• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 프로그래머블 머니"에 대한 통합 검색 내용이 92개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
가트너, 2026년부터 주목해야 할 10대 AI 전망 발표
가트너가 2026년부터 주목해야 할 최우선 AI 전략 전망 10가지를 발표했다. 이 전망은 ▲AI 시대의 인재 ▲AI 주권 ▲인시디어스 AI(Insidious AI) 등 세 가지 핵심 트렌드로 분류된다. 가트너는 2027년까지 생성형 AI와 AI 에이전트의 사용이 지난 30년간 생산성 도구 시장에 발생한 가장 큰 도전 과제가 될 것이며, 580억 달러 규모의 시장 재편을 촉발할 것이라고 전망했다. 생성형 AI의 발전에 따라 기업은 업무 효율을 높이기 위해 생성형 AI 혁신을 우선순위에 둘 것으로 보인다. 과거의 형식과 호환성은 중요성이 낮아져, 진입 장벽은 낮아지고 다양한 공급업체 간의 새로운 경쟁이 촉발될 것으로 전망된다. 일상적 생성형 AI의 비용 구조와 패키징은 시간이 지나면서 변화할 것으로 보인다. 업체들은 유료 기능을 무료로 전환하고, 무료 제품을 더 넓은 사용자층에 적합하도록 만들 것이다. 2027년까지 기업 채용 과정의 75%가 모집 단계에서 업무용 AI 역량 인증 및 테스트를 포함하게 될 것으로 예상된다. 기업은 표준화된 프레임워크와 맞춤형 설문조사를 통해 지원자의 AI 활용 능력을 진단하고, 인력 내 기술 격차를 해소할 수 있을 것이다. 이러한 추세는 정보 수집, 보존, 종합이 핵심인 직종에서 특히 두드러질 것이다. 생성형 AI 역량이 급여와 점점 더 밀접하게 연계됨에 따라, 지원자들은 AI 역량 개발에 더 큰 가치를 두게 될 것이다. 이에 따라 문제 해결, 생산성 향상, 합리적 의사결정 능력을 입증하는 것이 필수 요건으로 부상할 것으로 예상된다. 한편, 가트너는 2026년까지 생성형 AI 사용으로 인한 비판적 사고력 저하로 전 세계 기업의 50%가 채용 과정에서 ‘AI 프리(AI Free)’ 능력 평가를 요구할 것으로 보았다. 기업이 생성형 AI 활용을 확대함에 따라, 채용 절차는 독립적 사고 능력을 갖춘 지원자와 AI가 생성한 결과물에 지나치게 의존하는 지원자를 구분하는 방향으로 변화할 것으로 보인다. 모집 과정에서는 AI 도움 없이 문제 해결, 증거 평가 및 판단 능력을 입증하는 역량이 점점 더 중요한 평가 기준이 될 것이다. 인간의 추론 능력을 별도로 평가하기 위한 전문 테스트 방법과 플랫폼이 등장하면서, AI 프리 평가 도구 및 서비스에 대한 2차 시장이 형성될 가능성도 높다. 2027년까지 전 세계 국가의 35%가 고유한 컨텍스트 데이터를 활용하는 지역 특화 AI 플랫폼에 고착될 전망이다. 기술적, 지정학적 요인으로 인해, 기업들은 엄격한 규제, 언어적 다양성, 문화적 적합성에 대응하기 위해 AI 설루션을 특성화할 수밖에 없으며, 그 결과 AI 환경은 파편화될 것으로 보인다. 지역 간 차이가 증가됨에 따라 범용 AI 설루션은 점차 사라질 것으로 예상된다. 다국적 기업은 글로벌 시장에 통합형 AI를 배포함에 있어 복잡한 과제에 직면하게 될 것이며, 고유한 규제 준수와 데이터 거버넌스 요구 조건을 가진 다양한 플랫폼 파트너십을 관리해야 할 것이다. 가트너는 2028년까지 고객 대면 비즈니스 프로세스의 80%에 다중 에이전트 AI를 활용하는 기업이 시장을 장악할 것으로 보았다. 고객관계관리(CRM) AI가 일상적인 업무를 처리하고, 인간은 복잡하고 감정적 요소가 중요한 상호작용에 집중하는 하이브리드 AI 모델이 업계 표준으로 자리 잡을 것이다. 고객은 계속해서 거래 실행이나 제품 정보 확인에는 AI 지원 완전 셀프서비스를 선호하는 반면, 복잡한 문제 해결이나 청구 분쟁 등에서는 인간을 선호할 것이다. 최소한의 노력과 신속한 서비스에 대한 고객의 기대가 일반화되면서, CRM 프로세스에 다중 에이전트 AI를 도입하지 못한 기업은 경쟁 우위를 상실할 위험이 있다. 한편, 2028년에는 B2B 구매의 90%가 AI 에이전트를 통해 이루어지며, AI 에이전트 거래로 15조 달러 이상의 B2B 지출이 발생할 것으로 보인다. 새로운 생태계에서 검증 가능한 운영 데이터는 화폐처럼 작용하며, 디지털 신뢰 프레임워크와 검증 가능성을 필수 전제로 하는 데이터 기반 경제를 촉진할 것이다. 컴포저블 마이크로서비스, API 우선, 클라우드 네이티브, 헤드리스 아키텍처로 설계된 제품은 상당한 경쟁 우위를 확보할 것이다. AI 위험 예방책 부족으로 인한 ‘AI발 사고’ 관련 소송은 2026년까지 1000건을 돌파할 전망이다. AI 관련 안전 관리 실패로 인한 사고와 피해 사례가 증가함에 따라 규제 기관의 감시 및 통제 강화, 리콜, 법 집행 기관의 개입, 소송 비용 증가가 예상된다. 규제 감독이 강화되면서 조직은 법적 의무 준수를 넘어, AI 위험 예방책을 활용해 비즈니스 시스템의 안전성과 투명성을 최우선 과제로 삼아야 하는 압박에 직면하게 될 것이다. AI 사용과 의사결정 거버넌스 실패의 영향은 지역별 법적·규제 체계의 차이에 따라 달라지며, 이는 조직이 다양한 위험과 책임에 노출될 수 있음을 의미한다. 또한, 2030년에는 금전거래의 22%가 이용 약관을 내장한 형태로 프로그래밍할 수 있게 되어 AI 에이전트에게 경제적 주체성을 부여할 것으로 보인다. 프로그래머블 머니는 M2M(Machine-To-Machine) 협상, 자동화된 상거래, 시장 탐색, 데이터 자산 수익화를 가능하게 함으로써 새로운 비즈니스 모델을 창출하고, 공급망 관리와 금융 서비스와 같은 산업을 근본적으로 재편하고 있다. 실시간으로 프로그래밍 가능한 거래는 마찰 감소, 유동성 향상, 운영 비용 절감을 통해 효율성을 높이고, 궁극적으로 자율 비즈니스 운영의 부상을 뒷받침할 것이다. 그러나 프로그래머블 머니 플랫폼과 블록체인 인프라 간의 파편화된 기준과 상호운용성 부족은 시장의 성장을 저해하고, AI 에이전트와 기계 고객이 완전한 경제 주체로 기능하는 것을 제한할 것이다. 2027년까지 프로세스 중심 서비스 계약의 비용 대비 가치 격차는 에이전트 AI 재설계를 통해 적어도 50% 감소할 것으로 전망됐다. AI 에이전트는 숨겨진 지식을 발견하도록 진화하며, 이러한 지식과의 상호작용 자체가 프로세스의 핵심이 될 것이다. AI 에이전트가 활용하는 숨겨진 지식은 새로운 가치 자산으로 이어질 것으로 예상된다. 한편, 표준화된 워크플로가 문맥적 오케스트레이션으로 대체됨에 따라 지속적인 혁신 기반 가격 책정은 인건비에 의해 제한되지 않을 것이다. 가트너는 2027년까지 파편화된 AI 규제가 전 세계 경제의 50%로 확산하며, 50억 달러 규모의 규정 준수 투자를 일으키게 될 것으로 보았다. 2024년에만 1000건 이상의 AI 관련 법률이 제안됐지만, 어떤 법률도 AI를 일관되게 정의하지 못하고 있다. AI 거버넌스는 혁신을 촉진하는 동시에 장벽으로 작용할 수 있다. 기술의 잠재력을 터뜨리는 것은 AI 사용 능력이다. 안전한 미래를 위해 기업들은 기술 담당 리더들에게 항구적인 ‘법률 및 규제’ 마인드맵 구축을 요구하게 될 것이다. 한편 보안과는 별개로, 새로운 형태로 등장하고 진화하는 AI의 위험을 관리하기 위해 전담 인력과 전문 소프트웨어를 갖춘 AI 거버넌스 프로그램이 표준으로 자리잡게 될 것이다. 가트너의 다릴 플러머(Daryl Plummer) 수석 VP 애널리스트는 “급격한 기술 변화가 가져오는 위험과 기회는 인간의 행동과 선택에 점점 더 큰 영향을 미치고 있다”면서, “기업의 CIO와 경영진은 미래에 대비하기 위해 기술 변화뿐만 아니라 행동 양식 변화 또한 최우선 과제로 삼아야 한다”고 말했다.
작성일 : 2025-10-23
유니티, 게임 개발자를 위한 네이티브 크로스플랫폼 커머스 관리 기능 출시
유니티가 게임 개발자들이 유니티 엔진 내 단일 대시보드에서 글로벌 커머스와 카탈로그를 통합 관리할 수 있는 신규 기능을 발표했다. 현재까지는 플랫폼별로 각기 다른 SDK, 정책, 정산 시스템을 관리해야 했으나 이번 신규 기능을 통해 개발자들은 특정 플랫폼의 도구나 제약에서 벗어나 모바일 앱 스토어마켓, 웹, PC 전반에서 다양한 결제 제공업체를 통합 관리하고, 시장별로 최적화된 운영을 수행하며, 가격·프로모션·라이브 운영을 일괄 관리할 수 있다. 유니티는 “전 세계 모바일 게임 내 인앱 결제 규모는 1200억 달러 이상으로 전망되며, 이 중 대다수 게임이 유니티 기반으로 제작되어 있다. 이번 통합 커머스 기능은 이러한 시장 변화 속에서 단일 통합 설루션으로 게임 개발자의 성공 경로를 단순화하고, 점점 세분화되는 디지털 커머스 시장을 연결하는 다리 역할을 하게 될 것”이라고 소개했다. 프로그래머블 금융 서비스 기업 스트라이프(Stripe)는 이번 기능을 지원하는 첫 번째 파트너로, 유니티와 협력하여 전 세계 개발자에게 완전한 결제 유연성과 폭넓은 지원을 제공한다. 스트라이프의 케빈 밀러(Kevin Miller) 결제 부문 책임자는 “스트라이프의 ‘판매자 명의 등록(대행)(Merchant-of-Record)’ 설루션과 ‘앱-투-웹 결제(App-to-Web Payments)’를 통해 유니티는 개발자들에게 높은 전환율과 낮은 수수료를 제공하게 된다”며, “스트라이프는 그 이면에서 사기 방지, 분쟁, 세금 처리 등을 모두 처리할 것”이라고 밝혔다. 유니티의 맷 브롬버그(Matt Bromberg) 사장 겸 CEO는 “전 세계 게임과 관련된 인앱 결제의 대부분이 유니티로 제작된 게임에서 발생한다”면서, “이제 개발자들은 모든 플랫폼과 디바이스 전반에 걸친 디지털 카탈로그를 하나의 통합된 공간에서 직접 관리하고 최적화할 수 있으며, 유니티는 어디서든 개발자가 스스로의 성공을 주도할 수 있도록 지원하겠다”고 말했다. 현재 이 기능은 제한된 얼리 액세스 형태로 제공되며, 유니티는 일부 고객과 협력하여 정식 출시 전까지 안정적이고 확장 가능한 성능 검증을 진행하고 있다.
작성일 : 2025-10-23
브라더코리아, AMXPO 2025서 PLC 연동형 라벨링 설루션 공개
브라더인터내셔널코리아가 9월 23일~26일 일산 킨텍스에서 열린 ‘2025 아시아 기계&제조 산업전(AMXPO 2025)’에 참가해 스마트 제조 환경에 최적화된 라벨링 설루션을 선보였다고 밝혔다. 브라더코리아는 이번 전시에서 전문가용 산업용 라벨 프린터(PT-E560BTVP)와 전기기사용 튜브 넘버링기(PT-E850TKW) 등 대표 제품군을 전시했다. E560BTVP는 전선·스위치·패널 등 주요 설비 라벨링에 적합하며, PT-E850TKW는 PVC 튜브와 라벨을 모두 지원해 케이블·배선 넘버링 작업 효율을 높일 수 있다. 두 제품은 빠른 출력 속도와 다양한 매체 지원, 높은 내구성을 갖춰 전기·제조 현장에서 생산성과 작업 편의를 높이는 설루션으로 소개됐다. 또한 PLC(프로그래머블 로직 컨트롤러) 연동 시연 장비를 통해 자동화 라벨링 설루션을 시연했다. 이 시스템은 일정한 품질 유지, 원가 절감, 작업 환경의 효율 개선이라는 세 가지 핵심 이점을 제공하며 브라더 PT 시리즈, QL 시리즈, TD-4D 시리즈 등 주요 라벨 프린터 라인업에 적용 가능하다. 브라더코리아의 ‘P-touch Editor’ 소프트웨어도 선보였다. 이 프로그램은 직관적인 인터페이스로 산업용 라벨을 손쉽게 제작 및 출력할 수 있으며, 다양한 기호·바코드·심벌 지원으로 현장 표준에 맞춘 라벨링을 가능하게 한다. 이번 산업전을 통해 브라더코리아는 자사 산업용 라벨링 설루션의 기능과 효과를 업계 관계자들에게 직접 알리며, 스마트 제조 현장의 생산성과 효율성을 높일 수 있는 다양한 설루션을 지속적으로 제공할 계획이다. 브라더코리아 관계자는 “AMXPO 2025를 통해 브라더 라벨링 설루션이 다양한 현장에서 활용될 수 있는 가능성을 소개했다”며, “앞으로도 산업 현장을 더욱 편리하고 효율적으로 만드는 설루션을 지속 제공하겠다”고 말했다.  
작성일 : 2025-09-29
가트너, ‘2025 신기술 하이프 사이클’ 통해 자율 비즈니스 시대 전망
가트너가 ‘2025 신기술 하이프 사이클(2025 Hype Cycle for Emerging Technologies)’을 통해 주목해야 할 주요 혁신 기술로 ▲기계 고객 ▲AI 에이전트 ▲의사결정 인텔리전스 ▲프로그래머블 머니를 선정했다. 가트너 하이프 사이클은 기술 및 애플리케이션의 성숙도와 도입 현황을 시각적으로 표현하고, 실제 비즈니스 문제 해결 및 새로운 기회 창출과의 잠재적 연관성을 제시한다. 이 방법론은 시간 흐름에 따른 기술 또는 애플리케이션 발전 과정을 조망하고, 특정 비즈니스 목표의 맥락에서의 효과적인 도입 관리를 위한 신뢰 있는 인사이트를 제공한다. 가트너는 매년 프로파일링하는 2000개 이상의 기술 및 응용 프레임워크에서 핵심적인 인사이트를 도출해, 반드시 알아야 할 신기술을 정리해 제시하고 있다. 이들 기술은 향후 2년에서 10년간 혁신적인 이점을 제공할 잠재력을 갖춘 것으로 평가된다.     기계 고객(Machine Customers)이란 사람이나 기업을 대신해 상품, 서비스를 구매하는 비인간 경제 주체다. 가트너는 고객 역할을 수행할 수 있는 B2B 기기를 약 30억 개로 추산하며, 2030년까지 80억 개로 늘어날 것이라 전망했다. 가상 개인 비서, 스마트 가전, 커넥티드 카, 사물인터넷(IoT) 기반 공장 등이 이에 포함된다. 가트너는 기계 고객이 제조, 소매, 소비재 등 다양한 산업에서 새로운 수익과 효율성을 창출하는 핵심 동력이 될 것이라면서, “기업은 경쟁에서 뒤처지지 않기 위해 비즈니스 모델을 재정립하고 기회를 선제적으로 활용해야 한다”고 짚었다. AI 에이전트(AI Agents)는 디지털, 물리적 환경에서 인지, 의사결정, 행동을 수행해 기업의 목표 달성을 지원하는 자율 또는 반자율 AI 소프트웨어다. 기업은 대형 언어 모델(LLM)을 비롯한 AI 기술을 활용해 복잡한 작업을 수행할 수 있는 AI 에이전트를 개발, 배포하고 있으며, 이는 고객 서비스, 산업 운영, 데이터 분석, 콘텐츠 제작, 물류 등 여러 분야를 자동화해 산업 전반에 혁신을 가져올 잠재력을 갖고 있다. 예측과 실행 정확성에 대한 우려로 AI 에이전트에 대한 신뢰는 제한적이다. 이 기술은 인간의 감독 없이 중요한 결정을 신속히 내리며 독립성, 사용 편의성이 향상되고 있다. 가트너는 기업이 AI 에이전트를 효과적으로 활용하려면 기능과 적용 범위를 명확하게 이해하고, 전략적 계획에 반영할 것을 권장했다. 의사결정 인텔리전스(Decision Intelligence)는 의사결정을 고도화하는 실용적인 접근 방식으로, 의사결정 방식과 결과를 평가·관리·개선하는 과정을 이해하고 엔지니어링한다. 의사결정을 디지털 자산으로 전환하고 모델링하면, 통찰과 실행 사이의 간극을 줄이고 의사결정의 품질, 실행력, 결과를 개선할 수 있다. 가트너의 크리스티안 스테판(Christian Stephan) 시니어 디렉터 애널리스트는 “에이전틱 AI와 생성형 AI에 대한 과대광고, 의사결정 자동화 관련 규제 압박, 심화된 글로벌 불확실성은 기존 비즈니스 프로세스와 의사결정의 한계를 드러냈다. 이에 따라 기업은 속도와 품질을 넘어 일관성, 규정 준수, 비용 효율성, 적응력을 갖춘 새로운 의사결정 체계를 요구하고 있다”고 전했다. 프로그래머블 머니(Programmable Money)는 소프트웨어를 통해 프로그래밍할 수 있는 디지털 화폐를 의미한다. 알고리즘에 따라 작동 방식을 설정할 수 있어 블록체인 기반 토큰화와 스마트 계약을 활용하면 경제 주체의 참여를 확대하고 가치 교환을 자동화할 수 있다. 기업은 비즈니스 파트너, 직원, 기계 고객과 상호작용하기 위해 프로그래머블 머니를 전략적으로 활용해야 한다. 스테판 시니어 디렉터 애널리스트는 “프로그래머블 머니는 새로운 유형의 통화와 디지털 자산 시장을 열어 금융 서비스 분야에 변화를 가져올 것”이라며, “가치 창출, 자금 조달, M2M(Machine-To-Machine) 등 자산 교환의 혁신을 주도해 공급망과 금융 가치 사슬을 재편할 것”이라고 전망했다. 가트너의 마티 레스닉(Marty Resnick) VP 애널리스트는 “수년간의 디지털 혁신 이후, 기업은 AI와 자동화가 불러온 경쟁, 고객, 제품, 운영, 리더십 재편을 목도하고 있다”면서, “기업은 자율 비즈니스 시대라는 새로운 혁신 국면에 직면했으며, CIO는 신기술이 경쟁력 확보, 효율성 향상, 성장 기회 창출에 어떻게 기여할 수 있는지 평가해야 한다”고 말했다.
작성일 : 2025-09-10
[케이스 스터디] 가상 커미셔닝으로 산업 과제를 해결하는 스피라텍
개방형 커미셔닝과 협업 혁신으로 제조업을 재정의하다   스피라텍(SpiraTec) 그룹은 디지털 전환, 엔지니어링, 로봇 공학, 자동화 및 산업 IT를 전문으로 하는 공정 산업의 산업 공학 및 설루션 분야의 글로벌 플레이어이다. 스피라텍의 가상 커미셔닝 전문성은 제조사가 프로세스를 최적화하고 비용을 절감하며 전 세계적으로 디지털화를 가속화하는 데 도움을 준다. 이번 호에서는 스피라텍이 고객이 주요 산업 과제를 해결하도록 돕는 방법과 유니티(Unity)를 기반으로 가상 커미셔닝을 위한 협업적이고 접근 가능한 설루션을 목표로 하는 오픈 소스 이니셔티브인 ‘오픈 커미셔닝’의 배경과 여정을 소개한다. ■ 자료 제공 : 유니티 코리아   ▲ 생산 라인의 디지털 트윈 : PLC 및 로봇 컨트롤러 통합으로 물질 흐름 시뮬레이션   산업이 디지털 전환을 가속화함에 따라 제조사는 제품을 더 빠르게 시장에 출시하고 비용을 줄이며 지속 가능성 목표를 달성해야 한다는 압박을 받고 있다. 이 모든 과정에서 단편화된 데이터, 구식 방법론 및 제한된 표준화로 어려움을 겪고 있다. 이러한 도전 과제는 더 스마트하고 통합된 설루션을 요구한다. 그리고 여기서 디지털 트윈과 가상 커미셔닝이 등장한다. 글로벌 디지털 트윈 시장은 수요가 급증하고 있다. 2024년에는 177억 3000만 달러로 평가되며, 2025년에는 244억 8000만 달러에서 2032년에는 2593억 2000만 달러로 성장할 것으로 예상된다. 캡제미니 리서치 인스티튜트(Capgemini Research Institute)의 디지털 트윈 리포트에 따르면, 57%의 조직이 지속 가능성을 디지털 트윈 투자에 대한 주요 동력으로 언급하며, 51%는 이러한 기술이 환경 목표 달성에 도움이 될 것으로 기대하고 있다. 디지털 트윈 기술의 주요 응용 프로그램인 가상 커미셔닝은 디지털화의 게임 체인저로, 제조사가 실제 배포 전에 프로세스를 시뮬레이션하고 최적화할 수 있게 하여 자원 소비를 줄이고 비용을 절감한다.   가상 커미셔닝 이해하기 전통적으로 자동화에서 커미셔닝은 새로운 시스템(장치, 기계, 공장 등)을 완전 작동 가능한 생산 준비 상태로 만드는 과정을 의미한다. 과거에는 대부분의 PLC(프로그래머블 로직 컨트롤러) 프로그래밍 및 시스템 테스트가 물리적 하드웨어가 제자리에 있어야 했으며, 이는 종종 비용이 많이 드는 지연과 막판 문제 해결을 초래했다. 가상 커미셔닝은 이 패러다임을 뒤집고 전체 커미셔닝 프로세스를 디지털 환경에서 복제한다. 실제 장치, 센서 및 액추에이터와 통신하는 대신, PLC는 디지털 트윈과 통신한다. 이는 실제 시스템의 동작을 정확하게 반영하는 에뮬레이션 모델이다. 중요하게도, 동일한 PLC 프로그램 코드는 가상 및 물리적 단계 모두에 사용되어, 물리적 하드웨어가 준비되면 코드 수정이나 막판 재작성 없이 원활한 인계를 보장한다.   ▲ 가상 커미셔닝 : 물리적 배포 전에 디지털 프로세스 시뮬레이션 및 최적화   가상 커미셔닝이 실제 가치를 제공하는 방법 효율성 향상 가상 커미셔닝은 현장 테스트와 물리적 프로토타입의 필요성을 줄여 시간과 비용을 절감한다. 또한 디지털 환경에서 팀이 신속하게 반복할 수 있도록 하여 개발 주기를 가속화하고 시장 출시 시간을 단축한다.   위험 감소 시뮬레이션을 통해 오류를 조기에 발견함으로써, 가상 커미셔닝은 비용이 많이 드는 실수의 위험을 줄인다. 더욱이, 팀이 위험한 작업을 디지털로 시뮬레이션할 수 있도록 하여 물리적 구현 전에 잠재적 위험을 제거함으로써 더 안전한 배포를 지원한다.   협업 및 혁신 현실적인 시뮬레이션은 교차 기능 팀 간의 더 나은 정렬을 촉진한다. 가상 공간에서 시스템을 시각화하고 상호작용함으로써 이해관계자는 더 깊은 통찰력을 얻고, 전반적인 커뮤니케이션을 향상시켜 창의성과 혁신을 촉진한다.   제약에서 능력으로 : 유니티로의 전환 스피라텍은 고객이 가상 커미셔닝을 운영에 원활하게 통합하도록 돕는 단일 목표를 추진해 왔다. 스피라텍은 제한된 확장성을 가진 폐쇄 시스템, 작은 사용자 커뮤니티 및 최소한의 응용 프로그래밍 인터페이스(API)에 직면했다. 이러한 조건은 공급업체 종속을 촉진하고 프로젝트 위험을 증가시켰다. 이러한 제한은 종종 시간 지연을 일으키고, 고객이 필요로 하는 접근 가능하고 확장 가능한 설루션의 가능성을 없앴다. 유니티는 스피라텍의 큰 장애물을 극복하는 열쇠가 된 실시간 3D 엔진이다. 유니티의 편집기의 힘을 활용함으로써 스피라텍은 최첨단 물리학 및 렌더링 기능을 얻었을 뿐만 아니라, 디지털 트윈 모델 개발에 대한 전체 접근 방식을 근본적으로 변화시켰다. 유니티의 다양한 기술 및 기능은 여러 문제를 해결하고 스피라텍의 디지털 트윈 개발 프로세스를 형성하는 데 도움이 되었다. 프리팹 시스템 : 객체 지향적 접근 방식을 통해 재사용 가능한 구성 요소 라이브러리를 활용하여 디지털 트윈을 생성할 수 있다. 이는 다양한 프로젝트에서 일관된 품질을 유지하면서 개발 속도를 크게 가속화한다. 픽시즈(Pixyz) : CAD 데이터를 원활하게 가져오고 특정 메타데이터 및 고객 기준에 따라 디지털 트윈을 생성하기 위한 규칙 기반 워크플로를 설정할 수 있다. 사용자 인터페이스(UI) 툴킷 : 편집기 및 런타임을 위한 UI 콘텐츠의 생성 및 향상을 가능하게 하여, 사용자 정의 도구 및 인터페이스에 대해 더 매끄러운 사용자 경험을 제공한다. 작업 시스템 : 복잡한 프로세스(예 : 유체 흐름, 대량 물질 이동 및 스트레스 모델링) 및 대규모 디지털 트윈 프로젝트의 효율적인 다중 스레드 시뮬레이션을 가능하게 한다. 분석기 및 저장 프로파일러 : 성능 병목 현상에 대한 자세한 통찰력을 제공하여 배포 전에 프로젝트 품질을 최적화하고 개선할 수 있게 하며, 궁극적으로 고객에게 더 신뢰할 수 있는 설루션을 제공한다.   대규모 디지털 트윈 내부 : 창고 커미셔닝의 재구상 물류 회사의 창고 시뮬레이션을 특징으로 하는 성공 사례에서 스피라텍은 12개의 가상 PLC를 완전한 디지털 환경에 통합했다. 모델은 필드버스 에뮬레이션과 드라이브, 안전 모듈 및 RFID 리더와 같은 산업 구성 요소의 시뮬레이션을 특징으로 했다. 사용성을 높이기 위해 대규모 시뮬레이션에 최적화된 경량의 강력한 독립 실행형 *.exe 애플리케이션을 제공하는 맞춤형 사용자 인터페이스가 개발되었다. 또한 시스템은 창고 관리 시스템(WMS)과 원활하게 통합되어, 안전한 가상 환경에서 실시간 제품 데이터 관리를 위한 네이티브 텔레그램 통신을 가능하게 했다. 이는 물리적 기계가 존재하기도 전에 포괄적인 소프트웨어 검증을 보장하여 품질을 크게 향상시키고 배포 위험을 줄였다. 이 이니셔티브는 커미셔닝 시간을 30% 줄였다, 프로젝트 일정을 가속화하면서 비용과 위험을 줄였다. 효율성 향상을 넘어, 이는 부서 간 협업을 강화하여 비용 효율적인 반복 개발과 더 빠른 개념 증명 검증을 가능하게 했다.   ▲ 개방형 커미셔닝으로 구축된 창고 운영 시뮬레이션   효율을 넘어 : 시뮬레이션을 통한 지속 가능성 추진 가상 커미셔닝에 대한 대화는 종종 단축된 커미셔닝 시간과 개선된 협업에 초점을 맞추지만, 이러한 이점은 지속 가능성과 관련하여 특히 실질적인 비즈니스 가치로 직접 전환된다. 스피라텍은 고객과 협력하여 후속 제품 수명주기 전반에 걸쳐 디지털 트윈의 사용을 확장하기 시작했으며, 지속 가능성과 비용 절감의 잠재력은 크다. 프로세스를 간소화하고 고충실도 시뮬레이션을 활용함으로써 기업은 다음과 같은 효과를 얻을 수 있다. 장비 수명의 연장 : 시뮬레이션 데이터로 훈련된 예측 유지보수 알고리즘을 사용하여 조직은 마모를 최소화하고 비용이 많이 드는 교체 및 수리를 연기한다. 고장 감소는 유지보수 비용을 직접 낮추고 계획되지 않은 다운타임을 줄인다. 자원 소비의 절감 : 가상 환경에서 제어 논리와 워크플로를 검증함으로써, 팀은 에너지 사용을 줄이고 자재 낭비를 최소화하는 효율성 격차를 식별할 수 있다. 이러한 개선은 환경 목표를 달성하는 데 도움이 될 뿐만 아니라 운영 비용을 줄인다. 시장 출시 시간의 가속화 : 가상 커미셔닝은 물리적 프로토타입과 긴 현장 테스트의 필요성을 최소화한다. 결과적으로 기업은 제품을 더 빠르게 출시하고, 시장 점유율을 더 빨리 확보하며, R&D 투자에 대한 더 빠른 수익을 실현할 수 있다. 현장 면적의 축소 : 더 적은 문제 해결 방문과 짧은 설치 시간은 여행 관련 배출가스와 비용을 줄인다. 이 혜택은 여러 글로벌 시설을 가진 조직에 대해 크게 확장된다.   미래를 함께 형성하기 : 커뮤니티 주도 이니셔티브 협업과 개방성이 가상 커미셔닝의 가장 큰 혁신을 이끌어낼 것이며, 이는 계속 발전할 것이다. 개방형 커미셔닝(open commissioning)을 통해 스피라텍은 단순히 도구를 공유하는 것이 아니라, 혁신적인 아이디어가 다듬어지고 테스트되며 실제 문제를 해결하는 데 적용될 수 있는 커뮤니티 주도 생태계를 구축하고 있다. 가장 흥미로운 발전은 아직 오지 않았다. 스피라텍의 다음 진화는 생성형 AI와 실시간 클라우드 시뮬레이션을 통합하고, 데이터 표준을 설정하며, 산업 연결성을 확장하는 것이다. 제조의 미래는 협업적이고, 데이터 기반이며, 친환경적으로 더 스마트하고 지속 가능한 산업 환경을 만들어 나가는 데 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
다쏘시스템, 아스콘 큐브 자동화 기술 인수로 공장 버추얼 트윈 전략 강화
다쏘시스템이 소프트웨어 정의 자동화 시스템 전문 개발기업인 아스콘 시스템즈(Ascon Systems Holding GmbH)로부터 아스콘 큐브(Ascon Qube) 기술을 인수했다고 발표했다. 아스콘 큐브 기술은 자동화 집약적 산업 분야의 기업이 AI 기반 플랫폼 접근 방식을 통해 기계별로 특화된 소프트웨어를 프로그래밍하고, 생산 공정을 효율적으로 최적화할 수 있도록 지원한다. 다쏘시스템은 이번 인수를 통해 공장 전체의 버추얼 트윈을 모델링, 시뮬레이션, 최적화할 수 있는 고급 산업 설루션을 제공하는 데 있어 자사의 리더십을 강화할 수 있을 것으로 기대하고 있다.  아스콘 큐브는 공장 내 자동화 시스템 및 기계의 최적화 및 관리를 위한 새로운 방법을 제공한다. 이 기술은 기존의 하드코딩된 PLC(프로그래머블 로직 컨트롤러) 및 경직된 이질적 생산 시스템의 비효율성과 한계를 극복하는 데 중점을 둔다. SaaS 기반으로 설계된 아스콘 큐브는 AI를 활용한 모델 기반 소프트웨어 플랫폼을 통해 생산 계획 수립부터 제어까지 일관된 프로세스를 제공하며, 이를 통해 산업 자동화 전반에 걸친 상호운용성과 유연성을 실현한다. 생성형 경제 시대에는 빠르게 변화하는 수요와 새로운 제품을 도입하기 위한 생산라인 자동화를 적응하고 수정하는 것이 중요한 과제다. 각각의 기계는 특화되어 프로그래밍된 소프트웨어가 필요하다. 수백 대의 기계를 운영하는 공장에서는 소프트웨어 프로그래밍 및 재설정만으로도 생산 품질, 전환 시간, 제품 배송에 지연을 초래할 수 있다. ‘소프트웨어 정의 자동화’는 이러한 문제를 해결하는 핵심 해법으로, 기업이 생산 변경 속도를 높이고 품질을 개선하며, 자산 활용도 극대화를 동시에 가능케 하도록 지원한다. 다쏘시스템은 전 세계에 배포되고 구동되는 3D익스피리언스 플랫폼 델미아(DELMIA)에 이번에 인수한 아스콘 큐브 기술을 통합할 계획이다. 이는 다쏘시스템의 차세대 3D유니버스(3D UNIV+RSES) 환경 구축을 가속화하는 동시에 버추얼 트윈, AI 학습 엔진, 고객 지식재산 보호를 통합한 환경을 제공하게 된다. 아스콘 큐브 기술은 제조 과정을 새로운 수준의 세밀함으로 모델링, 시뮬레이션, 최적화 및 실행하는 ‘경험 기반 서비스(Experiences as a Service : XaaS)’ 형태로 구현될 계획이다. 이는 기존 PLC를 대체하는 기계 단위의 정밀 제어 기반 자동화를 통해 제조 공정을 모델링하고, 시뮬레이션하며, 최적화 및 실행까지 가능한 새로운 차원의 제조 혁신을 제시한다. 고객은 더욱 빠른 의사결정 속도 향상, 생산 중단 최소화, 장기적 효율성 확보, 운영 탄력성 제고 등 다양한 실질적 혜택을 얻게 된다.
작성일 : 2025-07-15
로크웰 오토메이션, 기아 차체 공장의 자동화 시스템 현대화 지원
로크웰 오토메이션은 기아 슬로바키아 법인의 차체 공장에 최신 서보(servo) 기술을 구현해 핵심 생산 설비인 리프터(lifter)의 안정성과 디지털 운영 역량을 강화할 것이라고 밝혔다. 이번 프로젝트는 차량 조립 공정에서 차체 부품을 들어 올리고 정밀하게 위치를 제어하는 리프터 시스템의 노후 장비를 로크웰 오토메이션의 Allen-Bradley Kinetix 5700 서보 드라이브와 MPL 서보 모터로 업그레이드하는 것이 핵심이다. 서보 시스템은 로크웰 오토메이션의 PLC(프로그래머블 로직 컨트롤러) 및 네트워크 아키텍처와 통합돼 설정 변경, 부품 교체, 소프트웨어 마이그레이션, 버전 관리 등 반복적이고 복잡한 유지보수 작업을 간소화한다. 이번에 업그레이드되는 차체 공장 리프터는 서보 모터와 드라이브를 기반으로 작동하며, 기아의 유럽 전략 모델인 씨드와 스포티지 생산 라인에 적용된다. 기아 슬로바키아 법인은 이를 통해 가동 시간의 탄력성은 물론 최신 통신 네트워크 기반의 디지털 하드웨어를 도입함으로써, 운영 효율과 안정성을 강화할 수 있을 것으로 기대하고 있다.     기아 슬로바키아 법인의 차체 정비 담당 부관리자인 피터 홀루부치크(Peter Holubčík)는 “리프터는 생산 공정에서 매우 중요한 설비인 만큼, 공정 중단 없이 정밀성과 더불어 안정성이 높은 작업수행이 요구된다”면서, “설정 변경이나 정비를 위한 일시적인 가동 중단 시에도 빠른 작업 복귀가 가능해야 하는데, 로크웰 오토메이션의 새로운 서보 및 PLC 시스템은 이를 가능하게 해 유지보수 시간이 줄고, 프로그래밍 및 제어 안정성은 더욱 강화하게 해줄 것”이라고 밝혔다. 로크웰 오토메이션의 EMEA(유럽·중동·아프리카) 지역 전략 고객 및 영업 부문 부사장인 마크 보텀리(Mark Bottomley)는 “제조 환경에서 수명이 다한 설비나 구형 부품은 예기치 않은 고장과 생산 중단의 위험을 높이며, 자동차 산업처럼 린(lean) 생산, 적시생산(JIT : Just-In-Time) 환경의 기업에는 특히 심각한 리스크가 될 수 있다”며, “이번 현대화 프로젝트는 단순한 교체를 넘어, 디지털 기반 생산체계 전환이라는 더 큰 가치를 제공하게 될 것”이라고 강조했다.
작성일 : 2025-07-03
PINOKIO : 스마트 제조의 실현 위한 물류 디지털 트윈 설루션
개발 및 공급 : 이노쏘비 주요 특징 : 제조 물류 전반에 걸친 시뮬레이터/디지털 트윈/AI 에이전시의 통합 플랫폼, 설계~운영 과정의 최적화 지원, 다양한 제조 운영 시스템과 실시간 연동으로 대용량 데이터를 수집 및 처리, LLM/sLLM을 활용해 직관적인 데이터 분석 및 의사결정 지원 등 사용 환경(OS) : 윈도우 10/11(64비트) 시스템 권장 사양 : 인텔 i5 10세대 이상 또는 AMD 라이젠 5 이상 CPU, 최소 16GB RAM(32GB 권장), 엔비디아 RTX 4060 이상 GPU(AI 기능 사용 시 필요), 30GB 이상 여유 저장공간   최근 제조 기업들은 디지털 트윈 기반의 스마트 공장 도입과 더불어 급속한 디지털 전환(DX)을 위해 노력하고 있다. 불과 몇 해전만 하더라도 그 실체와 사례에 대해 의문이 있었지만, 다양한 도입 사례와 성과가 공개되면서 이제는 DX에서 나아가 AI 기술 도입과 AI로의 전환(AX : AI Transformation)을 활발히 검토하고 있고, 적극적인 도입 의사를 밝히고 있다. ‘PINOKIO(피노키오)’는 최신 기술 흐름을 반영해 탄생한 차세대 물류 디지털 트윈 설루션으로, 기존 상용 시스템의 한계를 극복하고 제조 산업의 스마트화를 가속화하는데 최적화된 해답을 제시한다. 기술 대전환의 시대를 맞아 기존의 전통적인 DX 설루션 기업들은 3D 모델링 및 시뮬레이션 등 낮은 단계의 디지털 트윈 기술을 기반으로 DX 설루션으로 개선 및 확장하고 있다. 이와 달리, PINOKIO는 초기부터 현장의 대용량 데이터 기반 실시간 물류 모니터링 및 실시간 시뮬레이션을 제공하는 디지털 트윈 기반의 운영 시스템을 목적으로 출발하였다. 그 결과 SK 하이닉스, LG전자 등 대량의 혼류 생산 제조 현장에서 디지털 트윈의 정합성과 예측의 정확도 등을 검증받았고 도입 효과를 증명했다. 이를 바탕으로 최근에는 기존 상용 설루션보다 높은 성능의 시뮬레이터까지 라인업하여 다양한 요구를 충족시킬 수 있게 되었다. 기존 상용 물류 시뮬레이션 설루션은 대부분 20~30년 전 개발된 구조를 가지고 있어, 최신 IT/OT 시스템과의 연동과 AI 기술을 적용하기 어렵다. 이로 인해 대용량 데이터 처리에 한계가 있으며, 사용자 API(애플리케이션 프로그래밍 인터페이스) 미제공으로 커스터마이징과 타 시스템 연계, 현장 실시간 운영에 필요한 유연성과 확장성에서도 제약이 있다. PINOKIO는 이러한 기존 설루션의 문제점을 개선해 제조 물류 관련 다양한 AI 모델을 지원하며, 기존 설루션 대비 높은 모델링 속도를 구현할 수 있다. 그리고 멀티 스레드, GPU 기반의 고속 시뮬레이션 연산 기능과 2차전지, AMR(자율이동로봇), OHT(오버헤드 트랜스퍼), 자동창고 등 다양한 제조 환경에 맞는 특화 라이브러리를 제공한다. 특히, 생산 현장에서 발생하는 실시간 빅데이터를 효과적으로 처리하고, 대화형 어시스턴트(assistant) 방식의 직관적인 사용자 인터페이스(UI)를 통해 사용자 편의성을 높였다. 또한, 사용자 API를 통한 고도화된 커스터마이징이 가능하며, MES(제조 실행 시스템), 센서, PLC(프로그래머블 로직 컨트롤러), IoT(사물인터넷) 등 다양한 운영 시스템과의 실시간 연동 기능도 갖췄다. 나아가, 전력 사용량 분석과 탄소세 예측 기능까지 탑재돼 지속 가능한 제조 환경 구축을 위한 의사결정도 지원한다. PINOKIO는 AI 기반 제조 혁신의 길을 여는 실질적인 도구로, 앞으로 제조업계의 디지털 전환을 선도할 핵심 설루션으로 자리매김할 전망이다.   주요 기능 소개 PINOKIO는 시뮬레이터, 디지털 트윈, AI 에이전시(agancy)를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다. PINOKIO는 세 가지 핵심 모듈로 구성된다. 첫 번째는 ‘Pino SIM’으로, 공정 흐름 설계부터 시뮬레이션, 분석까지 수행하는 시뮬레이터다. Pino SIM은 도면 편집과 레이아웃 설계를 위한 Pino Editor를 내장하고 있어, 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 다양한 기능을 제공한다. 이를 통해 설계 초기 단계부터 실제 운영에 이르기까지 전 과정의 최적화를 효과적으로 지원한다. 두 번째는 실시간 디지털 트윈 모듈인 ‘Pino DT’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과의 실시간 연동을 통해 대용량 데이터를 실시간으로 수집하고 처리하며, 이를 바탕으로 실시간 모니터링은 물론 미래 상황 예측, 예지 보전 기반의 시뮬레이션이 가능하다. 이는 생산 현장의 가시성과 민첩성을 높이는 데 기여한다. 세 번째는 인공지능 기반의 ‘Pino AI’다. LLM(대규모 언어 모델)과 sLLM(전문 도메인 특화 언어 모델)을 활용한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다. 또한 목적에 따라 강화학습, 파라미터 최적화 등 다양한 AI 기법을 적용할 수 있어 생산성과 품질 향상을 동시에 도모할 수 있다. PINOKIO는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과 연동 가능하며, 파이썬(Python) 개발 환경 확장도 지원함으로써 사용자 맞춤형 라이브러리 개발이 가능하다. 이를 통해 제조 기업은 사전 공정 및 물류 최적화는 물론 실시간 생산 모니터링, 미래 예측, AI 기반 정확도 향상 등 다양한 지능형 서비스를 구현할 수 있다. 제조업의 디지털 전환이 본격화되는 시대에 PINOKIO는 스마트 공장을 넘어 AI 전환을 실현하는 핵심 파트너로 부상하고 있다.   PINOKIO의 특징 PINOKIO는 고도화된 시뮬레이션 엔진과 AI 통합 기능을 바탕으로 대규모 데이터 처리 및 실시간 예측 분석을 지원하며 스마트 제조 시대의 경쟁력을 강화하고 있다. PINOKIO는 이벤트 처리 기법 최적화 및 단순화된 시뮬레이션 엔진 설계로 빠른 연산 속도를 제공한다. 특히, 초당 60프레임(FPS) 기준으로 500만 개 수준의 대규모 3D 데이터를 안정적으로 처리할 수 있으며, 선택적 컴파일 방식(C# 기반 네이티브 코드)을 활용한 별도 계산 도구를 통해 집약적인 연산 작업도 고속으로 수행할 수 있다. 디지털 트윈 구축에서도 PINOKIO는 강력한 성능을 발휘한다. MES, ACS, MCS 등 다양한 제조 운영 시스템과 연동과 IoT, 센서, PLC 등 생산 현장에서 수집되는 대용량 데이터를 실시간으로 처리한다. 이를 통해 실시간 모니터링과 동시에 백그라운드 시뮬레이션을 수행하고, 타임 호라이즌(Time Horizon) 방식의 미래 예측 기술을 통해 병목, 이상 징후 탐지 및 알람 기능도 제공된다. 또한, AI를 활용하기 위한 정상/이상 데이터 제공과 파라미터 최적화 및 시나리오별 분석 기능이 포함되어 있으며, LLM과 sLLM, 챗GPT(ChatGPT), 메타 라마(Meta LLaMA) 등 다양한 AI 모델을 통합한 AI 에이전시 기능을 통해 대화형 데이터 분석, 자동 의사결정 지원, 데이터 해석 및 운영 최적화를 구현한다. 시뮬레이션 설계 및 모델링 측면에서도 사용자 편의성이 강화됐다. Pino Editor를 활용해 레이아웃 도면을 직관적으로 확인 및 편집할 수 있으며, 제조 기준 정보 입력 및 템플릿 매칭 기능을 통해 모델링 작업 시간을 획기적으로 단축시킨다. 또한, 2차전지 및 반도체 공정에 특화된 전용 라이브러리도 제공되며, 고객 맞춤형 커스터마이징 시뮬레이터를 통해 사용자의 목적에 따라 분석 및 최적화가 가능한 유연한 개발 환경을 지원한다. 이처럼 PINOKIO는 고속 시뮬레이션, 실시간 예측, AI 기반 의사결정, 그리고 유연한 모델링 기능을 종합적으로 제공하며, 제조업의 지능화·자동화를 실현하는 설루션이다.   그림 1. PINOKIO UI 화면 – 반도체 FAB   사전 레이아웃 및 물류 검토를 위한 설루션 : Pino SIM 디지털 트윈 구축 시 미래 예측을 위한 시뮬레이터 역할과 기존 상용 설루션과 같이 공장 신축 또는 생산 라인 변경 등 제조 현장의 변화가 요구된다. 이런 상황에서 Pino SIM은 사전에 최적의 물류 계획과 레이아웃 구성을 지원하고 공정의 효율성과 안정성을 미리 확보할 수 있는 디지털 전환 핵심 도구이자 가상 공장 구현 설루션이다. Pino SIM은 제조 기준 정보(제품, 공정, 레이아웃, 물류 흐름, 작업 순서, 스케줄링 등)를 기반으로 공정을 시뮬레이션하며, 그 결과를 차트, 그래프 등 다양한 시각화 도구를 통해 분석할 수 있다. 이를 통해 레이아웃 검증 및 최적화, 생산성 향상 등 공장 운용 전반의 효율화를 실현할 수 있다. 특히, OHT, AMR 등 신 산업군을 위한 특화 라이브러리를 제공하며, 이송 설비 구현을 위한 이동, 충돌 방지, 회피 제어를 위한 OCS, ACS 기능도 탑재되어 있다. 이를 통해 코드 작성 오류를 줄이고 디버깅 시간을 줄일 수 있으며, 보다 쉽고 효율적으로 시뮬레이션 모델을 구축할 수 있다. 또한, 자동창고 모델링에 필요한 Stocker(Crane, Rack, Rail)를 그룹화 형태로 제공하여 빠른 모델링이 가능하다. 환경과 에너지 측면에서도 전력 사용량 및 탄소 배출량(탄소세) 분석 기능을 통해 지속 가능한 생산 전략 수립에 도움을 주며, 제조업의 친환경화와 ESG 경영 대응에도 기여할 수 있다. 이처럼 Pino SIM은 공장 설계 단계에서의 의사결정 품질을 높이고, 새로운 제조 환경에 유연하게 대응할 수 있는 설루션이다.   그림 2. 라이브러리 제공 – Stocker   그림 3. 개발(코딩) 없이 기능 구현   그림 4. 시뮬레이션 결과 리포트 예제   디지털 트윈 설루션 : Pino DT 제조 현장에서 물류는 제품의 사이클 타임을 결정하는 요소 중에 하나이다. 물류 정체가 발생할 경우 제품의 사이클 타임이 길어지거나 라인이 정지되는 등 심각한 손실이 발생할 수 있다. 이러한 문제를 해결하기 위해 시뮬레이션을 통한 최적화된 운영 방식을 시스템에 적용하려는 노력이 이어져왔다. 기존의 물류 설루션은 현장에서 발생하는 대용량의 데이터를 시뮬레이션에 반영하여 실시간으로 의사결정하는 과정에서 다양한 제약으로 인해 어려움이 있었다. 또한, 현장 작업자의 개입과 같은 인간적 오류는 시스템이 예측할 수 없는 데이터를 발생시키기 때문에 생산 계획 단계에서의 사전 분석 및 검증만으로는 시뮬레이션 정합성을 높이는데 한계가 있다. Pino DT는 최적화된 자체 개발 시뮬레이션과 모니터링 엔진을 탑재하여 이를 해결하였다. 시뮬레이션의 이벤트 횟수를 최적화하여 최소한의 이벤트로 시뮬레이션이 가능하도록 설계했다. 또한 계산 속도에 이점이 있는 C, C++ 언어로 물류 경로를 최적화하는 알고리즘을 구현하여 기존 설루션 대비 약 2만평 규모의 공장에서 약 70배의 향상된 성능을 검증하였다.   그림 5. Pino DT의 UI 화면   대용량 데이터 처리 및 실시간 모니터링 Pino DT는 시뮬레이션에 최적화된 알고리즘을 사용함으로써 대용량 데이터 처리가 가능하고, 현장 데이터를 실시간으로 시뮬레이션에 반영할 수 있다. 기존 물류 시뮬레이션 설루션에 비해 60~700배 뛰어난 가속 성능을 제공하는 시뮬레이션 도구이다. 제조 현장과 동일한 상황을 시뮬레이션하기 위해 현장과 연동 후 데이터를 가공하여 디지털 트윈 모델로 표현하여 가시화하고, 사용자가 설정한 시간 주기마다 미래를 예측하는 시뮬레이션(proactive simulation)을 백그라운드로 수행한다. 이는 제품의 공정 시간보다 짧은 시간 안에 결과를 확인할 수 있고, AI를 통해 보다 정확한 의사결정을 내릴 수 있도록 지원한다.   그림 6. Pino DT의 모니터링 화면   디지털 트윈 실시간 시뮬레이션 : 미래 예측 실시간 현장 상황을 반영하여 미래를 예측하는 시뮬레이션(proactive simulation)은 제품의 택트 타임(tact time)보다 짧은 시간 내에 결과를 도출해내지 못하면 현장에서 선제 대응하지 못하는 결과를 초래할 수 있다. 모니터링 엔진으로부터 라인 상황에 대한 데이터를 수집하고, 현재로부터 예측하고자 하는 시간 동안 발생하는 이상상황에 대해 피드백을 준다. 예를 들어 조립 라인의 경우에는 부품이 5분 뒤에 부족하다는 알람을 작업자에게 즉시 전달하여 선제적 대응을 가능케 함으로써, 라인 정지 등 비상 상황을 사전에 방지할 수 있다. PINOKIO 디지털 트윈 시뮬레이션은 이러한 역할이 가능하도록 가속화한 고속 시뮬레이션 엔진을 보유하고 있다.   그림 7. 현장 FAB(왼쪽)과 PINOKIO에서 생성된 디지털 트윈(오른쪽)   제조 물류 현장에 특화된 AI 플랫폼 : Pino AI AI를 이용한 설루션을 만들기 위해서는 다양한 상황에 대한 데이터가 필요하다. 하지만 제조 현장의 특성 상 여러 상황에 대한 데이터를 획득하기 어렵다. PINOKIO에서는 현장에서 획득하기 어려운 데이터를 시뮬레이션을 통해 데이터를 확보할 수 있다. 즉, Pino DT 모델이 AI를 위한 데이터를 생성하고, 이를 AI가 최적 값을 도출하여 시뮬레이션에 반영한다. Pino DT에서 획득한 데이터를 파이썬, C, 자바(JAVA) 등 다양한 언어로 구현한 로직을 적용할 수 있도록 개발 환경을 제공하고 있다. 이를 통해 예측 정확도 향상, 데이터 기반 의사 결정, Scheduling, Routing, Dispatching 등 목적에 따라 AI 활용이 가능하다. 또한 LLM, sLLM, 챗GPT(ChatGPT), 메타 라마(Meta Llama) 등과 결합한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다.   그림 8. 대화형 UI 및 결과 리포트   그림 9. Pino DT와 AI 모델 활용 원리   Pino DT와 현장 데이터 인터페이스 디지털 트윈에 가장 중요한 요소는 현장과의 연결이다. 대부분의 물류 전문 설루션이 현장과의 연결을 위한 인터페이스를 지원하지만, 많은 양의 데이터를 처리하면서 실시간으로 시뮬레이션하는데 어려움이 있다. Pino DT는 대용량 데이터 처리와 시뮬레이션 가속 성능이 뛰어나 실시간 모니터링 시스템까지 가능하다. <그림 10>은 현장에 있는 MES와 Pino DT가 인터페이스되는 과정이다. 현장에 있는 PLC가 MES에 데이터를 전달하고, MES는 그 데이터를 데이터베이스에 저장한다. 이를 Pino DT에서 외부 통신(IP)을 통해 데이터베이스에 접근하여 데이터를 시뮬레이션에 반영한다. 이 과정에서 현장 데이터의 상태가 중요하다. 불필요한 데이터가 있거나 로스 또는 시간 순서가 맞지 않은 경우가 대부분이다. Pino DT에서는 현장 데이터를 올바르게 정제하는 작업을 거쳐 현장과 동일한 디지털 트윈 모델을 만든다.   그림 10. 현장 데이터 인터페이스 과정   PINOKIO의 기대 효과 PINOKIO는 현장 운영 데이터를 실시간으로 디지털 트윈과 연동함으로써 모니터링이 가능하며, 전체 공장을 PC, 웹, 모바일 등 다양한 형태로 여러 사용자와 함께 직관적으로 확인하면서 공유하고 협업할 수 있다. 또한 현장과 연결된 디지털 트윈 모델을 이용하여, 미래에 발생 가능한 문제점을 예지(predictive)하고, 이러한 문제점을 사전에 해결하기 위한 선제대응(proactive) 의사결정을 가능하게 한다. 이 때 디지털 트윈을 이용한 사전예지는 온라인 시뮬레이션 기술에 기반하고, 선제대응은 AI 기술에 기반한다고 볼 수 있다. 디지털 트윈 기반 사전예지의 시간적 범위(time horizon)는 현장의 특성에 따라서 0.1시간~10시간으로 달라질 수 있으며, 문제점의 종류는 주로 생산 손실(loss), 부품의 혼류 비율 불균형, 설비 고장예지 및 물류 정체 등을 포함한다. 문제점이 예지되면 이를 해결하기 위한 즉각적인 의사결정 AI 기술을 활용하여 최적 운영을 달성함으로써 생산성, 경제성, 안정성 및 경쟁력 향상 효과가 있다.   맺음말 생산 계획 단계에서 Pino SIM을 통해 레이아웃 검증과 물류를 최적화하고, Pino SIM 모델 데이터를 생산 운영 단계에서 PINOKIO와 연계하여 현장 데이터 기반 실시간 모니터링과 미래 상황 예측 및 선제 대응함으로써 현실적이고 실제 활용 가능한 스마트한 디지털 트윈을 구축할 수 있다. 다음 호부터는 Pino SIM, Pino DT, Pino AI 등 각 제품별 소개 및 적용 사례를 소개하고자 한다.   그림 11. 디지털 트윈을 위한 플랜트 시뮬레이션과 PINOKIO     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
AMD, 사우디 AI 기업 휴메인과 100억 달러 규모 글로벌 AI 인프라 협력 발표
AMD와 사우디아라비아의 신생 AI 기업 휴메인(HUMAIN)은 개방성과 확장성, 복원성 및 비용 효율성을 갖춘 AI 인프라 구축을 위한 계약을 발표했다. 이번 협력을 통해 양사는 향후 5년간 최대 100억 달러를 투자하여 500메가와트 규모의 AI 컴퓨팅 역량을 갖출 예정이다. AMD와 휴메인이 구축하는 AI 슈퍼스트럭처는 개방형 설계 기반으로 대규모 액세스가 가능하며, 기업, 스타트업 및 국가 시장 전반의 AI 워크로드를 구동할 수 있도록 최적화된다. 휴메인은 하이퍼스케일 데이터센터, 지속 가능한 전력 시스템, 글로벌 파이버 상호연결을 포함한 엔드 투 엔드 공급을 총괄하고, AMD는 AMD AI 컴퓨팅 포트폴리오 전 영역과 AMD ROCm 개방형 소프트웨어 생태계를 제공한다. 한편, 이번 협력에 따라 이미 세계 주요 지역에서 초기 구축이 진행되고 있다. 양사는 차세대 AI 반도체와 모듈형 데이터 센터 존, 개방형 표준 및 상호 운용성을 기반으로 구축된 개발자 지원 중심의 소프트웨어 플랫폼 스택의 지원을 바탕으로, 오는 2026년 초까지 멀티-엑사플롭스급 용량을 구축할 계획이다. 또한, 양사는 이번 협력을 통해 사우디아라비아의 에너지 자원, AI 지원 인력, 미래 지향적인 국가 AI 정책과 AMD의 AI 기술을 결합하여 AI 시장을 정의하는 새로운 가치를 제안할 예정이다. AMD는 ▲높은 메모리 및 추론 성능을 제공하는 AMD 인스팅트(AMD Instinct) GPU ▲높은 수준의 컴퓨팅 밀도와 에너지 효율성을 제공하는 AMD 에픽(AMD EPYC) CPU ▲확장 가능하고 안전한 프로그래머블 네트워킹을 지원하는 AMD 펜산도(AMD Pensando) DPU ▲에지에서 온디바이스 AI 컴퓨팅을 구현하는 AMD 라이젠 AI(AMD Ryzen AI) ▲파이토치(PyTorch), SGLang 등 주요 AI 프레임워크를 기본 지원하는 AMD ROCm 개방형 소프트웨어 생태계 등을 제공한다. AMD의 리사 수(Lisa Su) CEO는 “AMD는 전 세계 모든 개발자, AI 스타트업 및 기업에 개방형 고성능 컴퓨팅을 제공함으로써 AI의 미래를 모든 곳에서 실현한다는 야심 찬 비전을 가지고 있다”고 설명하며, “휴메인에 대한 투자는 글로벌 AI 인프라 발전에 있어 중요한 이정표이다. 양사가 함께 전례 없는 수준의 성능, 개방성, 그리고 도달 범위를 제공하는 세계적으로 중요한 AI 플랫폼을 구축할 계획”이라고 밝혔다. 휴메인의 타렉 아민(Tareq Amin) CEO는 “이것은 단순한 인프라 투자가 아닌, 전 세계 혁신가들을 향해 열린 초대”라면서, “우리는 컴퓨팅 수준에서 AI를 대중화하여 고급 AI의 활용이 인프라의 제약 없이 상상력에 의해 실현될 수 있도록 만들고자 한다”고 설명했다.
작성일 : 2025-05-16
매스웍스-알테라, “AI로 5G/6G 무선 시스템 개발 가속화”
매스웍스가 인텔의 자회사인 알테라(Altera)와 함께 알테라 FPGA(프로그래머블 반도체)의 무선 개발 가속화를 위한 협력 계획을 발표했다. 이를 통해 무선 시스템 엔지니어는 AI 기반 오토인코더를 사용해 채널 상태 정보(CSI) 데이터를 압축하고, 프론트홀 트래픽과 대역폭 요구사항을 크게 줄일 수 있게 된다. 또한 5G 및 6G 무선 통신 시스템을 다루는 엔지니어는 사용자 데이터 무결성을 보장하고, 무선 통신 시스템의 신뢰성과 성능 표준을 유지하는 동시에 비용을 절감할 수 있을 것으로 예상된다. 매스웍스는 알테라 FPGA에 특화된 AI 및 무선 개발을 강화하는 포괄적인 툴 제품군을 제공한다. ‘딥러닝 HDL 툴박스(Deep Learning HDL Toolbox)’는 FPGA 하드웨어에서 딥러닝 신경망을 구현하고자 하는 엔지니어의 요구사항을 충족한다. 딥러닝 HDL 툴박스는 ‘HDL 코더(HDL Coder)’의 기능을 활용함으로써, 사용자는 효율적인 고성능 딥러닝 프로세서 IP 코어를 커스터마이즈하고 구축 및 배포할 수 있다. 이는 표준 네트워크와 레이어를 지원함으로써 무선 애플리케이션의 성능과 유연성을 높인다. FPGA AI 스위트는 오픈비노(OpenVINO) 툴킷을 통해 널리 사용되는 산업 프레임워크의 사전 훈련된 AI 모델을 활용하여 알테라 FPGA에서 버튼 하나로 맞춤형 AI 추론 가속기 IP를 생성할 수 있도록 지원한다. 또한 FPGA AI 스위트는 FPGA 개발자가 쿼터스(Quartus) 프라임 소프트웨어 FPGA 플로를 사용해 AI 추론 가속기 IP를 FPGA 설계에 원활하게 통합할 수 있게 한다. 개발자들은 딥러닝 툴박스와 오픈비노 툴킷을 결합해 알테라 FPGA에서 AI 추론을 최적화할 수 있는 과정을 간소화할 수 있다.     알테라의 마이크 피튼(Mike Fitton) 버티컬 시장 담당 부사장 겸 총괄 매니저는 “매스웍스와 알테라의 협력을 통해 기업은 5G RAN(무선 접속 네트워크)에서 ADAS(첨단 운전자 보조 시스템)에 이르기까지 다양한 5G 및 6G 무선 통신 애플리케이션에 AI의 강력한 힘을 활용할 수 있게 됐다”면서, “개발자는 알테라의 FPGA AI 스위트(suite)와 매스웍스 소프트웨어를 활용해 알고리즘 설계부터 하드웨어 구현에 이르는 워크플로를 간소화하고, AI 기반 무선 시스템이 현대 애플리케이션의 엄격한 요구사항을 충족하도록 보장할 수 있게 됐다”고 말했다. 매스웍스의 후만 자린코우브(Houman Zarrinkoub) 수석 제품 매니저는 “AI 기반 압축은 통신 산업에 있어 매우 강력한 기술”이라며, “매스웍스 소프트웨어는 AI 및 무선 개발을 위한 강력한 기반을 제공한다. 무선 엔지니어는 매스웍스 툴과 알테라의 FPGA 기술을 통합해 고성능 AI 애플리케이션과 첨단 5G 및 6G 무선 시스템을 효율적으로 개발할 수 있다”고 말했다.
작성일 : 2025-03-25