 지형 데이터를 실시간으로 불러오고 탐색하는 환경에서도 안정적으로 동작했으며, 국토·철도·터널 분야의 대용량 시각화 검토용 장비로 활용하기에 적합한 수준임이 확인되었다.   테스트 5 – 경산지식산업센터(다이나모)   ▲ 다이나모 기반 관로 자동 모델링 스크립트 실행 테스트   이번 테스트는 경산지식산업센터 단지 프로젝트의 관로 자동 모델링 프로세스를 검증하기 위해 수행되었다. 단지형 프로젝트의 경우, 우수·오수·상수 등 각 관로의 담당사가 서로 달라 조율 과정에서 도면 교환만으로 수많은 시간이 소요된다. 이를 3D 모델로 통합하면 공정 간섭 검토와 협의가 신속하게 이루어지며, 전체 공기를 단축할 수 있다. 테스트는 기존에 구축해 둔 다이나모(Dynamo) 스크립트의 실행 성능과 안정성을 확인하는 방식으로 진행되었다. 해당 스크립트는 각 관로별 데이터베이스를 CSV 파일 형태로 불러와, 물량산출 양식에 맞는 형식으로 자동 모델링을 수행하도록 설계되어 있다. 약 600개의 관로 데이터를 처리해야 했으며, 스크립트 실행 후 전체 모델이 완성되는 데 약 2분이 소요되었다. HP Z2 미니 G1a는 스크립트 실행 중에도 메모리 과부하나 뷰 응답 지연이 거의 발생하지 않았다. CSV 로드, 파라미터 매칭, 객체 자동 생성 등 일련의 과정이 매끄럽게 진행되었으며, 모델 생성 중 다른 창으로 전환하거나 병행 작업을 수행해도 시스템 반응이 안정적으로 유지되었다. 이전 노트북 환경에서 동일 스크립트를 실행할 때 20~30분이 걸리던 것을 감안하면, 처리 속도 면에서도 체감 개선이 있었다. 다이나모는 BIM 자동화의 핵심 도구로, CPU·RAM 활용도가 높은 편이다. HP Z2 미니 G1a는 이러한 데이터 기반 자동 모델링 작업에서도 안정성과 연속성을 유지할 수 있는 성능을 보여주었다. 결론적으로, 이 제품은 다이나모를 활용한 중규모 자동화 모델링 업무에서도 실무 투입이 가능한 수준의 연산 성능을 제공했다. 단순한 뷰어 수준을 넘어, 스크립트 실행 및 대량 객체 생성 단계까지 안정적으로 처리할 수 있음을 확인했다.   테스트 6 - 양평–이천 1공구(시빌 3D)    ▲ 시빌 3D 코리더 기반 도로·토공 모델 수정 테스트   이번 테스트는 양평–이천 1공구 교차로 구간의 도로 및 토공 모델 수정 작업을 대상으로 진행되었다. 이 현장은 기존 도로가 운행 중인 상태에서 양측에 신설 교량과 램프가 동시에 시공되는 복합 교차로 구간으로, 작은 설계 변경이 전체 토공·선형·편경사에 즉각적인 영향을 주는 복잡한 구조를 갖는다. 테스트는 시빌 3D의 코리더(Corridor) 모델 수정 기능을 중심으로 진행되었다. 기존에 구축된 도로 모델에서 선형(Alignment)을 일부 이동시켜, 연결된 측점(Point)과 타깃(Target) 요소들이 자동으로 재계산되는 반응을 확인하였다. 이 과정은 실제 설계 변경 상황에서 빈번히 발생하는 업무이며, 연계된 여러 참조 모델들이 동시에 반응해야 정확한 결과를 얻을 수 있다.  HP Z2 미니 G1a에서의 성능은 인상적이었다. 시빌 3D는 평면선형, 종단곡선, 표준횡단면, 편경사까지 모두 반영된 도로 모델링을 처리해야 하므로, 코리더를 크게 구성할수록 연산 부담이 커진다. 필자는 평소 물량산출 단계에서 코리더를 세분화하지 않고 하나의 대형 코리더로 구성하는 방식을 선호하는데, 이번 테스트에서도 동일 조건으로 적용하였다. 결과적으로 약 5분 내에 전체 코리더가 수정 완료되었고, 램프선형 2개와 메인선형 1개가 포함된 복합 모델이 정상적으로 갱신되었다. 로딩 및 재계산 중 팬 소음은 있었지만, 화면 지연이나 모델 깨짐 현상은 나타나지 않았다. 특히 선형 변경 직후 횡단면과 편경사 데이터가 자동으로 반영되는 과정이 부드럽게 이어져, 실시간 설계 검토용으로도 충분히 사용 가능한 안정성을 보였다. 시빌 3D는 고도의 파라메트릭 모델 구조로 인해 변경 연산이 무거운 편이나, HP Z2 미니 G1a는 이러한 연속 연산 작업을 무리 없이 처리했다. 결론적으로, 이 장비는 코리더 기반 도로 모델 수정 및 토공 검토 작업에서 실무 수준의 연산 안정성과 응답 속도를 제공했다. 복잡한 연계 데이터 구조를 가진 프로젝트에서도 모델링 작업이 매끄럽게 이어졌다는 점이 특히 인상적이었다.   테스트 7 - 압해화원 2공구(나비스웍스)   ▲ 나비스웍스 공정 시뮬레이션 뷰어 테스트   이번 테스트는 도로 및 교량 시공 구간의 공정 시뮬레이션 기능을 검증하기 위해 수행되었다. BIM 분야에서 공정(4D) 시뮬레이션은 단순한 모델 시각화를 넘어, 시간 요소를 결합해 시공 순서를 가시적으로 표현하는 기술이다. 설계 중심의 4D는 ‘무엇이 지어지는가’를 보여주고, 시공 중심의 4D는 ‘어떻게 시공되는가’를 보여주며, 감리 관점에서는 ‘어떻게 하면 안전하게 시공할 수 있는가’를 검토하는 도구로 활용된다. 이번 테스트에서는 기존에 구축되어 있던 공정 연동 모델을 나비스웍스 시뮬레이트(Navisworks Simulate) 환경에서 실행시켜, 공정 시뮬레이션의 재생 속도와 뷰 전환 안정성을 확인하였다. 테스트 과정은 단순했지만, 4D 뷰어의 핵심은 시각적 매끄러움과 타임라인 재생의 일관성에 있다. HP Z2 미니 G1a에서의 실행 결과, 공정 애니메이션이 처음부터 끝까지 지연이나 프레임 드롭 없이 부드럽게 재생되었다. 재생 중 모델 회전·확대·축소·시점 이동을 병행해도 화면이 끊기지 않았으며, 공정 단계 전환 시 오브젝트의 색상 변화나 투명도 조절 효과도 자연스럽게 이어졌다. 테스트 동안 CPU 사용률은 일정하게 유지되었고, 팬 소음은 있었지만 발열로 인한 성능 저하는 없었다. 이전 테스트(1~6)가 모델 검토와 수정 중심이었다면, 이번 테스트부터는 시각적 시뮬레이션 성능과 렌더링 안정성에 초점을 맞춘 항목을 다룰 예정이다. 결과적으로 HP Z2 미니 G1a는 공정 시뮬레이션 뷰어로서의 안정성과 시각적 완성도 면에서 충분히 실무 활용이 가능한 수준을 보여주었다.   테스트 8 - 남양주왕숙지구 국도47호선 이설(트윈모션)   ▲ 트윈모션 주행 시뮬레이션 렌더링 성능 테스트   이번 테스트는 남양주 왕숙지구 국도 47호선 이설 구간의 복합 교차로(IC)를 대상으로 진행되었다. 이 구간은 터널, 지하차도, 램프, 분기부가 하나의 구조물 내에 집중되어 있는 복합 노드로, 설계 단계에서부터 구조 간섭이 빈번히 발생했던 구간이다. BIM 모델을 기반으로 한 시각적 검토 과정에서, 실제 차량의 주행 경로와 주행 표면을 3D 환경에서 구현하여 상부 보고 시 설득력을 강화한 사례이기도 하다. 테스트는 트윈모션(Twinmotion) 환경에서 기존에 구축된 주행 시뮬레이션 파일을 불러와 재생하는 방식으로 진행되었다. 주요 검토 항목은 렌더링 과정의 프레임 안정성, 뷰 이동 반응성, 그리고 카메라 전환 시 딜레이 여부였다. HP Z2 미니 G1a에서의 실행 결과, 전체 시뮬레이션이 매끄럽게 재생되었으며, 렌더링 과정에서의 끊김이나 프레임 드랍이 관찰되지 않았다. 특히 차량 궤적을 기존 설계값보다 높여 시뮬레이션 범위를 인위적으로 확장했을 때에도, 예상과 달리 렌더링이 흔들리지 않고 안정적으로 구동되었다. 시점 전환이나 장면 이동 시에도 지연이 거의 없었으며, 복합 IC 구조물의 터널·램프·교차부 간 연결성이 시각적으로 명확히 유지되었다. 이 테스트는 단순한 뷰어 수준을 넘어, 실제 주행 경로를 포함한 3D 시뮬레이션의 실시간 렌더링 처리 능력을 확인하는 것이 목적이었다. 결과적으로 HP Z2 미니 G1a는 트윈모션 기반 주행 시뮬레이션에서도 안정적인 그래픽 처리 성능과 렌더링 지속성을 입증했다. 특히 복잡한 교차로 구간에서 여러 객체가 동시에 움직이는 장면에서도 프레임 유지율이 높았으며, 실무 프레젠테이션용 장비로도 손색이 없는 수준이었다.   테스트 9 - 천안 환경 클러스터(리얼리티스캔)   ▲ 리얼리티스캔 드론 사진 기반 자동 3D 모델링 테스트   이번 테스트는 천안 환경 클러스터 매립지 현장에서 촬영한 드론 사진을 활용하여, 리얼리티스캔(RealityScan)의 사진 기반 자동 3D 모델링 기능을 검증하기 위해 진행되었다. 시공 단계에서는 대부분의 현장이 드론 촬영 허가를 보유하고 있으며, 현장 실측 자료를 국토지리정보원 데이터와 비교·보정하여 다양한 지형 검토를 수행한다. 이번 테스트는 이러한 실무 과정과 동일한 조건으로 진행되었다. 테스트 절차는 단순했다. 현장에서 촬영한 약 300장의 드론 이미지를 리얼리티스캔에 불러와 자동 모델링을 수행하였다. 필자가 소프트웨어적으로 개입할 부분은 거의 없었으며, 프로그램이 사진 정합, 포인트 생성, 메시 재구성, 텍스처 합성을 모두 자동으로 처리했다. HP Z2 미니 G1a에서의 결과는 매우 인상적이었다. 약 1시간 만에 전체 모델링이 완료되었으며, 생성된 모델의 정확도는 도면 및 정사사진 수준에 준했다. 같은 데이터셋을 개인용 고성능 노트북에서 처리했을 때 약 5시간이 소요되었던 것을 감안하면, 처리 속도가 약 5배 가까이 단축된 셈이다. 프로세스 중 중단이나 에러 메시지 없이 안정적으로 작업이 완료되었으며, 모델 텍스처 품질 또한 균일했다. 리얼리티스캔은 드론 이미지 처리 시 GPU 및 CPU 연산이 복합적으로 작동하는 프로그램이다. HP Z2 미니 G1a는 이러한 사진측량(Photogrammetry) 기반의 연속 연산 작업에서도 안정성과 속도를 모두 확보했다. 특히 본체가 작음에도 불구하고 장시간 연산 중 발열 제어가 우수하여, 팬 속도는 상승했지만 스로틀링(성능 저하) 현상은 전혀 없었다. 결론적으로 HP Z2 미니 G1a는 필드에서 촬영한 이미지를 즉시 처리하고 결과를 시각화해야 하는 BIM–현장 융합형 워크플로에 특히 효율적이었다.   테스트 10 - 이라크 Al Faw Grand Port(시빌 3D)   ▲ 시빌 3D 해저 지표면 토공 모델링 및 물량산출 테스트   이번 테스트는 Al Faw Grand Port 프로젝트의 해저 지반 데이터를 활용해, 시빌 3D 기반 토공 모델링 및 물량산출 기능을 검증하기 위해 수행되었다. 항만 공사에서의 토공은 일반적인 육상 토공과 달리, 해저 지반의 형상이 복잡하고 데이터 정밀도가 높기 때문에 연산 부담이 매우 크다. 이번 테스트에서도 라이다(LiDAR) 스캔으로 취득한 등고선 간격 3cm의 초정밀 해저면 데이터를 활용하였다. 테스트 절차는 단순했다. 시빌 3D에서 해당 지표면 데이터를 불러온 뒤, 설계 구간만큼의 절취·성토 영역을 모델링하고, 그 구간의 물량을 자동 산출하도록 설정하였다. 즉, 토공 모델링–수량 산출까지의 전형적인 워크플로우를 실제 데이터로 재현한 테스트였다. HP Z2 미니 G1a에서 토공 모델링 단계는 약 2시간 이내에 완료되었다. 등고선 간격이 매우 촘촘했음에도 불구하고, 삼각망(TIN) 생성과 표고 반영 과정은 정상적으로 진행되었다. 그러나 이후 수행된 물량산출 단계에서는 연산이 종료되지 않았다. 시빌 3D의 특성상 계산을 완전히 마치려면 장시간이 필요하며, 연산이 멈춘 것이 아니라 시간만 충분히 주면 결과가 생성되는 구조다. 그러나 이번 테스트는 실무 환경을 가정한 단기 검증이었기 때문에, 하루가 지나도 결과가 출력되지 않아 실용적 한계로 판단하고 중단하였다. 결론적으로 HP Z2 미니 G1a는 초고밀도 해저 지반 데이터를 활용한 토공 모델링 단계까지는 안정적으로 처리 가능했으며, 물량산출처럼 장시간 연산이 필요한 작업에서는 현실적인 작업 효율을 고려한 분할 처리 전략이 필요한 것으로 판단된다.   테스트 11 - 가덕도신공항(파이썬, 팬더스)   ▲ 대용량 SPT 지반 데이터 전처리 및 분류 테스트   이번 테스트는 가덕도 신공항 건설 예정지의 지반 데이터베이스(SPT 값)를 파이썬(Python) 환경에서 전처리하는 실험으로 진행되었다. 이 프로젝트는 파랑이 강한 연약지반 위에 활주로와 부지를 조성해야 하는 난공사로, 시공 이전 단계에서 방대한 지반 검토가 이루어진다. 특히 00연구실에서 제공받은 DB는 좌표별 SPT(Standard Penetration Test) 값을 포함한 약 1억 개의 데이터 포인트로 구성되어 있었다. 이로 인해 일반적인 엑셀이나 CSV 편집기에서는 불러오기조차 불가능했다. 필자는 이 과정에서 엑셀이 약 108만 줄 이상은 열 수 없다는 한계를 처음 체감하기도 했다. 테스트는 파이썬의 팬더스(Pandas) 라이브러리를 사용해 1억 줄의 데이터를 불러온 후, 지반 평가 기준에 따라 다섯 가지 유형(VL, L, MD, D, VD)으로 자동 분류하는 방식으로 진행되었다. 연산은 HP Z2 미니 G1a의 로컬 환경에서 수행되었으며, 데이터는 외부 SSD에서 직접 불러왔다. 테스트 결과는 매우 안정적이었다. 약 15분 만에 전체 데이터가 다섯 개 그룹으로 분류 완료되었으며, 중간 단계에서 메모리 오류나 지연 현상은 발생하지 않았다. CPU 점유율은 일정하게 유지되었고, 작업 중 다른 프로그램을 병행 실행해도 시스템 응답성 저하가 없었다. 특히 팬더스가 메모리 내에서 직접 배열을 처리함에도 불구하고, HP Z2 미니 G1a는 데이터 로드 – 필터링 – 그룹화 – 저장까지 전체 프로세스를 안정적으로 처리했다. 결론적으로 HP Z2 미니 G1a는 대용량 CSV·DB 전처리 작업에서 실무에 투입 가능한 수준의 연산 성능과 안정성을 확보하고 있었다. 1억 줄 규모의 지반 데이터를 단시간에 분류할 수 있었던 점은, 토목·지반·측량 등 데이터 중심 엔지니어링 업무에서 파이썬 기반 자동화 환경에도 충분히 대응 가능한 워크스테이션임을 입증한 결과였다.   테스트 12 - 평택오송 1공구(클라우드컴페어)   ▲ 클라우드컴페어 포인트클라우드(LAS) 분할(Clipping) 테스트   이번 테스트는 평택–오송 고속철도 1공구 구간의 라이다(LiDAR) 드론 스캔 데이터를 활용해, 클라우드컴페어(CloudCompare)의 포인트클라우드 분할(Clipping) 기능을 검증하기 위해 진행되었다. 이 프로젝트는 기존 고속철도가 운행 중인 상태에서 양측에 새로운 철도를 신설하는 사업으로, 모든 시공 작업이 기존 선로의 안정성을 저해하지 않도록 수행되어야 한다. 이를 위해 전 구간(약 10km)에 대한 고정밀 드론 스캔이 이루어졌으며, 취득된 LAS 데이터의 용량은 약 40GB에 달했다. 테스트는 클라우드컴페어 환경에서 해당 LAS 데이터를 불러와, 시뮬레이션 현황에 필요한 구간만 선택하여 잘라내고, 분할된 데이터를 별도 파일로 추출하는 시나리오로 진행되었다. HP Z2 미니 G1a에서의 테스트 결과, 데이터 로딩에 약 30분이 소요되었다. 전체 포인트 수가 매우 많아 초기 로딩 단계에서는 일시적인 프리징(멈춤) 현상이 있었으나, 로드가 완료된 이후에는 시점 이동 및 확대·축소가 안정적으로 가능했다. 이후 약 400m×400m 구간을 불린(Boolean) 연산으로 분할·추출하는 데 10분 내외가 소요되었으며, 연산 도중 프로그램이 중단되거나 강제 종료되는 일은 없었다. 포인트클라우드 데이터의 밀도가 매우 높아 화면 전환 시 프레임 드랍이 있었으나, 작업 안정성 자체는 유지되었다.  결론적으로 HP Z2 미니 G1a는 40GB 규모의 라이다 LAS 데이터를 활용한 포인트클라우드 분할·추출 작업을 실무 수준에서 수행할 수 있는 안정성을 보여주었다. 초기 로딩 시간이 다소 길긴 했으나, 작업 중 중단 없이 끝까지 클리핑을 완료한 점에서 대용량 3D 스캔 데이터 처리용 소형 워크스테이션으로 충분히 실용적임이 확인되었다.   테스트 13 - 사우디아라비아 NEOM Spine Concrete Corridor(세슘, 시빌 3D, 언리얼 엔진)   ▲ 세슘 – 시빌 3D – 언리얼 연계 기반 초장거리 토공 뷰어 테스트   이번 테스트는 사우디아라비아 NEOM 프로젝트의 Spine Concrete Corridor 구간(총 연장 약 108km)을 대상으로 진행되었다. 해당 프로젝트는 전 세계적으로 주목받은 초대형 도시개발 계획의 일부로, 초장거리 선형 구조를 가지고 있어서 광범위한 지형 데이터를 안정적으로 처리할 수 있는 워크플로 검증이 필요했다. 이에 세슘(Cesium) 지형 데이터를 시빌 3D에서 토공 모델로 가공하고, 이를 언리얼 엔진(Unreal Engine)으로 이관하여 시각적 뷰어를 구성하는 전체 절차를 테스트하였다. HP Z2 미니 G1a에서의 테스트는 제한된 시간 내에 일부 구간만을 대상으로 수행되었다. 전 구간(108km)을 처리하지는 않았지만, 세슘에서 시빌 3D로의 데이터 임포트, 토공 모델 생성, 언리얼 엔진으로의 시각화 이관이 모두 정상적으로 진행되었다. 좌표 변환, 메시 생성, 텍스처 반영 등 각 단계에서 프로그램 오류나 멈춤 현상은 발생하지 않았다 언리얼 엔진으로의 모델 이관 후에도 기본적인 뷰어 작동은 안정적이었다. 단순화된 토공면 상태에서도 카메라 이동, 회전, 조명 변경이 자연스럽게 수행되었고, 시각적 품질도 유지되었다. 결론적으로 HP Z2 미니 G1a는 초장거리 지형 데이터를 활용한 세슘 – 시빌 3D – 언리얼 통합 워크플로를 실무 수준에서 안정적으로 수행할 수 있는 성능을 보였다. 대규모 토공 뷰어 구축이나 초장거리 인프라 프로젝트의 시각화 단계에서도 충분히 활용 가능한 장비임이 확인되었다.   ■ 이민철 대우건설 토목사업본부 토목국내기술팀의 선임이다. BIM 기반 토목 설계 및 시공 데이터 검증, 시뮬레이션 자동화, 디지털 트윈 구축 업무를 담당하고 있으며, 다수의 대형 인프라 프로젝트에서 실무 중심의 BIM 엔지니어링 프로세스를 연구·적용하고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-11-04
[온에어] 제조 산업에서의 사이버 보안과 위기 상황 대응 방안
캐드앤그래픽스 지식방송CNG TV 지상 중계   제조 현장이 빠르게 디지털화되면서 보안의 무게중심이 '장비'에서 '프로세스'로 이동하고 있다. CNG TV는 '제조 산업에서의 사이버 보안과 위기 대응'을 주제로 9월 29일 웨비나를 열고, 코어시큐리티 한근희 부사장(연구소장)을 초청해 산업제어(OT/ICS) 보안의 실제 쟁점과 글로벌 규제 흐름, 그리고 기업이 당장 취해야 할 실행 전략을 짚었다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자    ▲ 디지털지식연구소 조형식 대표, 코어시큐리티 한근희 부사장 겸 연구소장   보안의 중심, 장비에서 ‘프로세스’로 제조 산업의 디지털 전환이 가속화되면서 보안의 개념이 바뀌고 있다. 이제는 방화벽이나 장비를 추가하는 수준이 아니라, 설계부터 폐기까지 전 수명주기(SDLC/TPLC) 속에 보안을 내재화하는 것이 핵심이다. 이날 웨비나에 발표자로 참여한 코어시큐리티 한근희 부사장 겸 연구소장은 "보안은 제품이 아니라 프로세스"라고 강조하며, 기업이 단계별로 구축해야 할 보안 전략에 대해 설명했다. 코어시큐리티는 사이버 레인지(공격·방어 실전훈련), 산업제어(OT/ICS) 보안 컨설팅, 가상자산 추적 솔루션, 공공기관 실태조사 대응 등 4개 사업을 주축으로 운영 중이다. 특히 KISA(한국인터넷진흥원)와 해군 사이버훈련장 구축 사례를 통해, 단순한 장비 투자가 아니라 실전형 보안훈련과 프로세스 체계화가 중요함을 보여줬다. 한근희 부사장은 "이제 모든 제어 기기가 네트워크에 연결되어 있다. 연결은 곧 위험이다. 제어시스템의 보안은 선택이 아니라 생존이다"라고 설명했다. 최근 국가정보자원관리원의 화재 사고를 비롯해 조선소 도면 유출 등 연쇄적인 보안사고는 경고 신호다. 과거에는 사고가 터지면 보안팀장을 문책했지만, 지금은 CEO의 의사결정과 예산 배분이 핵심 변수로 떠오르고 있다. '보안은 이제 보안팀의 일이 아니라 CEO의 일'이라는 인식 전환이 절실하다.   보안은 제품이 아닌 프로세스다 한근희 부사장은 보안을 '연결된 공정'으로 설명했다. 첫째, 교육과 인식 강화를 프로젝트 발족 초기 단계의 최우선 예산으로 설정해야 한다. 둘째, 법·규격 요구를 기반으로 한 보안 요구사항(SRS)을 문서화한다. 셋째, Security by Design 원칙 아래 설계 단계에서 보안을 내재화해야 한다. 패스워드리스 구조, 3요소 이상 MFA(다중 인증) 설계 등이 대표적인 예다. 넷째, 설계 요구를 충실히 코드에 반영해 보안 코딩을 수행하고, 다섯째, 퍼징 테스트·모의침투(V&V)로 검증한다. 여섯째, 악성 주입 방지와 안전한 릴리즈 프로세스를 마련하고, 마지막으로 사고 대응(IR) 절차를 통해 회복력을 확보해야 한다. 한근희 부사장은 "해킹은 막을 수 없다는 전제를 인정해야 한다. 하지만 신속히 복구되는 프로세스를 갖추면 피해를 통제할 수 있다"고 강조했다. 국제 표준 준수는 더 이상 선택이 아니다. 경영회의에 보안 KPI를 상정하고, 자사 제품을 NIS2·CRA·SSDF·IEC 62443 등과 교차 매핑하며, SRS–설계 가이드–테스트 플랜–사고 대응 매뉴얼을 주기적으로 갱신해야 한다. 벤더 계약에는 SBOM(소프트웨어 자재 명세서) 제출 및 취약점 24시간 통보 의무를 삽입하고, 연 1회 이상 레드팀/블루팀 실전훈련으로 회복탄력성을 점검해야 한다. 이번 웨비나를 통해 '보안의 답은 거창한 장비가 아니라, 잘 설계된 프로세스다'라는 점이 좀 더 명확해졌다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-11-04
액센츄어, 공장과 창고를 ‘소프트웨어 정의 시설’로 바꾸는 ‘피지컬 AI 오케스트레이터’ 출시
액센츄어가 제조업체들이 기존 및 미래의 공장과 창고를 혁신하여 소프트웨어 정의 시설로 전환할 수 있도록 돕는 설루션인 ‘피지컬 AI 오케스트레이터(Physical AI Orchestrator)’를 출시했다. 이 클라우드 기반 설루션은 엔비디아 옴니버스(NVIDIA Omniverse), 엔비디아 메트로폴리스(NVIDIA Metropolis), 그리고 액센츄어의 AI 리파이너리(AI Refinery) 플랫폼의 AI 에이전트를 결합한다. 소프트웨어 정의 시설에서는 가상 복제본이 물리적인 자동화 공장이나 창고 및 장비를 미러링한다. 이러한 라이브 디지털 트윈은 문제를 감지하고 정확한 물리학을 사용해 잠재적인 공정 변경의 영향을 실시간으로 시뮬레이션한다. 그다음 AI 에이전트가 통찰력을 정확한 지침으로 변환하여, 물리적 공장이 변화하는 수요, 품질 또는 일정에 적응할 수 있도록 한다. 제조업체는 피지컬 AI 오케스트레이터를 통해 컨베이어, 산업용 및 모바일 로봇부터 작업 현장 및 창고 레이아웃에 이르기까지, 계획되거나 기존의 물리적 자산에 대한 라이브 디지털 트윈을 구축하고 이를 물리적 대상에 연결할 수 있다.     피지컬 AI 오케스트레이터는 ▲리얼리티 캡처 ▲AI 에이전트 ▲비전 분석 ▲자산 커넥터 ▲XR 확장 등의 기능을 제조업체에 제공한다. 리얼리티 캡처(Reality capture)는 공장 및 장비의 디지털 트윈을 생성하기 위한 자동화 AI 기반 프로세스 세트이다. 비디오와 스캔 데이터가 사실적인 3D 모델로 변환되어 레이아웃 변경을 감지하고 디지털 트윈을 최신 상태로 유지한다. AI 에이전트는 과거 프로젝트의 전문 지식을 바탕으로 새로운 생산 라인을 설계, 시뮬레이션, 설치하는 등의 전체 과정에서 엔지니어를 지원한다. 비전 분석(Vision analytics) 기능은 정확한 시뮬레이션 실행에 필요한 시설 내 작업자, 차량, 자재 이동과 같은 실시간 비디오 데이터를 캡처하고 수집한다. 자산 커넥터(Asset connectors)는 기존 장비를 플러그 앤 플레이 방식으로 시뮬레이션에 통합하며, XR 확장(XR extensions) 기능은 고품질 증강 환경에서 디지털 트윈과 상호 작용하고 공유 가상 공간에서 훈련 및 협업을 가능하게 한다. 액센츄어는 피지컬 AI 오케스트레이터를 초기에 도입 기업들이 측정 가능한 이점을 확인했다고 전했다. 이 설루션은 제품 설계 비용과 신규 공장 건설을 위한 자본 비용을 낮추고 더 높은 공장 계획 정확도를 제공하도록 설계되었다. 네트워크 및 데이터 설루션 제공업체인 벨덴(Belden)은 피지컬 AI 오케스트레이터를 사용하여 지속적인 작업을 방해하지 않으면서 로봇 주변에 안전 구역을 생성하는 가상 안전 펜스(virtual safety fence) 설루션을 개발했다. 이 설루션은 에지 AI(edge AI)를 사용해 시설 내 작업자, 차량, 로봇의 움직임과 장비 경로를 센티미터 수준의 정밀도로 감지하고 모델링한다. 이를 통해 사람이 로봇의 작업 구역에 들어가면 로봇이 자동으로 중지되거나 경로가 변경된다. 한 소비재 제조업체는 이 회사는 피지컬 AI 오케스트레이터를 사용해 창고 운영의 디지털 트윈을 구축하여 작업자 이동, 피킹(picking) 비율, 컨베이어 시스템을 분석해 처리량 격차와 레이아웃 비효율을 파악했다. 디지털 트윈은 레이아웃 설계 및 자원 배분에 대한 조정을 권장했다. 그 결과 컨베이어 흐름을 최적화하여 처리량이 20% 향상되었고, 반복적인 시행착오 재설계를 없애 자본 지출을 15% 절감했다. 액센츄어 인더스트리 X(Industry X)의 프라사드 사티야볼루(Prasad Satyavolu) 디지털 엔지니어링 및 제조 서비스 미주 지역 책임자는 “피지컬 AI 오케스트레이터는 물리적 공간을 위한 두뇌 역할을 한다. 엔비디아 옴니버스 기술과 액센츄어 AI 리파이너리로 구동되는 이 설루션은 소프트웨어 정의 공장을 구현하고, 에이전틱 AI(agentic AI)와 피지컬 AI(physical AI)를 제조 구조의 일부로 만들도록 설계되었다”고 전했다. 또한 “우리는 이미 이 설루션이 전 세계 고객에게 빠르고 지속적인 이점을 제공하는 것을 목격하고 있다. 이는 특히 미국 기업들에 해당하는데, 미국에서는 제조 혁신이 재산업화(reindustrialization)의 전제 조건이기 때문”이라고 덧붙였다.
작성일 : 2025-11-03
CAD&Graphics 2025년 11월호 목차
  INFOWORLD   Editorial 17 AI와 CAE의 융합, ‘지능형 시뮬레이션’ 시대를 연다    Hot Window 18 말하면 설계하는 시대를 향해 – AI로 그리는 설계의 미래 / 한명기 21 리얼타임을 통한 디지털 트랜스포메이션의 진화 / 권오찬   Focus 26 AWS, 산업 혁신 이끄는 AI 에이전트 비전과 전략 공개 28 AEC/MFG 산업의 미래는? 지더블유캐드코리아, CAD/CAM/CAE 통합 플랫폼 비전 제시 30 유니티, “게임 엔진 넘어 AI·디지털 트윈 시대의 산업 기반 기술로”   Case Study 33 핵융합 실험을 위한 3D 시뮬레이션 플랫폼 개발 유니티로 구현한 핵융합 디지털 트윈, V-KSTAR 36 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전 / 이웅재 디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   People&Company 40  지더블유캐드코리아 최종복 대표이사 CAE·PDM까지 라인업 확장… ‘가성비’ 넘어 AI·성능으로 승부   New Product 42 HP Z2 미니 G1a 리뷰 / 이민철 BIM 엔지니어의 실무 프로젝트 성능 검증 50 3D 설계 환경에 통합된 전문 CAE 시뮬레이션 ZW3D Structural & Flow 54 접촉·포스 성능 향상 및 MFBD 후처리, 산업별 툴킷 기능 강화 리커다인 2026 57 실시간 3D 시각화 워크플로의 생산성 향상 트윈모션 2025.2 74 이달의 신제품   On Air 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 BIM의 융합, 건축 설계의 패러다임을 바꾸다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조 산업에서의 사이버 보안과 위기 상황 대응 방안 65 캐드앤그래픽스 CNG TV 지식방송 지상중계 시뮬레이션의 미래 : AI와 디지털 트윈이 주도하는 제조 혁신   Column 66 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 시대의 서바이벌 노트 : 인공지능 마인드세트와 원칙 69 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅲ – 본질에 집중하는 삶   76 New Books 78 News   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 81 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 코드로 강력한 수학 그래픽 애니메이션을 만드는 매님 84 새로워진 캐디안 2025 살펴보기 (12) / 최영석 유틸리티 기능 소개 Ⅹ 88 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (8) / 천벼리 아레스 커맨더의 동적 블록과 트리니티 블록 라이브러리   Reverse Engineering 91 시점 – 사물이나 현상을 바라보는 눈 (11) / 유우식 무엇을 믿을 것인가?   Mechanical 98 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (4) / 박수민 모델 기반 정의 개선사항   Analysis 104 앤시스 워크벤치를 활용한 해석 성공 사례 / 장형진 앤시스 LS-DYNA S-ALE를 활용한 폭발 성형 해석 방법 108 최적화 문제를 통찰하기 위한 심센터 히즈 (9) / 이종학 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 118 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (27) / 나인플러스IT 차세대 다중물리 CFD 설루션의 ‘4A’ 122 설계, 데이터로 다시 쓰다 (2) / 최병열 DX 시대에서 AX 시대로 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (4) / 윤경렬, 김도희 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 132 가상 제품 개발을 위한 MBSE 및 SysML의 이해와 핵심 전략 (1) / 오재응 디지털 모델 중심 시스템 설계로의 전환 전략   Manufacturing 138 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (2) / 차석근 산업 사이버 위협을 돌파하기 위한 IEC 62443   PLM 144 산업 디지털 전환을 가속화하는 버추얼 트윈 (8) / 이희라 부품 공용화 및 표준화를 위한 AI 기반 3D 형상 분석 설루션     캐드앤그래픽스 2025년 11월호 목차 - 산업 디지털 전환을 위한 실시간 시각화 및 AI 설계 기술 from 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-10-31
슈나이더 일렉트릭, 에너지/지속가능성 과제 해결 돕는 글로벌 자문 서비스 출범
슈나이더 일렉트릭이 글로벌 자문 서비스인 ‘SE 어드바이저리 서비스(SE Advisory Services)’를 공식 출범했다. 전 세계 전력 수요가 2030년까지 연평균 3% 이상 증가할 것으로 예상되는 가운데, 탈탄소 전환에 대한 압력이 커지면서 기업 운영은 점점 더 어려워지고 있다. 여기에 불안정한 글로벌 무역 환경과 복잡해진 공급망 구조가 더해지면서, 기업들은 기존보다 한층 통합적이고 전략적인 대응이 필요한 상황에 놓여 있다. SE 어드바이저리 서비스는 에너지 효율과 지속가능성, 그리고 기술 혁신 측면에서 기업과 개인이 당면한 과제를 효과적으로 해결할 수 있도록 슈나이더 일렉트릭의 맞춤형 설루션을 제공하는 글로벌 자문 서비스이다. 이는 슈나이더 일렉트릭이 오랜 기간 쌓아온 컨설팅 역량을 한층 고도화한 것으로, 기존의 개별 자문 서비스를 넘어 전략 수립과 실행, 소프트웨어 등의 디지털 설루션 제공까지 포괄적으로 아우르는 통합형 컨설팅 서비스를 지향한다. 엔드 투 엔드 접근 방식을 통해 에너지 및 기술 전환을 가속화하고, 기업이 미래 변화에 유연하게 대응할 수 있는 지속가능한 운영 체계를 구축하도록 지원한다.     특히 슈나이더 일렉트릭 자문 서비스는 기업 전체의 전략적 과제부터 사업장 단위의 운영까지 네 가지 핵심 영역을 중심으로 컨설팅을 제공한다. 먼저 ▲지속가능한 비즈니스 및 산업 전환(Sustainable Business & Industrial Transformation) 영역에서 디지털 전환과 탈탄소화, 재생에너지 조달 및 저탄소 인프라와 순환경제체계 구축 등을 통해 에너지 효율 향상과 관련된 프로세스 전반은 물론 핵심 산업의 선도적인 혁신을 지원한다. ▲리스크 관리 및 회복탄력성(Risk Management & Resilience) 영역에서는 에너지 시장의 변동성 및 사이버 보안, 기후변화 등 대내외 리스크로부터 조직을 온전히 보호하고, 관련 리스크 발생 시 회복력을 높일 수 있도록 돕는다. 또한 ▲자원 및 자산 성과(Resource & Asset Performance) 확보에 초점을 맞춘 자문을 통해 전략적인 자원 및 자산 관리를 바탕으로 기업의 노력이 지속적으로 유지될 수 있도록 하여 미래 시장에 대한 성장 동력을 갖추도록 한다. 이 모든 서비스는 슈나이더 일렉트릭의 핵심 역량인 ▲지능형 소프트웨어(Intelligent Software) 영역과 연결하여AI 기능이 내장된 특화 소프트웨어를 적용함으로써 자문 결과물의 연결성과 실효성을 한 단계 더 높은 수준으로 제고할 수 있다. 슈나이더 일렉트릭의 프레드릭 고드멜(Frédéric Godemel) 에너지 관리 사업부 부사장은 “슈나이더 일렉트릭의 자문 서비스는 그간 에너지 관리 및 산업 자동화 분야에서 축적한 컨설팅 역량을 하나로 통합한 서비스다. 이 서비스를 통해 고객이 에너지 및 지속가능성, 기술 혁신 등과 관련된 긴급한 과제를 해결할 수 있도록 적극 지원할 계획”이라며, “앞으로 꾸준히 양질의 자문 서비스를 제공함으로써 고객의 넷제로(Net Zero) 달성을 향한 탈탄소 여정에 분명한 길을 제시하고자 한다”고 말했다.
작성일 : 2025-10-30
CONTACT Elements로 여는 AI 혁신 - 서울 현장 라이브(11/13)
CONTACT Elements로 여는 AI 혁신 - 서울 현장 라이브 디지털 전환은 당신의 경쟁력을 결정합니다. 최신 기술을 빠르고 지속 가능하게 통합하는 기업만이 혁신적으로 성공할 수 있습니다. CONTACT Elements는 구조화된 데이터 기반과 독창적인 프레임워크를 제공하여, AI의 가치를 진정으로 실현할 수 있게 합니다. ​ 서울에서 열리는 CONTACT Elements Live Tour(CELT) 행사에서, 아이디어 단계부터 AS까지 AI가 어떻게 업무 프로세스를 혁신할 수 있는지 직접 경험하실 수 있습니다.   이번 서울 행사에서는 디지털 전환 전문가들과 1:1로 직접 의견을 나누고, 파트너 및 고객들과 교류할 수 있는 소중한 기회가 마련됩니다.     · 일시: 2025년 11월 13일(목) 13:30 ~ 18:30 · 장소: 서울 양재 엘타워 (3호선·신분당선 양재역 9번 출구 도보 5분)     Agenda 2025년 11월 13일(목) 시간 내용 13:30 환영 인사 13:50 패스트 포워드 - 디지털 전환 l  Top Floor → Shop Floor l  AI 혁신 14:20 패스트 포워드 - 제품 개발 l  요구사항 관리: 애자일 방식 관리, 새로운 요구사항의 원할한 통합, 개선 방안 자동 도출 l  애자일 엔지니어링: 효율적인 프로젝트 조직과 원할한 협업으로 더 빠른 구현을 실현 l  효울적 팀워크: 3D 모델 통합 및 PLM 인터페이스 기반의 실시간 협업 14:45 패스트 포워드 - 설계변경 관리 l  스마트 변경: 자동화된 실행 권장사항과 투명한 변경 이력 추적 l  원할한 프로세스: 익숙한 환경에서 직접 설계변경 실행 l  엔트투엔드 연결: PLM에서 생산 현장까지 - 끊김 없는 연속 프로세스 l  자동화 워크플로: 지능형 BOM 생성과 매끄러운 생산 계획 지원 15:10 커피 브레이크(휴식 및 토론) 15:40 패스트 포워드 - 의사 결정 l  PLM on the Go: 빠른 정보 수집을 위한 AI 어시스턴트 l  지속 가능한 혁신: 탄소 모니터링과 소재 최적화로 효율 극대화 l  빠른 의사 결정: 연결된 데이터와 AI로 지원되는 투명한 의사 결정 프로세스 16:05 패스트 포워드 - 제조 분야 l  현장 관리: 실시간 데이터로 전체 생산 과정 투명하게 확인 l  제조 추적: 편차를 즉시 감지하고 선제적으로 대응 l  서비스 관리: 전체 서비스 팀이 모바일 기기를 통해 언제 어디서나 정보 활용 가능 16:30 고객 사례 발표 17:00 커피 브레이크(휴식 및 자유 토론) 17:30 파트너 인사이트 l  세원에스텍 l  SLEXN 18:00 AI - 게임 체인저 l  세계 최고의 디지털화 플랫폼에서 실현되는 엔드투엔드 AI 통합 환경 18:30 만찬 및 네트워킹 ※ 상기 아젠다는 사정에 따라 변동 될 수 있습니다 ​ 행사는 CONTACT Software가 주최하며, 국내 파트너사 Sewon Stech와 SLEXN이 함께 참여한다. 행사에서는 전기 레이싱카 제조사 사례를 통해 AI가 제품 개발의 모든 단계(아이디어 창출부터 애프터서비스까지)를 어떻게 혁신할 수 있는지를 CONTACT의 클라우드 기반 PLM 솔루션을 통해 소개한다. 세션은 ‘Fast Forward’ 시리즈로 구성돼 있으며, △경영부터 생산 현장까지의 AI 혁신(Keynote) △제품 개발과 요구사항 관리의 자동화(Presentation & Live Demo) △엔지니어링 변경 관리 및 생산 연계 워크플로(Presentation & Live Demo) △AI 기반 의사결정 지원 및 지속가능한 혁신 전략(Presentation & Live Demo) △제조·생산 프로세스의 실시간 추적 및 서비스 관리(Presentation & Live Demo) 등이 포함된다. 또한 CONTACT 고객의 실제 사례 발표와 파트너사 프레젠테이션, 그리고 만찬 네트워킹이 이어진다. 참석자들은 디지털 전환을 고민하는 국내 제조업계 관계자, IT 및 PLM 담당자, 그리고 지속가능한 제품개발을 모색하는 전문가들로 구성될 예정이다. CONTACT Software Korea의 이상훈(Sherman Lee) 한국영업대표는 “이번 CELT Korea는 단순한 기술 세미나가 아니라 AI와 PLM이 결합해 만들어내는 미래 제조 혁신의 방향을 직접 체험할 수 있는 자리”라며 “디지털 전환을 준비하는 모든 기업에 새로운 영감을 제공할 것”이라고 말했다. 참가 등록은 메일(Sanghoon.lee@contact-software.com)로 신청할 수 있다. 신청 시에는 메일에 신청자 성명, 회사명, 직급, 회사 메일, 전화번호가 포함돼야 한다. 행사 참가비는 무료다.    
작성일 : 2025-10-30
오픈 마인드, 한국 지사 설립과 함께 아시아 시장 입지 강화 추진
오픈 마인드(OPEN MIND)가 글로벌 성장 전략을 이어가기 위해 서울에 신규 법인을 설립했다고 밝혔다. CAD/CAM 및 MES 설루션 기업인 오픈 마인드는 한국 지사인 오픈 마인드 테크놀로지스 코리아를 통해 아시아 시장 내 입지를 강화하고 추가 성장을 위한 기반을 마련한다. 이 회사는 서울 수도권 지역을 거점으로 신규 시장 개척을 목표로 한다. 오픈마인드는 프로그래밍과 가공 모두에서 더 높은 성능을 제공할 수 있는 혁신 기능을 포함하는 최적화된 CAD/CAM 설루션을 개발하고 있다. 대표 제품인 하이퍼밀(hyperMILL)은 2.5D, 3D 및 5축 가공과 함께 적층 가공, HSC 및 5축 가공을 위한 터닝 전략 및 설루션까지 자체 CAD 플랫폼에서 최첨단 CAM 기술을 제공하는 모듈형 CAD/CAM 설루션이다. HPC 가공, 자동화, 시뮬레이션, 가상 머신 등의 기술을 도입해 지속적인 디지털 프로세스 체인을 지원하는 것도 특징이다.     오픈 마인드의 볼커 네젠회너(Volker Nesenhöner) CEO는 “한국은 첨단 제조산업과 선도적인 하이테크 부문을 갖춰 아시아에서 가장 흥미롭고 중요한 시장 중 하나이다. 이러한 역동적인 환경은 하이퍼밀(hyperMILL)을 활용하기에 이상적인 조건을 제공한다”면서, “우리의 혁신적인 CAD/CAM 설루션과 강력한 자동화 기술을 통해 기업은 생산 공정을 최적화하고 품질과 효율을 모두 높일 수 있다”고 전했다. 오픈 마인드 테크놀로지스 코리아의 김동극 지사장은 “서울의 신규 법인을 통해 한국 고객은 이제 오픈 마인드로부터 직접 지원을 받게 된다. 고객들은 하이퍼밀 전문가와 직접 소통하고, 더 빠른 지원과 함께 소프트웨어 업데이트에 더 빨리 접근할 수 있다. 이는 새로운 기능과 개선 사항이 더 신속하게 도입될 수 있음을 뜻한다”고 설명했다. 또한 “우리 팀은 고객에게 이전과 동일한 고품질의 서비스를 계속 제공할 것이며, 기존의 담당자 역시 그대로 유지된다. 여기에 오픈 마인드로부터 직접 지원받는 추가적인 이점이 더해진다”고 덧붙였다. 한편, 오픈 마인드와 오랜 파트너십을 이어온 리셀러인 오픈솔루션은 오픈 마인드 테크놀로지스 코리아와 긴밀하게 협력해, 파트너십을 강화하고 고객 지원을 더욱 강화할 예정이다.
작성일 : 2025-10-29
IBM, AI 가속기 ‘스파이어 엑셀러레이터’ 정식 출시
IBM은 자사의 메인프레임 시스템 IBM z17 및 IBM 리눅스원 5(IBM LinuxONE 5)에 적용 가능한 인공지능(AI) 가속기 ‘스파이어 엑셀러레이터(Spyre Accelerator)’를 정식 출시한다고 밝혔다. 스파이어 엑셀러레이터는 생성형 및 에이전트 기반 AI 업무를 지원하는 빠른 추론 기능을 제공하며, 핵심 업무의 보안과 복원력을 최우선으로 고려해 설계되었다. 12월 초부터는 파워11(Power11) 서버용 제품도 제공될 예정이다. 오늘날 IT 환경은 기존의 논리 기반 업무 흐름에서 에이전트 기반 AI 추론 중심으로 전환되고 있으며, AI 에이전트는 저지연(low-latency) 추론과 실시간 시스템 반응성을 요구한다. 기업은 처리량의 저하없이 가장 까다로운 엔터프라이즈 업무와 AI 모델을 동시에 처리할 수 있는 메인프레임과 서버 인프라를 필요로 한다. IBM은 이러한 수요에 대응하기 위해서 생성형 및 에이전트 기반 AI를 지원하면서도 핵심 데이터, 거래, 애플리케이션의 보안과 복원력을 유지할 수 있는 AI 추론 전용 하드웨어가 필수적이라고 판단했다. 스파이어 엑셀러레이터는 기업이 중요한 데이터를 사내 시스템(온프레미스, on-premise) 내에서 안전하게 관리할 수 있도록 설계되었으며, 운영 효율성과 에너지 절감 효과도 함께 제공한다.     스파이어 엑셀러레이터는 IBM 리서치 AI 하드웨어 센터의 혁신 기술과 IBM 인프라 사업부의 개발 역량이 결합된 결과물이다. 시제품으로 개발된 이후 IBM 요크타운 하이츠 연구소의 클러스터 구축과 올버니대학교 산하 ‘신흥 인공지능 시스템 센터(Center for Emerging Artificial Intelligence Systems)’와의 협업을 통해 빠른 반복 개발 과정을 거쳐 완성도를 높였다. 이렇게 기술적 완성도를 높여 온 시제품 칩은 현재는 IBM Z, 리눅스원, 파워 시스템에 적용 가능한 기업용 제품으로 진화했다. 현재 스파이어 엑셀러레이터는 32개의 개별 가속 코어와 256억 개의 트랜지스터를 탑재한 상용 시스템온칩(SoC, system-on-a-chip) 형태로 완성되었다. 5나노미터 공정 기술을 기반으로 제작된 각 제품은 75와트(Watt) PCIe 카드에 장착되며, IBM Z 및 리눅스원 시스템에는 최대 48개, IBM 파워 시스템에는 최대 16개까지 클러스터 구성이 가능하다. IBM 고객들은 스파이어 엑셀러레이터를 통해 빠르고 안전한 처리 성능과 사내 시스템 기반의 AI 가속 기능을 활용할 수 있다. 이는 기업이 IBM Z, 리눅스원, 파워 시스템 상에서 데이터를 안전하게 유지하면서도 AI를 대규모로 적용할 수 있게 되었음을 의미한다. 특히, IBM Z 및 리눅스원 시스템에서는 텔럼 II(Telum II) 프로세서와 함께 사용되어 보안성, 저지연성, 높은 거래 처리 성능을 제공한다. 이를 통해 고도화된 사기 탐지, 유통 자동화 등 예측 기반 업무에 다중 AI 모델을 적용할 수 있다. IBM 파워 기반 서버에서는 AI 서비스 카탈로그를 통해 기업 업무 흐름에 맞춘 종합적인 AI 활용이 가능하다. 고객은 해당 서비스를 한 번의 클릭으로 설치할 수 있으며, 온칩 가속기(MMA)와 결합된 파워용 스파이어 엑셀러레이터는 생성형 AI를 위한 데이터 변환을 가속화해 심층적인 프로세스 통합을 위한 높은 처리량을 제공한다. 또한 128개 토큰 길이의 프롬프트 입력을 지원하며, 이를 통해 시간당 800만 건 이상의 대규모 문서를 지식 베이스에 통합할 수 있다. 이러한 성능은 IBM의 소프트웨어 스택, 보안성, 확장성, 에너지 효율성과 결합되어, 기업이 생성형 AI 프레임워크를 기존 업무에 통합해 나가는 여정을 효과적으로 지원한다. IBM 인프라 사업부 최고운영책임자(COO)이자 시스템즈 사업부 총괄 배리 베이커(Barry Baker) 사장은 “스파이어 엑셀러레이터를 통해 IBM 시스템은 생성형 및 에이전트 기반 AI를 포함한 다중 모델 AI를 지원할 수 있는 역량을 갖추게 됐다. 이 기술 혁신은 고객이 AI 기반 핵심 업무를 보안성과 복원력, 효율성을 저해하지 않고 확장할 수 있도록 돕는 동시에, 기업 데이터의 가치를 효과적으로 끌어낼 수 있도록 지원한다”고 말했다. IBM 반도체 및 하이브리드 클라우드 부문 무케시 카레(Mukesh Khare) 부사장은 “IBM은 2019년 AI 리서치 하드웨어 센터를 설립해, 생성형 AI와 대규모 언어 모델(LLM)이 본격적으로 확산되기 이전부터 AI의 연산 수요 증가에 대응해 왔다. 최근 고도화된 AI 역량에 대한 수요가 높아지는 가운데, 해당 센터에서 개발된 첫 번째 칩이 상용화 단계에 진입해 자랑스럽다”면서, “이번 스파이어 칩의 정식 출시로 IBM 메인프레임 및 서버 고객에게 향상된 성능과 생산성을 제공할 수 있게 되었다”고 설명했다.
작성일 : 2025-10-28