• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 클로드"에 대한 통합 검색 내용이 32개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
세일즈포스, “오픈AI·앤트로픽 파트너십 통해 에이전트포스 360 강화”
세일즈포스는 오픈AI 및 앤트로픽과의 전략적 파트너십을 기반으로 에이전트포스 360과 챗지피티(ChatGPT), 클로드 등 플랫폼과의 통합을 지원하는 한편, 차세대 업무 환경 구축과 커머스 경험 혁신을 지원하기 위한 역량을 지속 강화해 나갈 것이라는 비전을 밝혔다. 이번 세일즈포스와 오픈AI의 파트너십을 기반으로 세일즈포스의 고객은 이제 챗지피티에서도 ‘에이전트포스 360’ 앱을 직접 활용하여 자연어로 기록 조회, 고객 대화 분석, 태블로 데이터 시각화 등의 작업을 수행할 수 있다. 또한 GPT-5를 포함한 오픈AI의 최신 모델을 기반으로 세일즈포스 플랫폼 내에서도 AI 에이전트와 프롬프트를 생성할 수 있게 된다. 오픈AI와 세일즈포스는 앞으로도 챗지피티와 슬랙 등 양사의 대표 플랫폼을 통해 업무 생산성 제고를 위한 에이전틱 AI 기반의 협업 환경 구축을 지원할 계획이다. 나아가 세일즈포스는 ‘에이전트포스 커머스(Agentforce Commerce)’를 챗지피티의 ‘즉시결제(Instant Checkout)’ 및 ‘에이전틱 커머스 프로토콜(Agentic Commerce Protocol)’과 통합한다고 밝혔다. 이를 통해 커머스 기업은 주문, 결제, 고객 관계 등 핵심 프로세스에 대한 통제권을 유지하면서도 새로운 유통 채널을 기반으로 수억 명의 잠재 고객에게 제품을 판매할 수 있는 역량을 확보할 수 있다.     슬랙과 클로드의 통합 기능도 공개됐다. 세일즈포스는 앤트로픽과의 전략적 협업을 통해 클로드(Claude) 모델을 에이전트포스 360 내 선호 AI 모델로 통합하며, 클로드 모델을 세일즈포스의 트러스트 레이어(Trust Layer) 내에 완전히 통합한 최초의 LLM 제공업체라고 소개했다. 세일즈포스는 이번 파트너십을 기반으로 금융·헬스케어·사이버보안 등 규제가 엄격하고 민감한 데이터를 다루는 산업에서도 데이터를 안전하게 보호 및 활용할 수 있는 ‘엔터프라이즈 AI’를 제공하겠다는 의지를 밝혔다. 이에 따라 슬랙의 사용자는 이제 클로드와의 양방향 통합을 통해 문서 분석, 데이터 기반 의사결정, 문서 권한 관리와 같은 업무를 슬랙 내에서 신속하게 수행할 수 있다. 특히 ‘에이전트포스 금융 서비스(Agentforce Financial Services)’와 연계해 산업 내 규제를 준수하면서도 금융 상품 분석, 보험 청구 처리, 고객 포트폴리오 요약 등의 핵심 업무를 자동화하는 것이 가능하다. 대표적으로 ‘크라우드스트라이크(CrowdStrike)’와 ‘RBC 자산 관리(RBC Wealth Management)’와 같은 기업들은 이미 에이전트포스에서 클로드를 활용하여 AI 기반의 새로운 고객 경험을 제공하고 있다. 한편, 세일즈포스는 차세대 AI 기업 대상의 투자를 확대하며, 중장기적인 AI 생태계 지원 의지를 밝혔다. 세일즈포스의 자체 글로벌 투자 기업인 ‘세일즈포스 벤처스(Salesforce Ventures)’는 지난해 드림포스에서 출범한 10억 달러 규모의 AI 펀드 중 75% 이상을 차세대 엔터프라이즈 AI 기업에 투입했다. 현재까지 총 2200억 달러 규모로 성장한 35개 기업에 투자하며 엔터프라이즈 AI 분야의 선도 벤처 캐피털로 자리매김한 세일즈포스 벤처스는 기존 포트폴리오 기업에 대한 투자를 25% 이상 확대할 계획이라고 전했다. 세일즈포스 벤처스의 AI 펀드 포트폴리오에는 앤트로픽, 코히어, 일레븐랩스, 투게더 AI, 런웨이 등의 혁신 기업과, 팔 AI, 월드 랩스, 라이터 등의 스타트업이 포함됐다.  세일즈포스 코리아의 박세진 대표는 “세일즈포스는 오픈AI 및 앤트로픽과 같은 글로벌 파트너와의 긴밀한 협력을 통해 기업들이 AI를 기반으로 한 차세대 업무 환경에서 혁신적인 고객 경험을 제공할 수 있는 ‘에이전틱 엔터프라이즈’로의 전환을 지원하고 있다”면서, “에이전트포스 360은 직원과 고객 모두에게 보다 효율적이고 개인화된 경험을 제공하기 위한 핵심 플랫폼으로 자리매김할 것이며, AI 에이전트가 지닌 무한한 잠재력을 기반으로 국내 기업들과 함께 만들어 나갈 새로운 혁신 여정이 매우 기대된다”고 전했다.
작성일 : 2025-10-16
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
[포커스] 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 (2)
‘코리아 그래픽스 2025’가 지난 9월 11~12일 온라인으로 진행됐다. ‘AI로 혁신하는 3D 시각화와 산업의 미래’를 주제로 열린 ‘코리아 그래픽스 2025’에서는 급변하는 기술 트렌드 속에서 AI(인공지능)와 3D 시각화가 산업과 문화 전반에 미치는 영향력을 조명했다. 또한 AI 기술의 실질적인 적용 사례와 잠재력을 통해, AI가 단순한 도구를 넘어 창의적 동반자로 진화하는 흐름을 짚었다. ■ 정수진 편집장   ■ 같이 보기 : [포커스] 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 (1)     AI·3D 시각화 기술의 현재와 미래를 짚다 9월 11일에는 ‘디지털 트윈 & 3D 시각화’ 트랙이 진행됐다. 에픽게임즈 코리아의 권오찬 시니어 에반젤리스트는 ‘리얼타임을 통한 디지털 트랜스포메이션의 진화, 그리고 에픽게임즈의 에코시스템’을 주제로 발표했다. 그는 디지털 트윈을 통한 시각화가 건축, 도시 계획, 훈련 시뮬레이션, 자동차 산업 등 다양한 분야에서 혁신적인 의사결정을 이끌어내는 사례를 소개하면서, 3D 인터랙티브 콘텐츠로의 전환을 강조했다. 권오찬 시니어 에반젤리스트는 “에픽게임즈는 이러한 변화를 성공적으로 지원하기 위해 나나이트, 루멘, 라지 월드 코디네이터, 절차적 콘텐츠 생성 툴 같은 리얼타임 렌더링 기술과 함께 메타휴먼, 애셋 스토어, 리얼리티 스캔 2.0 등 풍부한 에코시스템을 제공한다”고 밝혔다.   ▲ 에픽게임즈 코리아 권오찬 시니어 에반젤리스트   HP 코리아의 차성호 이사는 ‘AI 워크스테이션을 통한 생산성 향상 방안 및 사례’를 발표했다. 워크스테이션은 R&D, 금융, 데이터 과학, AI 등의 분야에서 성능과 안정성을 겸비한 비즈니스 제품군으로 자리잡고 있다. 차성호 이사는 HP의 AI 워크스테이션이 40 TOPS 이상의 NPU(신경망 처리장치)와 코파일럿 키를 탑재하고 있으며, 대량의 그래픽 메모리를 바탕으로 솔리드웍스, 오토데스크 레빗, D5 렌더 등 ISV 애플리케이션에서 높은 생산성 향상을 보인다고 소개했다. 또한, 프로그램과 목적에 따른 최적 하드웨어 선택의 중요성을 강조하면서, “HP는 데모 프로그램을 통한 성20 · 능 검증 기회를 제공한다”고 덧붙였다.   ▲ HP 코리아 차성호 이사   에스엘즈의 정재헌 대표는 ‘AEC 산업을 위해 진화하는 공간지능 기술’을 주제로, 2020년 캐나다 ‘어그멘티드 그라운드’ 프로젝트의 AR 원격 시공 경험을 비롯해 자체 개발한 추론형 AI로 BIM 모델 이미지를 학습하여 고객사의 MEP 설계 노하우의 보안을 유지하면서 자동 배관 설계를 진행한 사례를 소개했다. 또한 ‘증강 휴먼’ 기술이 피지컬 AI 기반의 ‘증강 로봇’으로 진화하는 여정도 공유했다. 정재헌 대표는 “초기 AR 디바이스 탑재를 넘어 휴머노이드 로봇 및 드론에도 공간 지능 기술을 적용 중이며, 드론에서 수신한 GNSS 좌표를 기반으로 BIM 모델을 고정밀 증강하여 실시간 현장 영상 위에 데이터를 매핑하는 데 성공했다”고 밝혔다.   ▲ 에스엘즈 정재헌 대표   유니티코리아의 김현민 시니어 설루션 엔지니어는 ‘유니티 애셋 매니저로 혁신하는 CAD 데이터 관리와 실시간 협업’에 대해 발표했다. 그는 “유니티가 디자인 및 프로토타입 작업 간소화, 비용 절감, 브랜드 경험 강화 등 산업 전반에 몰입감 있고 인터랙티브한 경험을 제공한다”고 설명했다. 오픈 플랫폼인 유니티는 카티아, 솔리드웍스 등 70여 종의 CAD 포맷을 지원하며 애셋 관리, 버전 관리와 함께 20여 종 이상 플랫폼 빌드를 제공하는 엔드 투 엔드 설루션을 제공한다. 또한 유니티 애셋 매니저(Unity Asset Manager)는 클라우드 기반에서 대용량 CAD/3D 데이터를 효율적으로 관리하며, AI 태깅, 버전 관리, 데이터 스트리밍 기능을 통해 실시간 협업 환경을 구축한다.   ▲ 유니티코리아 김현민 시니어 설루션 엔지니어   메가존클라우드의 홍동희 유니티 유닛 테크 그룹장은 ‘CAD와 유니티의 만남 : 새로운 비즈니스 수익 모델과 창의적 혁신’을 발표했다. 그는 “유니티의 실시간 렌더링, 인터랙티브 기능, 멀티플랫폼 배포 능력이 정밀한 설계에 강점을 가진 CAD에 새로운 가치를 부여하고 수익화할 수 있다”고 강조했다. 또한, 가상 복제본 생성부터 AI 결합을 통한 완전 자율화까지 디지털 트윈의 진화 과정을 설명하며, “유니티는 디지털 트윈 개발을 위한 최적의 플랫폼”이라고 전했다. 유니티의 에코시스템을 활용해 기업은 새로운 비즈니스 영역을 창출하고, 개인은 CAD와 유니티를 겸비한 전문가로서 경쟁력을 강화할 수 있다는 것이 그의 설명이다.   ▲ 메가존클라우드 홍동희 유니티 유닛 테크 그룹장   캐디안의 한명기 상무는 ‘AI 이미지 인지기술 기반 3D 도면 생성 방안 및 적용 설루션 소개’를 주제로 발표를 진행했다. 한명기 상무는 “캐디안은 1990년 설립된 국산 CAD 개발 기업으로, 2020년에는 AI CAD 개발을 선언하며 설계 도면 생성 과정의 어려움을 해결하는 데에 AI를 접목했다”고 설명했다. 캐디안은 최근 전통 목조 건축의 손도면을 2D/3D 도면화하는 ‘CADian TWArch’를 개발하여 불국사 복원 가상 설계에 적용했으며, 올해 연말 출시 예정이다. 또한, 현대 건축을 위한 ‘CADian AI-CE’는 JPG, PDF, DWG 등 다양한 도면에서 벽체, 창호, 룸 정보 등을 AI로 탐지하여 도면을 재생성하고 BOM을 산출한다. 한명기 상무는 “캐디안 AI CAD의 미래는 스마트 블록, 디자인 어시스턴트, 인스펙션 시스템 등 기능 강화와 함께 궁극적으로 AI 에이전트를 통한 ‘말로 설계하는 세상’을 목표로 한다”고 전했다.   ▲ 캐디안 한명기 상무   이노시뮬레이션의 이지선 CTO는 ‘모빌리티 XR 사례와 AI 융합 기술의 미래’를 전망했다. 그는 XR 기술이 나와 외부 세계를 소통하는 모든 통로를 대체하는 기술이며, 그래픽, 디바이스, 시뮬레이션 기술과 밀접하다고 정의했다. 그리고 운전 시뮬레이터, 가상 훈련, HMI 검토, 가상 품평, AR HUD 등 다양한 모빌리티 XR 응용 사례를 소개하며 개발 기간과 비용 절감 효과를 강조했다. 이지선 CTO는 “AI와 XR 기술의 결합은 모빌리티 무인화 시대를 가속화할 것”이라면서, “이노시뮬레이션은 AI 개발 툴을 활용하여 AI와 모빌리티가 혼합된 시뮬레이션 시스템을 연구 개발 중”이라고 소개했다.   ▲ 이노시뮬레이션 이지선 CTO   디자인과 제조의 미래를 만드는 생성형 AI 9월 12일에는 ‘AI 비주얼 트렌드 & 응용’ 트랙이 진행됐다. LG CNS의 정용기 선임은 ‘Image Gen.AI를 활용한 업무 생산성 향상 방안’에 대한 발표에서, 생성형 AI 기술에 기반한 LG CNS의 Image Gen.AI 엔진을 소개했다. 이를 활용하면 디자인 과정에서 아이디어 구상 시간을 단축하는 등의 프로세스 개선을 통해 비주얼 콘텐츠의 생성 시간과 비용을 50% 이상 줄여줄 수 있다는 것이 정용기 선임의 설명이다. 또한, LG CNS의 Image Gen.AI 엔진을 탑재한 COP(Content Optimization Platform)도 소개했다. COP는 이미지 생성 및 편집, 배경 제거/교체/확장, 부분 수정 등의 기능을 제공하며, 특화 학습을 통해 고객사의 특정 스타일을 반영한 마케팅 이미지를 생성한다. 정용기 선임은 “COP는 제품의 디테일을 유지하면서 다양한 연출 컷을 만들 수 있으며, 향후 매체별 배너 이미지 자동 생성 기능을 개발 중”이라고 밝혔다.   ▲ LG CNS 정용기 선임   아이스케이프의 조세희 대표는 ‘이미지부터 3D까지 : 크리에이터가 알려주는 생성형 AI 영상 제작’을 주제로 발표했다. 조세희 대표는 AI를 활용한 영상 콘텐츠 제작 과정을 실무 사례와 함께 소개하면서, “영상 제작은 스토리보드, 키 이미지 생성, 영상화, 음악 생성, 편집의 5단계로 진행되며, AI가 텍스트, 이미지, 오디오, 3D 모델 등 다양한 콘텐츠를 생성한다”고 설명했다. 또한, 3D 오브젝트를 활용해 가상 공간에서 영상을 만들고, 미드저니의 옴니 레퍼런스와 페이스 스왑, 일레븐랩스를 이용해 가상 인간의 일관된 이미지와 음성을 제작하는 과정도 시연했다. 조세희 대표는 “AI는 생산성을 높일 수 있는 도구이지만, 영상 구조, 조명, 연출 등의 기본 지식은 필수”라고 짚었다.   ▲ 아이스케이프 조세희 대표   AI팩토리의 김태영 CEO는 ‘크리에이터를 위한 AI 에이전트 활용 및 ‘바이브 코딩’ 발표를 통해 엔트로픽의 클로드 코드(Claude Code)를 활용해서 AI와 협업하여 코드를 작성하고 실행하는 방법을 시연했다. 바이브 코딩(vibe coding)은 대화식으로 사용자가 원하는 내용을 AI 에이전트에게 전달하면 AI가 코딩을 수행하는 방식이다. “요구사항 명세서 역할을 하는 파일을 통해 더욱 상세한 지시가 가능하다”고 소개한 김태영 CEO는 발표 중 실제 라이브 시연을 통해 상품 소개 웹 페이지를 제작하고, AI가 텍스트와 이미지를 자동 생성하여 콘텐츠를 풍부하게 만드는 과정을 선보였다.   ▲ AI팩토리 김태영 CEO   IUM SPACE의 이윰 대표는 ‘AI 툴로 구현하는 비주얼 세계 : 실무 적용과 아트워크 융합 사례’를 주제로 발표했다. 생성형 AI 시대의 진정한 창의성은 ‘세계관 디자인’에 있다고 짚은 이윰 대표는 미드저니의 스타일 레퍼런스 기능을 통해 42억 개의 스타일 시드를 탐색하며 “각 시드가 담고 있는 고유한 세계관을 이해하는 것이 중요하다”고 설명했다. 또한, 인간의 상상력과 AI의 지능을 결합하여 고유한 스타일과 이야기를 만드는 과정을 소개했다. 이윰 대표는 “AI는 의미를 생성하지 않으므로, 인간 창작자가 의미를 부여하고 다양한 이미지를 통합하여 스토리를 완성하는 것이 핵심”이라고 전했다.   ▲ IUM SPACE 이윰 대표   ■ 같이 보기 : [포커스] 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 (1)
작성일 : 2025-10-01
[칼럼] AI 스터디그룹(데이터공작소)에서 답을 찾다
현장에서 얻은 것 No. 20   피곤했지만 놓칠 수 없는 기회, AI 스터디그룹(데이터공작소)에서 답을 찾다.”   AI 시대, 배움과 연결에서 찾은 성장 동력 일상에 지쳐 몸은 천근만근이었지만, 빠르게 변화하는 인공지능(AI) 시대에 뒤쳐질 수 없다는 생각에 발걸음을 재촉했다. 특히 AI 기술이 단순한 효율성 도구를 넘어 업무 방식과 산업 지형을 근본적으로 바꾸고 있다는 통찰 앞에 서니, 피로감은 부차적인 문제로 느껴졌다. 이러한 변화의 파고를 헤쳐나갈 답을 찾기 위해, 필자는 주말에 스터디하는 데이터공작소 TFT, 데이터 공작소의 매주 월요일 줌강의, 매달 모임과 자율주행 회사들의 특별한 만남인 미모셀, 지식을 공유하고 서로 도움을 주는 네트워크 모임인 한국미래융합연구원 등 AI 및 관련 기술 스터디 그룹의 문을 두드렸다. 이곳에서 만난 전문가들과의 지식 공유와 토론은 필자가 가진 궁금증을 해소하고 새로운 가능성을 탐색하는 데 귀중한 기회가 되었다. “배우는 법을 배우라.” − 데미스 허사비스(Demis Hassabis) CEO, 구글 딥마인드   ▲ 피곤했지만 놓칠 수 없는 기회, AI 스터디그룹   AI 에이전트와 MCP : AI의 실행력을 극대화하는 연결 고리 탐색 스터디 그룹에서 가장 주목받는 개념은 AI 에이전트였다. AI 에이전트는 환경을 인식하고 스스로 결정하며 목표를 달성하는 소프트웨어 개체로 정의된다. 독립적으로 작동하며 목표를 향해 지속적으로 학습하고 개선하는 특징을 가진다. 데이터를 수집, 분석하고 최적의 행동을 선택하여 실행하는 방식으로 작동하며, 질문에 대한 하위 질문을 생성하고 리서치한 후 포괄적인 답변을 제공하거나 AI 요약 결과를 자동화하고 개선하는 등 다양한 기능을 수행할 수 있다. 일부는 다양한 도구를 사용하여 복잡한 작업을 수행하는 완전 자율 시스템으로 정의되기도 하고, 미리 정의된 워크플로를 따르는 규범적인 구현을 설명하기도 한다. 이러한 AI 에이전트의 역량을 극대화하는 핵심 기술로 MCP(Model Context Protocol)가 소개되었다. MCP는 LLM(Large Language Model) 애플리케이션과 외부 데이터 소스 및 다양한 도구 간의 원활한 통합을 가능하게 하는 개방형 프로토콜이다. 마치 USB-C가 다양한 전자기기를 연결하듯, MCP는 웹 서비스와 AI 에이전트를 연결하여 AI가 서비스에 직접 접근할 수 있도록 돕는 핵심 기술이다. 이를 통해 LLM은 단순히 텍스트를 생성하는 것을 넘어 현실의 도구들과 연결되며 이메일 작성 및 전송, 캘린더 약속 등록, 슬랙 메시지 전송, 파일 저장 및 정리, 소셜 미디어 검색 및 게시, 스프레드시트 데이터 정리, 줌 회의 예약 및 회의록 작성, 노션 자료 활용 등 다양한 작업을 실행할 수 있게 된다. 이는 에이전틱 AI(agentic AI) 발전의 중요한 요소로 강조되었다. 또한, MCP는 프레임워크나 벤더에 관계없이 에이전트 간 상호 운용 가능한 통신을 안전하게 지원하는 것을 목표로 한다. API와 MCP가 반드시 필요한 것은 아니지만, 엄청난 잠재력을 가지고 있다는 점이 강조되었다. API 연결은 개발자에게도 쉬운 일은 아니며 권한 부여 문제 등이 있기 때문에, MCP가 이를 더 쉽게 만들 수 있는지에 대한 고민도 있었다. “미래를 예측하는 최선의 방법은 미래를 창조하는 것.” − 정종기 박사, AI 비즈니스 전문가   바이브 코딩과 커서 : AI를 개발 동료로 활용하는 방법 AI 스터디에서는 개발의 패러다임 변화인 ‘바이브 코딩’에 대한 논의도 활발했다. 전통적인 코딩이 ‘개발자가 자신의 작업을 대신할 프로그램을 만드는 것’이라면, 바이브 코딩은 ‘AI가 자신의 작업을 대신할 프로그램을 만드는 것’이다. 이는 AI에게 개발을 외주로 맡기는 것과 유사한 개념으로 설명된다. 좋은 바이브 코더는 좋은 외주 의뢰자가 갖춰야 할 다섯 가지 역량을 AI에게 적용해야 한다. 내 문제를 풀기 위한 작업 정의(PRD, 유저 플로) AI가 잘 이해할 수 있게 의사소통(프롬프트, 지침) 프로그램을 잘 만들기 위한 리소스 지원(데이터, API, 실행/배포 환경) 프로그램이 의도대로 동작하는지 검수(자동화 테스트) 이 과정에서 모르는 것을 배워 점차 스스로 할 수 있게 되는 것이다. 커서(Cursor)는 이러한 ‘LLM-assisted IDE’ 개념을 제시하는 도구로 소개되었다. 복잡한 프로그래밍 지식, 문서, 오류 메시지 기반의 학습 곡선이나 사전 설계 중심의 신중한 개발 문화, 툴과 언어, 개발 환경의 복잡성 같은 문제 속에서 커서는 아이디어를 즉각 코드로 구현하고 비전문가의 접근성을 폭발적으로 증대시키며 LLM 기반의 빠른 실험과 피드백 루프를 가능하게 한다. 문법 대신 의도 전달과 맥락 중심으로 전환되는 패러다임의 변화를 지원한다. 데이터공작소 개발TFT(서울팀) 관련 세션에서는 커서를 활용한 실질적인 개발 프로세스가 시연되었다. 혼자서 다양한 역할을 수행하는 ‘솔로프리너’ 관점에서 기획부터 개발, 테스트, 배포, 모니터링, 마케팅까지 전 과정을 AI와 함께 진행하는 방법이 제시되었다. 커서를 통해 아이디어 구체화, 기획 문서 작성(PRD, 비즈니스 모델 캔버스), 프로젝트 관리(Task Master MCP를 활용한 작업 목록 생성, 복잡도 계산, 하위 태스크 분해), 실제 코드 작성, 그리고 문서화(Obsidian 연동) 등이 가능함을 보여주었다. 특히 개발 경험이 있는 발표자인 어니컴의 최성훈 팀장은 커서를 통해 불편하고 반복적인 작업의 상당 부분을 자동화하고, 단계별로 명확한 지시를 내리며 태스크 관리를 통해 AI가 맥락을 이해하도록 유도하는 장점을 강조했다. 그는 커서를 쓰면서 처음에는 AI가 코딩을 짜는 것을 도와주는 정도라고 생각했고, 코드를 다 안 봐도 알아서 다 짜 주는 줄 알았다고 했다. 하지만 실제로 해 보니 절대 그렇지는 않았고, 다만 불편하거나 반복적인 작업에서는 충분히 활용 가치가 있음을 느꼈다고 했다. AI와 소통하며 생각을 체계화하고 문서화하며 원하는 것을 구체화하고 실행 계획을 짜서 이뤄가는 과정을 보였다고 했다. 그는 커서 하나로 A부터 Z까지 다 해 볼 수 있겠다는 느낌을 받았고, 솔로프리너를 목표로 하는 사람들은 연구해 볼 만하다고 개인적인 의견을 덧붙였다. AI에게 외주를 맡기는 개념이기 때문에 사람이 명확하게 문제 정의를 하고, 의사소통하며, 검수하는 역할이 중요하다고 언급했다. 또한, 커서가 굉장히 많은 도움을 주었다고 말했다. 개발자는 커서를 통해 코드의 문제점이나 개선 포인트를 찾는 데 도움을 받을 수 있고, 혼자 개발하면서 보조적인 도움이 필요할 때 효과적일 수 있다고 했다. 또한 자동 PR 요약이나 커밋 메시지 작성 등 깃(Git)과의 연동도 잘 되는 장점이 있었다. 오랜 개발 경험을 가지고 있는 양선희 대표는 필자의 숙원 고민거리를 반나절만에 해결해 주었다. 디자인씽킹 기법 중 첫 번째인 공감대 형성의 템플릿을 시스템화시켜 주었다. 클로드(Claude)로 대화하듯이 고민거리를 얘기하고 프로그램 기획, 개발, 테스트 등을 통해 언제든지 실행 가능한 설루션으로 만들어 주었고 소스도 공유했다. 보안 분야를 다루면서 다양한 경험을 통해서 항상 정리를 잘 하고 번뜩이는 아이디어를 내는 NSHC 장주현 이사와 AI인터시스 신동욱 대표는 AI 일타 강사이다. 항상 새로운 기술, 주제를 뚝딱 만들어내고 강의도 잘 한다. 최근에는 개발, 교육을 병행하느라 전국을 일일 생활권으로 두고 있다. 신동욱 대표의 회사에서 핵심 인재인 정성석 상무는 차세대 유망주인데, 알고 보니 고등학교 후배였다. 세상은 넓고 할 일은 많지만, 오늘 이 모임이 있기까지 도움을 준 데이터마이닝 이부일 대표는 유튜브 R릴에오를 통해 데이터 통계 분석 기법을 유튜브로 알렸다. 2022년 콘셉트맵 캘린더 9월호의 주인공으로 모신 인연으로 SNS에서 자주 소통하고 온/오프라인으로 인연을 이어가고 있다. “결국 실행되는 지식만이 힘이다.” − 데일 카네기   노트북LM : 개인 맞춤형 학습 및 연구 파트너 활용 또 다른 유용한 AI 도구인 노트북LM(NotebookLM)은 맞춤형 AI 리서치 어시스턴트이자 AI 기반 학습 및 연구 파트너로 소개되었다. 노트북LM의 가장 큰 강점은 사용자가 제공한 소스 내에서만 정보를 검색하고 답변을 생성하여, 환각 현상을 줄이는 데 도움을 준다는 것이다. PDF, 구글 드라이브 문서, 웹사이트 링크, 유튜브 링크, 마크다운 등 다양한 형태의 소스를 학습할 수 있으며, 특히 유튜브 공개 동영상 URL을 소스로 사용할 수 있는 점은 챗GPT에서 제공하는 프로젝트 기능과의 차별점으로 언급되었다. 노트북LM의 주요 기능으로는 학습 자료(소스) 내 정보 검색 및 답변 생성, 소스 요약(핵심 내용 추출), 추가 탐색, 메모 추가 및 소스 전환, AI 오디오 오버뷰(팟캐스트 형태의 요약 청취), 오버뷰, 마인드 맵(소스 기반 개념 및 관계 구조화), 생성 맞춤 설정, 학습 가이드, FAQ 생성, 브리핑 문서, 타임라인(시간적 순서 정리), 소스 검색, 심화 질문 및 분석 등이 있다. AI 오디오 오버뷰 기능은 두 명의 팟캐스트가 대화 형식으로 소스 내용 중 중요한 부분을 6~7분 분량의 팟캐스트로 만들어 주며, 원하는 내용에 초점을 맞추어 생성할 수도 있다. 시각 장애인에게도 좋은 서비스로 생각된다고 언급되었다. FAQ 기능은 우리가 생각하지 못했던 질문을 많이 만들어 준다고 했다. 마인드 맵 기능은 주어진 소스를 기반으로 개념과 관계를 시각화하는 데 상당히 잘 작동한다고 했다. 타임라인 기능은 소스에 있는 여러 이벤트를 시간 순서대로 정리해 주는데 정말 훌륭하다고 했다. 활용 사례로는 새로운 개념 이해, 핵심 자료 수집, 스터디 메이트 역할(학습 계획 관리, 질문/답변 학습, 복습, 약점 보완, 동기 부여), 모의 시험 및 문제 풀이, 창의력 및 사고력 훈련, 논문 관련 작업(주제 선정, 배경 탐색, 선행 연구 정리, 개념 정립, 논리 구성, 글쓰기 초안, 피드백) 등이 제시되었다. 특히 장비 매뉴얼 이해나 유튜브 영상 내용 파악에 유용하며, 논문 작성을 위한 참고 문헌 제안 및 형식 정리에도 활용될 수 있다고 했다 새로운 개념을 이해하고 싶을 때나 중요한 질문에 대한 핵심 자료를 만들고 싶을 때 소스 검색 기능이 유용하다고 했다. 다만 노트북LM은 과제나 태스크를 대신해주는 도구가 아니라 도와주는 어시스턴트라는 점과 좋은 소스를 제공하는 것이 중요하다는 점이 강조되었다. 쓰레기를 집어넣으면 쓰레기가 나온다는 ‘Garbage In, Garbage Out’이라는 말이 있듯이. 노트북LM만 단독으로 사용하기보다 챗GPT, 제미나이(Gemini) 등 다른 툴과 함께 사용하는 것이 더 중요하다고 생각한다고 했다. 다른 툴로 좋은 소스를 만들어서 노트북LM에 넣어 활용하는 선순환 구조를 잘 활용하면 좋다고 했다. “성공하고자 하는 의지가 강하다면, 실패 따위가 나를 압도할 수 없다.” − 정광천, 이노비즈협회 회장   다양한 스터디 그룹의 시너지 : 연결과 성장의 기회 한국미래융합연구원은 정기적인 지식 공유 모임을 통해 AI를 비롯한 다양한 분야의 최신 트렌드와 비즈니스 인사이트를 공유하는 플랫폼 역할을 하고 있다. 정종기 박사는 AI 비즈니스 전문가로서 AI 대중화 시대에 지속 가능한 미래 준비, AI 활용 능력의 중요성, 그리고 AI 트랜스포메이션에 대한 강의를 진행하며 멤버들에게 영감을 주고 있다. 그는 AI가 기업 경영의 효율화와 비용 절감에 핵심적인 역할을 하며 제조 등 다양한 산업에 영향을 미치고 있음을 강조한다. AI에게 일을 잘 시키는 사람이 능력 있는 사람이라고 했다. 미모셀은 미래 모빌리티 분야의 전문가들이 모여 업계 동향 공유와 네트워킹을 하는 그룹이다. 자율주행 기술, 센서(라이다, 레이다), SDV(Software Defined Vehicle) 등 모빌리티와 AI가 접목되는 분야의 최신 정보를 공유하고 토론한다. 어려운 시기에도 서로 힘이 되고 지지하는 관계를 형성하며 연결의 중요성을 보여준다. 미모셀의 목표는 대표님들의 어깨를 가볍게 해 드리는 것이라고 했다. 이처럼 다양한 스터디 그룹은 AI 기술 자체뿐만 아니라 기술이 비즈니스, 커리어, 그리고 사회 전반에 미치는 영향에 대해 깊이 있게 논의하고 있다. 유발 하라리 교수는 초지능 AI가 인류를 파멸로 이끌 위험이 있지만 경쟁 때문에 개발 속도를 늦추지 못하며, AI는 단순 도구가 아닌 스스로 생각하고 결정하는 주체(agent)라고 했다. AI는 인간과 달리 휴식이 필요 없어 지속적으로 활동 가능하며, 알고리즘 속도를 인간의 속도에 맞게 조절해야 한다고 했다. 또한, AI는 인간을 대체해 불평등한 사회를 초래할 가능성이 있다고 했다. 이러한 예측 속에서 AI 활용 능력은 개인과 기업의 생존에 필수라는 메시지가 반복적으로 강조된다. “AI 활용 능력이 당신의 생존입니다.” − 정종기 박사, AI 비즈니스 전문가   맺음말 : 배움과 연결을 통한 미래 준비 AI 시대는 불확실성이 높지만 지속적인 학습과 유연성 개발, 광범위한 역량 개발을 통해 기회를 잡을 수 있다고 한다. 특히 기술 변화에 대한 적응력과 개인적인 열정을 바탕으로 오픈소스 도구 등을 활용해 실습하고 실험해보는 것이 중요하다. 데이터공작소와 같은 AI 스터디 그룹, 데이터공작소 개발TFT(서울팀)에서의 실질적인 기술 학습, 미모셀에서의 산업 지식 공유, 그리고 한국미래융합연구원에서의 비즈니스 및 트렌드 통찰은 이러한 미래를 준비하는 강력한 기반이 된다. 피곤함에도 불구하고 참여했던 이 스터디 그룹들에서 필자는 AI 기술의 최신 동향과 더불어 그것이 어떻게 실제 업무와 비즈니스에 적용될 수 있는지, 그리고 개인의 역량을 어떻게 발전시켜야 하는지에 대한 실질적인 답과 영감을 얻을 수 있었다. 기술 도입을 넘어 조직 문화와 일하는 방식을 근본적으로 전환할 용기를 가지고 AI를 경쟁 상대가 아닌 협업 파트너로 받아들일 준비를 하는 것, 그리고 배움과 연결을 멈추지 않는 것이 이 급변하는 시대에 생존하고 번영하는 길임을 다시 한 번 확인했다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
[에디토리얼] AI로 국가를 다시 짜는 시대
2025년, AI는 단순한 기술을 넘어 국가 시스템의 설계 도구로 진화하고 있다. ‘AI가 인간을 대체할 것인가’라는 질문은 더 이상 중요하지 않다. 이제는 ‘AI를 국가가 어떻게 작동하게 만들고, 체제를 어떻게 다시 쓰는가’가 핵심 의제가 되었다. 중국과 미국은 이미 이 싸움에 돌입했고, 한국도 새 정부가 들어서면서 ‘AI 세계 3대 강국’을 1호 공약으로 내세우며 AI를 국가 전략으로 삼겠다는 의지를 보이고 있다. 그러나 지금의 준비와 방향이 충분한지는 냉정히 따져봐야 한다.   AI 통치 실험을 가속하는 중국과 미국 중국은 2025년 1월 말, 자국 스타트업 딥시크(DeepSeek)가 공개한 추론 모델 R1을 통해 세계적으로 주목을 받았다. 고성능 GPU 없이 오픈AI의 챗GPT 대비 95% 낮은 비용으로 구현된 이 모델은 기술력보다 시스템 설계 전략의 힘을 입증한 사례다. 중국은 이미 ‘차세대 AI 발전계획’과 ‘중국제조 2025’를 통해 AI를 중심으로 한 통치 구조를 설계해왔다. 초·중등 AI 교육 의무화, 칭화대·베이징대 AI 인재 트랙, 4700개 기업의 테스트베드 구조는 그 일환이다. AI는 기술이 아닌 국가의 신경망으로 작동하고 있다. 미국은 이와 다른 방식으로 움직이고 있다. 민간이 기술 혁신을 주도하고 정부는 방향을 잡는다. 챗GPT, 클로드, 제미나이, 소라 등 세계 최고 AI는 모두 미국 기업의 손에서 나왔다. 정부는 AI 규제와 윤리 가이드라인을 빠르게 마련하며, AI를 국가 안보의 핵심 요소로 인식하고 있다. DARPA를 통한 국방 R&D, 스탠퍼드 AI 인덱스 같은 연구 생태계, 그리고 엔비디아 중심의 반도체 인프라까지, 미국은 민간·정부·산업이 유기적으로 연결된 AI 생태계를 보유하고 있다.   한국, 산업 중심을 넘어 체제 설계로 갈 수 있을까? 이재명 대통령은 100조원 규모의 민관 공동 투자를 통한 AI 산업 육성을 주요 어젠다로 삼고 있다. ‘AI 인프라와 R&D 투자 확대’, ‘법·제도 정비를 통한 규제 기반 마련’, ‘산업 현장 중심의 AI 인재 양성’이라는 세 축의 균형 있는 추진을 강조하고 있다. 그러나 지금까지 공개된 전략은 산업 성장을 중심으로 한 기술·시장 중심 접근에 머물러 있다. 문제는 이 방향으로는 중국이나 미국을 따라잡기 어렵다는 데 있다. 중국은 국가 전체를 실험실 삼아 정책-교육-산업이 정렬되어 있고, 미국은 민간의 창의성과 국가 전략이 분리 없이 흘러간다. 반면 한국은 산업과 정부, 교육과 규제 간 연결 고리가 느슨하다. 정부는 정책을 던지고, 산업은 기술을 개발하며, 교육은 아직 뒤처져 있는 구조다. 또 AI 윤리, 노동시장 변화, 데이터 주권 등 민감한 사회적 이슈에 대한 국가적 프레임도 부재하다. 기술은 지금도 진화 중이다. 그러나 국가 전략은 선택이다. 한국이 AI 시대에 주도권을 가지려면 ‘기술’이 아니라 ‘방향’을 고민해야 한다. 이제는 ‘AI가 어디까지 갈 수 있을까’라는 물음 대신, 이렇게 물어야 한다. “우리는 AI로 어디까지 갈 준비가 되어 있는가?”   ■ 박경수 캐드앤그래픽스 기획사업부 이사로, 캐드앤그래픽스가 주최 또는 주관하는 행사의 진행자 겸 사회자를 맡고 있다. ‘플랜트 조선 컨퍼런스’, ‘PLM/DX 베스트 프랙티스 컨퍼런스’, ‘CAE 컨퍼런스’, ‘코리아 그래픽스’, ‘SIMTOS 컨퍼런스’ 등 다수의 콘퍼런스 기획에 참여했고,행사의 전반적인 진행을 담당해 왔다. CNG TV 웨비나의 진행자 겸 사회자로, IT 분야의 취재기자로도 활동 중이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-07-01
세일즈포스, AI 에이전트 활용과 연결 돕는 디지털 워크포스 플랫폼 ‘에이전트포스 3’ 발표
세일즈포스가 디지털 워크포스(Digital Workforce) 플랫폼 ‘에이전트포스(Agentforce)’의 차세대 버전인 ‘에이전트포스 3’를 발표했다. 세일즈포스 ‘이전트포스 3는 기존 AI 에이전트 기능에 확장성과 연결성을 강화했으며, 이를 통해 보다 효과적으로 조직 내 AI 전략 실행과 디지털 전환 가속화를 지원하는 데에 중점을 두고 있다. 에이전트포스 3의 핵심 기능은 ‘커맨드 센터(Command Center)’이다. AI 에이전트 운영의 가시성과 제어력 향상을 지원하는 커맨드 센터는 실시간 모니터링을 기반으로 작동되며, 대화 유형, 오류율, 응답 속도 등 AI 에이전트 활용 시 주요한 지표를 시각화해 기업의 AI 활용 현황을 한눈에 살펴볼 수 있다. 이에 따라 조직 내 실시간 AI 에이전트 관리는 물론, 잠재적인 위험에 선제적으로 대응할 수 있어 AI 에이전트 운영 간의 안정성을 높일 수 있다.     또한, 에이전트포스 3는 오픈 표준인 MCP(Model Context Protocol)를 기반으로 다양한 에이전트 및 엔터프라이즈 시스템 간의 플러그 앤 플레이 방식의 유연한 연결을 지원한다. 이를 통해 복잡한 코딩 작업 없이도 다양한 AI 에이전트를 API, 업무 시스템, 데이터 자산 등과 손쉽게 연결하고, 상호 작용과 협업이 가능한 A2A(Agent-to-Agent) 환경을 구현할 수 있다. 현재 MCP 서버는 AWS, 구글 클라우드, IBM, 페이팔, 박스, 스트라이프 등 30개 이상의 파트너가 세일즈포스의 공식 AI 에이전트 마켓플레이스인 ‘에이전트 익스체인지(AgentExchange)’를 통해 제공하고 있으며, 이를 통해 AI 에이전트는 데이터 처리, 콘텐츠 생성, 상거래 기능 등 각 산업별 특성에 따른 업무 자동화가 가능하다. 가령 AWS MCP 서버를 활용해 비정형 데이터 분석, 문서 요약, 이미지 인식이 가능하며, 구글 MCP 서버를 통해 지도 기반 서비스 및 생성형 AI 모델 연동이 가능하다. 기술 아키텍처도 강화됐다. 업그레이드된 ‘아틀라스 아키텍처(Atlas Architecture)’는 응답 속도를 기존 대비 50% 이상 개선했으며, 실시간 스트리밍, 웹 검색 기반 데이터 수집 및 출처 인용 기능을 통해 응답의 정확성과 신뢰도를 높였다. 다국어 지원 기능을 통해 프랑스어, 독일어, 스페인어, 일본어, 포르투갈어 등 6개 언어가 새롭게 지원되며, 향후 지원 언어는 30개 이상으로 확대될 예정이다. AI 모델의 성능 저하나 장애 발생 시 자동으로 대체 모델로 전환되는 ‘모델 자동 전환(failover)’ 기능도 새롭게 추가됐다. 에이전트포스 3는 보안과 규제가 중요한 산업에서의 활용 또한 용이해질 전망이다. 세일즈포스는 공공 부문에서 신뢰할 수 있는 AI 서비스를 제공하기 위해, 미국 연방 정부의 최고 보안 인증 등급인 ‘FedRAMP High’ 인증을 획득해, 공공 부문에서도 안정적으로 AI 서비스를 제공할 수 있게 됐다. 현재 AWS를 기반으로 앤트로픽(Anthropic)의 클로드(Claude) 모델을 호스팅하고 있으며, 향후 구글 제미나이(Google Gemini) 모델을 포함한 다양한 모델 지원을 확대해 고신뢰 산업군에서의 AI 에이전트 도입 및 활용을 지원해 나갈 계획이다. 이외에도 보다 많은 기업의 AI 에이전트 도입을 돕기 위해 ‘환자 일정 예약’, ‘광고 제안서 생성’, ‘차량 정비’ 등 반복적인 업무에 즉시 적용 가능한 200여 개의 ‘사전 구축형 액션’을 제공한다. 세일즈, 서비스, 인더스트리 클라우드 등 주요 제품군에서는 사용자 기반 요금제를 적용하여 상황에 따른 맞춤형 활용이 가능하며, 직원용 AI 에이전트는 무제한 사용을 지원해 유연한 AI 에이전트 도입 및 활용이 가능해질 것으로 예측된다. 세일즈포스의 애덤 에반스(Adam Evans) AI 부문 부사장 겸 총괄 매니저는 “에이전트포스는 AI 에이전트, 데이터, 애플리케이션, 메타데이터의 통합을 기반으로 디지털 워크포스 플랫폼을 개발해 왔으며, 이미 수천 개 기업이 에이전트포스를 통해 에이전틱 AI의 가치를 실현하고 있다”면서, “지난 수개월 동안 고객의 목소리를 바탕으로 개발한 에이전트포스 3는 AI와 인간의 협업을 촉진하고, 기존에는 상상할 수 없던 수준의 생산성 향상과 비즈니스 가치 창출을 가능하게 할 것”이라고 언급했다. 세일즈포스 코리아의 손부한 대표는 “AI 에이전트가 실제 업무 전반에 적용되며, 기술 구현 못지않게 운영의 투명성과 제어력 확보가 중요한 과제로 떠오르고 있다”면서, “에이전트포스 3는 이러한 과제를 해결하고, 국내 기업들의 AI 전략 실행과 디지털 전환 가속화를 지원하는 핵심적인 역할을 수행하게 될 것”이라고 강조했다.
작성일 : 2025-06-26
[무료강좌] 소셜 미디어 최적화 AI 영상 제작 전략
AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (3)   어떤 제품과 서비스를 알리기 위해서는 광고,마케팅이 필수이다. 예전에는 이런 부분을 신문, 잡지, TV광고를 활용하여 마케팅을 진행했다. 지금은 소셜 미디어 광고를 중요한 마케팅 방식으로 활용하고 있다. 소셜 미디어 광고 영상은 현대 마케팅 전략에서 핵심 역할을 한다. 짧고 강렬한 영상은 사용자의 관심을 끌기 쉽고, 빠르게 확산될 수 있어 브랜드 인지도 향상에 효과적이다. 또한, 영상은 시청자에게 감정적으로 영향을 미쳐 제품이나 서비스에 대한 긍정적인 인식을 높일 수 있다. 최근에는 AI(인공지능)로 만드는 소셜 미디어 영상이 마케팅의 판도를 바꿀 수 있을 것으로 기대를 모으고 있다.   ■ 연재순서 제1회 AI 영상 제작 생태계의 현재와 미래 제2회 AI 기반 크리에이티브 워크플로 혁신 제3회 소셜 미디어 최적화 AI 영상 제작 전략 제4회 AI 특수효과 및 후반작업 마스터하기 제5회 AI 기반 몰입형 사운드 디자인   ■ 최석영 AI프로덕션 감성놀이터의 대표이며, 국제고양이AI필름페스티벌 총감독이다. AI 칼럼니스트로도 활동하고 있다.    그림 1. 소셜 미디어에 활용할 제품 마케팅 AI 영상 제작(휴테크)   소셜 미디어의 이해와 마케팅 소셜 미디어 플랫폼은 알고리즘을 통해 적합한 타깃층에게 콘텐츠를 노출시키며, 참여율을 높이는 데 기여한다. 따라서 소셜 미디어 영상을 활용한 마케팅은 브랜드 성장과 매출 증가에 중요한 영향을 준다.   그림 2. 대표적인 소셜 미디어   소셜 미디어는 사용자가 콘텐츠를 공유하고 소통하는 디지털 플랫폼으로 페이스북(Facebook), 인스타그램(Instagram), X(구 트위터), 유튜브(YouTube), 틱톡(TikTok) 등이 대표적이다. 전 세계 수십 억 명이 사용하는 소셜 미디어는 브랜드 인지도 향상과 고객과의 관계 형성에 중요한 역할을 한다. 기업은 이를 통해 실시간 피드백을 받고, 효율적인 타깃 마케팅을 실행할 수 있다. 소셜 미디어 마케팅은 맞춤형 콘텐츠 제작, 유료 광고, 데이터 분석을 기반으로 전략을 최적화한다. AI와 같은 기술을 활용하면 소셜 미디어 콘텐츠의 개인화와 확산력을 더욱 강화할 수 있다. 앞으로 소셜 미디어는 공간 컴퓨팅, 인플루언서 마케팅 등과 결합되어 기업의 핵심 채널로 진화할 것이다.   소셜 미디어의 개요 소셜 미디어는 사용자들이 콘텐츠를 공유하고, 소통하며, 의견을 나누는 디지털 플랫폼을 의미한다.   소셜 미디어의 중요성 소셜 미디어는 브랜드 인지도 향상, 고객과의 관계 구축, 실시간 피드백을 받을 수 있는 기회를 제공하는 현대 마케팅 전략의 핵심 요소이다. 전 세계적으로 수십억 명이 사용하고 있어, 기업에게 글로벌 시장 접근성을 높여주는 중요한 채널로 작용한다.   소셜 미디어 활용 목적 브랜드 홍보 : 제품 및 서비스를 홍보하고, 기업의 이미지를 강화하는 데 사용된다. 고객과의 소통 : 실시간으로 고객과 소통하고 피드백을 받아 기업의 방향을 조정할 수 있다. 타깃 마케팅 : 소셜 미디어 플랫폼은 사용자의 취향과 관심사에 기반해 광고를 타기팅할 수 있어, 효율적인 마케팅이 가능하다.   소셜 미디어 마케팅 전략 콘텐츠 계획 및 생성 : 타깃층에 맞는 맞춤형 콘텐츠를 계획하고 제작한다. 광고 및 프로모션 : 유료 광고를 통해 더 넓은 청중에게 도달하고, 브랜드 인지도를 높인다. 데이터 분석 및 최적화 : 소셜 미디어 분석 도구를 사용해 콘텐츠의 성과를 측정하고, 이를 바탕으로 전략을 개선한다.   AI를 활용한 소셜 미디어 영상 제작 AI를 활용한 마케팅 기획, 디자인, 소셜 미디어 영상 제작은 편집, 자막, 썸네일 등을 자동화해 제작 시간을 단축시킨다. 챗GPT(ChatGPT)를 활용한 기본적인 기획이 가능하게 되었다. 또한, 좀 더 분석적이고 한글에 최적화가 되어 있는 클로드(Claude)를 시놉시스, 시나리오 제작에 활용할 수 있다. 이렇게 생성형 AI의 LLM(대규모 언어 모델)을 활용하여 빠르게 기획하고, 데이터 기반으로 각 소셜 미디어에 특성과 성향에 맞게 만들 수 있다. 트렌드 분석과 개인화 기능을 통해 더 효과적인 마케팅 콘텐츠를 제작할 수 있으며, 실시간 데이터 분석으로 콘텐츠 성과를 빠르게 파악하고 최적화할 수 있다.   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-06-04
인공지능 AI 에이전트 표준 프로토콜 MCP의 사용, 분석 및 개발
BIM 칼럼니스트 강태욱의 이슈 & 토크   MCP(Model Context Protocol)는 클로드(Claude)의 개발사인 앤트로픽(Anthropic)의 인공지능 AI 에이전트 표준 프로토콜이다. 이번 호에서는 최근 많은 이슈가 되고 있는 MCP의 사용 방법을 간략히 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. MCP의 개념   MCP는 애플리케이션이 LLM(대규모 언어 모델)에 컨텍스트를 제공하는 방식을 표준화한 개방형 프로토콜이다. USB-C 포트처럼, 다양한 도구와 데이터를 LLM에 연결하는 통합된 인터페이스 역할을 한다. LLM 기반 에이전트와 워크플로 구축을 지원하며 유연한 통합, 데이터 보호, 공급업체 간 전환성을 제공한다. MCP를 이용하면 AI 에이전트가 다양한 도구를 이용해 기존 LLM보다 훨씬 많은 일을 할 수 있다. 예를 들어, LLM에서 실시간 웹 자료를 이용해 여행 일정을 짜고, 마케팅 보고서를 만들며, 레빗(Revit)과 같은 3D 모델 콘텐츠를 프롬프트 엔지니어링으로 개발할 수 있다.   그림 2. AI 에이전트 기반 3D 모델링(United Top Tech 유튜브)   그림 3. MCP 도구 서버(https://mcp.so)   MCP의 개념 아키텍처 구조 MCP는 호스트-클라이언트-서버 구조로 구성되며, 로컬 및 원격 데이터를 안전하게 연결할 수 있는 아키텍처를 따른다. 호스트는 서버에서 제공해 주는 파일 관리, 웹 서칭, 계산 등의 도구를 연결해 LLM을 통해 추론, CoT, 도구 호출, 생성 등의 역할을 담당한다.   그림 4. MCP의 구조   각 구성요소의 역할은 다음과 같다. MCP 호스트는 MCP 프로토콜을 통해 서비스에 액세스할 수 있는 애플리케이션이다. 클로드 데스크톱 앱, AI 에이전트/CLI, 커서 IDE 등이 이에 해당하며, LLM(로컬 또는 원격)을 활용하여 다양한 작업을 수행한다. MCP 클라이언트는 MCP 서버와 연결하기 위해 호스트 애플리케이션과 통합된 클라이언트이다. MCP 서버는 MCP 프로토콜을 통해 특정 기능을 노출하는 응용 프로그램 또는 프로그램이다. 서버는 도커(Docker) 컨테이너, JVM, Node.js(UV/UVX) 프로세스에서 실행될 수 있으며, MCP 커뮤니티에서 제공하는 사전 구축된 서버를 활용할 수도 있다. 로컬 데이터 소스는 로컬 시스템에 존재하는 데이터베이스 또는 파일 시스템이다. 원격 서비스는 웹 API를 통해 액세스할 수 있는 깃허브(GitHub), 브레이브 서치(Brave Search)와 같은 외부 리소스이다. MCP를 이용하면 서버, 클라이언트, 로컬에 있는 파일, 폴더, 앱에 접근해 이를 LLM으로 컨트롤할 수 있다. MCP 구조를 구성하는 호스트와 서버는 다음과 같은 도구를 통해 구성해 활용한다. 호스트 : 클로드, 커서(Cursor), 챗GPT(ChatGPT), 깃허브 코파일럿(Github Copilot) 등 서버 : Model Context Protocol Servers(https://github. com/modelcontextprotocol/servers) MCP는 전형적인 호스트-서버 프로토콜(TCP/IP와 유사)을 따른다. 서버의 실행 모드는 SSE(server sent event)와 stdio(표준입출력) 모드가 있다. SSE는 네트워크로 연결해 도구를 호출할 수 있도록 한다. stdio는 로컬 자체에서 도구를 호출할 수 있도록 한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-06-04
[에디토리얼] 챗GPT 이후, 생성형 AI는 어디로 가는가
2022년 말, 오픈AI가 챗GPT(ChatGPT)를 세상에 내놓으며 촉발된 생성형 AI 열풍은 불과 2년 만에 '기술적 유행'을 넘어 ‘디지털 산업의 주류’로 자리잡았다. 지금은 단순한 대화형 챗봇의 시대를 지나, 생성형 AI가 실질적인 비즈니스 전환과 산업 혁신을 이끄는 'Post-ChatGPT' 시대로 접어들었다.   멀티모달 AI와 콘텐츠 제작의 판도 변화 초기 챗GPT는 텍스트 중심의 질의 응답 기능에 집중했지만, GPT-4o, 제미나이 2.0(Gemini 2.0), 클로드 3.7 소넷(Claude 3.7 Sonnet) 등 최신 모델은 음성, 이미지, 비디오까지 아우르는 멀티모달 기능을 갖춘 종합 AI로 진화하고 있다. 대표적인 예는 오픈AI의 소라(Sora)다. 2024년 12월 정식 출시되었으나 여전히 제한적 접근이 가능한 상황에서도, 텍스트 프롬프트만으로 현실감 있는 동영상을 생성하는 이 모델은 기존 콘텐츠 제작 방식에 상당한 변화를 가져오고 있다. 촬영 장비나 실제 인물이 없어도 아이디어만으로 결과물을 만들어내는 시대가 열린 것이다.   AI 에이전트와 킬러 앱의 실체화 최근 등장한 AI 에이전트는 단순 응답을 넘어 사용자의 의도를 파악하고 여러 단계를 자율적으로 실행한다. 예컨대 커서(Cursor)는 개발을, 노션 AI(Notion AI)는 문서 작업을, 세일즈포스의 에이전트포스(Agentforce)는 고객 응대를 지원하며 '디지털 동료'로 자리매김하고 있다. 이와 함께 주목받는 건 킬러 앱의 후보군이다. 단순한 자동화를 넘어 새로운 수요를 창출하는 서비스가 속속 등장하고 있다. 퍼플렉시티(Perplexity)나 클로드는 정보 탐색을 브리핑 수준으로 고도화했으며, 구글의 노트북LM(NotebookLM)은 개인화된 연구 도구로 각광받고 있다. 미드저니(Midjourney), 일레븐랩스(ElevenLabs), 깃허브 코파일럿(GitHub Copilot) 등도 창작과 개발 영역에서 실질적인 성과를 보이며 산업 내에서 필수 도구로 자리잡아 가고 있다.   생성형 AI, 기술을 넘어 산업으로 오늘날 생성형 AI는 기술의 범주를 넘어 산업의 중심축으로 진화 중이다. 마이크로소프트, 구글, 아마존은 생성형 AI 기능을 자사 클라우드와 통합해 플랫폼 생태계를 확장하고 있고, 엔비디아는 칩 설계와 AI 프레임워크를 결합해 독보적 위치를 강화하고 있다. 이와 함께 메타의 라마 3(Llama 3), 미스트랄 AI 등 오픈소스 생성형 AI 모델이 상용 모델에 버금가는 성능을 보이며 AI의 대중화를 견인하고 있다.   기술보다 중요한 것은 정의와 방향이다 생성형 AI의 미래는 '기술이 어디까지 갈 수 있는가'보다 '우리가 어디까지 허용하고, 어떻게 사용할 것인가'에 달려 있다. 지금 필요한 것은 무한한 가능성에 대한 찬사가 아니라, 책임 있는 활용에 대한 깊은 성찰이다. 챗GPT 이후의 생성형 AI 시대, 그 중심에는 기술이 아니라 인간의 판단과 정의가 서 있어야 한다.   ■ 박경수 캐드앤그래픽스 기획사업부 이사로, 캐드앤그래픽스가 주최 또는 주관하는 행사의 진행자 겸 사회자를 맡고 있다. ‘플랜트 조선 컨퍼런스’, ‘PLM/DX 베스트 프랙티스 컨퍼런스’, ‘CAE 컨퍼런스’, ‘코리아 그래픽스’, ‘SIMTOS 컨퍼런스’ 등 다수의 콘퍼런스 기획에 참여했고,행사의 전반적인 진행을 담당해 왔다. CNG TV 웨비나의 진행자 겸 사회자로, IT 분야의 취재기자로도 활동 중이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04
AWS-SAP, 생성형 AI 설루션 개발 위한 ‘공동 AI 혁신 프로그램’ 발표
아마존웹서비스(AWS)가 SAP의 연례 기술 행사인 SAP 사파이어 2025에서 SAP와 ‘공동 AI 혁신 프로그램(AI Co-Innovation Program)’을 발표했다. 이 프로그램은 파트너들이 고객의 실시간 비즈니스 과제를 신속하게 해결하는 데 도움을 주는 생성형 AI 애플리케이션 및 에이전트를 구축할 수 있도록 지원한다. 많은 조직에서 비즈니스 혁신을 위한 생성형 AI의 잠재력을 인식하고 있지만, 이를 어떻게 시작해야 할지 모르는 경우가 많다. 기업은 첨단 생성형 AI 기술과 주요 시스템의 ERP(전사적 자원 관리) 데이터를 결합함으로써 상당한 기업 가치를 창출할 수 있다. 예를 들어, 배송 경로 최적화와 공급망 운영에 대한 잠재적 영향을 예측하거나 정확한 재무 전망을 개발할 수 있다. 공동 AI 혁신 프로그램은 파트너가 ERP 워크로드에 특화된 생성형 AI 애플리케이션을 정의, 구축 및 배포할 수 있도록 지원하는 양사의 공통된 비전이 반영됐다. 이 프로그램은 SAP의 엔터프라이즈 기술과 AWS의 생성형 AI 서비스를 AI 전문가, 전문 서비스 컨설턴트, 설루션 아키텍트를 포함한 팀 등 양사의 전문가에 제공하여 고객의 구현 여정을 지원한다. 또한 산업별로 특화된 애플리케이션의 개발과 테스트, 배포를 지원하기 위한 전담 기술 리소스, 클라우드 크레딧 등이 포함될 예정이다. 또한 이 프로그램을 통해 파트너는 SAP BTP(SAP Business Technology Platform) 상의 SAP AI 파운데이션(SAP AI Foundation)에서 아마존 노바(Amazon Nova), 앤트로픽 클로드(Anthropic Claude)와 같은 대규모 언어 모델을 포함한 아마존 베드록의 최신 생성형 AI 도구 및 서비스를 사용하여 생성형 AI 애플리케이션을 신속하게 구축·확장할 수 있다. 이번 발표는 AWS와 SAP가 현대자동차그룹, 모더나, 취리히보험과 같은 고객이 SAP 워크로드를 현대화하고 AWS로 이전하여 클라우드의 가용성, 유연성 및 확장성을 실현할 수 있도록 지원해 온 작업을 확장한 것이다. AWS에서 SAP 워크로드를 실행하면 고객은 데이터를 생성형 AI 설루션과 결합할 수 있다. 액센츄어(Accenture)와 딜로이트(Deloitte)는 이 프로그램을 통해 AWS 및 SAP와 협력하는 첫 파트너로, 복잡한 과제를 해결하기 위한 생성형 AI 설루션의 개발 및 배포를 가속화하고 있다. AWS의 루바 보르노(Ruba Borno) 글로벌 스페셜리스트·파트너 부사장은 “AWS와 SAP의 오랜 파트너십은 고객이 클라우드 여정을 가속화하고 비즈니스 데이터에서 더 많은 가치를 창출하는 데 도움을 주었다. AWS와 SAP의 공동 AI 혁신 프로그램은 조직이 아마존 베드록(Amazon Bedrock)을 통해 주요 SAP 데이터를 분석 및 활용함으로써 생성형 AI 애플리케이션을 구축할 수 있는 보안과 유연성을 제공하는 중요한 진전”이라며, “이를 통해 고객은 수십 년간의 비즈니스 정보를 실행 가능한 인사이트로 전환하는 동시에 더욱 민첩하고 데이터에 기반한 조직으로의 전환을 가속화할 수 있다”고 말했다. SAP의 필립 헤르치히(Philipp Herzig) 최고 기술 책임자 겸 최고 AI 책임자는 “SAP는 AWS와의 공동 AI 혁신 프로그램을 통해 기업의 복잡한 운영 과제를 정확하고 신속하게 해결할 수 있도록 지원한다”며, “SAP BTP와 완전히 통합된 플랫폼과 SAP의 비즈니스 프로세스 전문성을 AWS의 종합적인 생성형 AI 기능과 결합함으로써, 파트너는 재무 이상 현상을 실시간으로 탐지하거나 공급망 장애 시 자동으로 최적화를 시행하는 등 주요 문제 해결에 특화된 AI 에이전트를 개발할 수 있다”고 말했다.
작성일 : 2025-05-22