• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 최적화"에 대한 통합 검색 내용이 3,047개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
CAD&Graphics 2025년 11월호 목차
  INFOWORLD   Editorial 17 AI와 CAE의 융합, ‘지능형 시뮬레이션’ 시대를 연다    Hot Window 18 말하면 설계하는 시대를 향해 – AI로 그리는 설계의 미래 / 한명기 21 리얼타임을 통한 디지털 트랜스포메이션의 진화 / 권오찬   Focus 26 AWS, 산업 혁신 이끄는 AI 에이전트 비전과 전략 공개 28 AEC/MFG 산업의 미래는? 지더블유캐드코리아, CAD/CAM/CAE 통합 플랫폼 비전 제시 30 유니티, “게임 엔진 넘어 AI·디지털 트윈 시대의 산업 기반 기술로”   Case Study 33 핵융합 실험을 위한 3D 시뮬레이션 플랫폼 개발 유니티로 구현한 핵융합 디지털 트윈, V-KSTAR 36 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전 / 이웅재 디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   People&Company 40  지더블유캐드코리아 최종복 대표이사 CAE·PDM까지 라인업 확장… ‘가성비’ 넘어 AI·성능으로 승부   New Product 42 HP Z2 미니 G1a 리뷰 / 이민철 BIM 엔지니어의 실무 프로젝트 성능 검증 50 3D 설계 환경에 통합된 전문 CAE 시뮬레이션 ZW3D Structural & Flow 54 접촉·포스 성능 향상 및 MFBD 후처리, 산업별 툴킷 기능 강화 리커다인 2026 57 실시간 3D 시각화 워크플로의 생산성 향상 트윈모션 2025.2 74 이달의 신제품   On Air 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 BIM의 융합, 건축 설계의 패러다임을 바꾸다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조 산업에서의 사이버 보안과 위기 상황 대응 방안 65 캐드앤그래픽스 CNG TV 지식방송 지상중계 시뮬레이션의 미래 : AI와 디지털 트윈이 주도하는 제조 혁신   Column 66 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 시대의 서바이벌 노트 : 인공지능 마인드세트와 원칙 69 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅲ – 본질에 집중하는 삶   76 New Books 78 News   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 81 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 코드로 강력한 수학 그래픽 애니메이션을 만드는 매님 84 새로워진 캐디안 2025 살펴보기 (12) / 최영석 유틸리티 기능 소개 Ⅹ 88 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (8) / 천벼리 아레스 커맨더의 동적 블록과 트리니티 블록 라이브러리   Reverse Engineering 91 시점 – 사물이나 현상을 바라보는 눈 (11) / 유우식 무엇을 믿을 것인가?   Mechanical 98 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (4) / 박수민 모델 기반 정의 개선사항   Analysis 104 앤시스 워크벤치를 활용한 해석 성공 사례 / 장형진 앤시스 LS-DYNA S-ALE를 활용한 폭발 성형 해석 방법 108 최적화 문제를 통찰하기 위한 심센터 히즈 (9) / 이종학 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 118 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (27) / 나인플러스IT 차세대 다중물리 CFD 설루션의 ‘4A’ 122 설계, 데이터로 다시 쓰다 (2) / 최병열 DX 시대에서 AX 시대로 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (4) / 윤경렬, 김도희 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 132 가상 제품 개발을 위한 MBSE 및 SysML의 이해와 핵심 전략 (1) / 오재응 디지털 모델 중심 시스템 설계로의 전환 전략   Manufacturing 138 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (2) / 차석근 산업 사이버 위협을 돌파하기 위한 IEC 62443   PLM 144 산업 디지털 전환을 가속화하는 버추얼 트윈 (8) / 이희라 부품 공용화 및 표준화를 위한 AI 기반 3D 형상 분석 설루션
작성일 : 2025-10-31
한국산업지능화협회, ‘SMATOF 2025’ 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회가 공동 주관하는 경남 대표 스마트팩토리 & 자동화산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일 개막했다. 협회는 올해 처음으로 ‘산업 AI 특별관’을 구성해, 산업 AI 기술과 플랫폼을 선도하는 기업들의 혁신 사례와 설루션을 선보였다. 이번 특별관에는 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 주요 기업들이 참여해 산업 AI 기반의 제조 혁신 사례를 공유했다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 주요 제조 관련 기관을 통해 약 70여 개사의 바이어가 방한했다. 행사 기간 동안 ▲1:1 수출상담회 ▲스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램 등을 통해 우리 기업들과의 글로벌 네트워킹과 협력 기회를 마련했다.     한편, 10월 30일 개최된 ‘2025 제조 AX 혁신 콘퍼런스’는 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래 모빌리티 분야를 중심으로, DX·AX 선도기업의 실제 기술 적용 사례와 성공 전략이 공유된다. 기조 세션에서는 ▲AWS가 ‘제조AX 추진 전략, 데이터에서 더 많은 가치를!’이라는 주제로, 최적의 제조 AX 성과를 달성할 수 있는 방안과 실제 사례를 소개했다. ▲유비씨는 ‘From DX to AX : 앞서가는 기업들이 선택한 무인화·자율화 디지털 트윈 전략’을 주제로, DX 단계를 넘어 자율화(AX) 시대를 여는 핵심 전략과 2차전지, 조선, 물류 등 실제 산업 사례를 소개했다. ▲B&R 인더스트리얼 오토메이션은 ‘AI와 자동화의 융합 : 제조 혁신을 가속하는 트랜스포메이션 전략’을 주제로, AI와 클라우드 협업을 통해 엔지니어링 환경을 혁신하는 방법을 제시했다. 이 밖에도 일반 세션에서는 온로봇 코리아, 넘프, 온스트림, 서버키트가 참여해 스마트 공장 설루션, 로컬 LLM 적용 사례, 공정 최적화 및 예지보전 등 제조 AI 적용 전략과 실무적 인사이트를 공유했다. 한국산업지능화협회 김태희 혁신기획센터장은 ‘이번 행사를 계기로 지역과 기업 간의 협력 네트워크를 강화하고, 산업 현장의 디지털 전환(DX) 및 인공지능 전환(AX)을 지속적으로 지원해 나가겠다’고 밝혔다.  한편, SMATOF는 내년부터 격년제가 아닌 매년 개최되며, 2026년에는 10월 14일~16일 창원컨벤션센터(CECO)에서 열릴 예정이다.
작성일 : 2025-10-30
CAE 컨퍼런스 2025, 11월 7일 수원컨벤션센터에서 개최 예정
CAE 컨퍼런스 행사장 모습(사진은 CAE 컨퍼런스 2024 전경) 국내 제조업의 디지털 전환을 이끌 ‘CAE 컨퍼런스 2025’가 오는 11월 7일(금) 수원컨벤션센터에서 열린다. 올해로 15회를 맞는 이번 행사는 ‘시뮬레이션의 미래: AI와 디지털 트윈이 주도하는 제조 혁신’을 주제로, AI(인공지능)와 CAE(Computer Aided Engineering)의 융합이 만들어내는 산업 변화와 최신 기술 트렌드를 조명한다. 이번 행사는 월간 캐드앤그래픽스가 주최하고, CAE 컨퍼런스 준비위원회가 주관하며, ‘제7회 스마트공장구축 및 생산자동화전(SMATEC 2025)’과 함께 개최된다.  올해 컨퍼런스에서는 디지털 트윈과 생성형 AI를 접목한 최신 시뮬레이션 기술이 집중적으로 다뤄진다. 앤시스코리아 강태신 전무는 ‘디지털 제조 혁신을 위한 Ansys End-to-End 솔루션’을 주제로, AI 기반 통합 시뮬레이션 전략을 통한 생산성 향상 방안을 제시한다. 연세대학교 이종수 교수는 ‘자율지능 에이전트를 위한 물리모델 기반 시스템엔지니어링 & 생성적 산업인공지능’ 발표를 통해, 분포 외(OOD) 환경에서도 신뢰성을 확보하는 모델기반 접근법을 소개한다. 나니아랩스 강남우 대표는 ‘생성형 AI에서 Agentic AI까지: 자율설계의 미래’를 주제로, 스스로 설계 의사결정을 내리는 Agentic AI 기술과 설계 자동화 사례를 공개한다. 피도텍 최병열 연구위원은 ‘RBDO, 데이터 시대에 무결점 설계를 향해’ 발표를 통해 신뢰도 기반 최적설계의 최신 적용 사례를 다룬다.  또한 메타리버테크놀로지 서인수 이사는 'GPU 기반 입자해석기술(samadii)을 활용한 반도체·디스플레이 응용 사례'를, AWS 전병승 솔루션즈 아키텍트는 ‘클라우드 기반 CAE 혁신’을 주제로 AI와 클라우드를 결합한 차세대 시뮬레이션 환경을 소개한다. 한국알테어 이승훈 본부장은 ‘CAE 최신 동향과 AI 기반 디지털 트윈 가속화’ 발표를 통해 Meshless·Multi-Physics·Cloud 기술 트렌드와 AI 가속화 사례를 발표한다. LG전자 문강석 책임은 ‘파우치형 배터리 실링 공정의 시뮬레이션 최적화’, 장일주 책임은 ‘TV 제품 CAE 자동화 및 AI 활용 사례’를 발표하며, 시뮬레이션이 제조 공정의 신뢰성과 효율성을 동시에 높이는 방법을 제시한다. 현대자동차 한만용 책임연구원은 ‘승객 모니터링과 인체모델의 융합을 통한 디지털 트윈 기술’을 통해 SDV(Software Defined Vehicle) 시대의 고객 중심 설계 혁신 사례를 소개한다. CAE 컨퍼런스 준비위원장 이종수 교수는 “생성형 AI와 물리기반 모델의 결합이 가속화되며, 신뢰성 확보와 시뮬레이션 자동화가 산업의 핵심 이슈로 부상하고 있다”고 강조했다. 그는 이어 “AI·MLOps·클라우드 기반 시뮬레이션이 주도하는 새로운 패러다임 속에서, 지속가능하고 효율적인 제조 혁신 방향을 논의하는 장이 될 것”이라고 덧붙였다. 이번 컨퍼런스에는 현대자동차, LG전자, 앤시스코리아, 피도텍, 나니아랩스, 메타리버테크놀로지, AWS, 한국알테어 등 주요 제조기업과 CAE 솔루션 기업이 참여해 최신 기술과 사례를 공유한다. 또한 SMATEC 2025 전시회와의 연계로 다양한 CAE·AI·디지털 트윈 솔루션을 현장에서 직접 체험할 수 있다. 사전등록은 CAE 컨퍼런스 공식 홈페이지(www.cadgraphics.co.kr/cae)에서 가능하다. 한편, 10월 20일에는 캐드앤그래픽스 지식방송 CNG TV에서 프리뷰 방송이 진행되어, 한국기계연구원 박종원 단장과 태성에스엔이 김지원 이사가 CAE 기술의 방향성과 AI 융합 트렌드를 소개했다.   CAE 컨퍼런스 2025 발표자 - 연세대 이종수 / 앤시스코리아 강태신 /  나니아랩스 강남우 / 피도텍 최병열 / 메타리버테크놀러지 서인수 / AWS 전병승 / 한국알테어 이승훈 / 현대자동차 한만용 / LG전자 장일주 / LG전자 문강석
작성일 : 2025-10-28
지스타소프트, ‘제품 출시 및 기술 심포지엄’에서 신제품 라인업 및 글로벌 전략 공개
지스타캐드(GstarCAD)를 국내 공급하는 모두솔루션은 지스타캐드 개발사인 지스타소프트(Gstarsoft)의 ‘제품 출시 및 기술 심포지엄’에 참가했다고 밝혔다. 이번 심포지엄에서는 지스타캐드 2026을 비롯해 아크라인.XP(ARCHLine.XP), 지스타-직셀 3D CAD(Gstar-ZIXEL 3D CAD) 등 지스타소프트의 주요 신제품과 AI 설계 기술이 공개됐다. 지스타캐드 2026은 대용량 도면을 즉시 열 수 있을 만큼 처리 속도와 성능이 향상되어, 핵심 작업 속도는 20%, 도면 열기 속도는 40% 향상됐다. 새롭게 추가된 매개변수 구속 조건(Parametric Constraints) 기능은 반복 설계나 규칙 기반 수정의 효율을 높여 설계 정확도와 생산성을 함께 개선했다. 또한 클라우드 기반 협업 및 멀티 플랫폼 지원을 강화해, 산업별 맞춤형 설계 생태계 구축이 한층 가속화되고 있다.   지스타소프트가 함께 공개한 아크라인.XP는 2D 도면 작성부터 3D 모델링, 기술 문서화, 시각 디자인까지 전 과정을 통합 지원하는 BIM 설계 및 시각화 설루션이다. 자체 BIM 엔진을 활용해 RVT, IFC, SKP, DWG/DXF 등 주요 포맷을 지원하며, CAD의 정밀성과 빠른 시각화를 결합해 효율적인 설계 환경을 제공한다. 또한 직셀 테크놀로지(Zixel Technology)와 협력을 통해 개발된 지스타-직셀 3D CAD는 클라우드 네이티브 기반의 차세대 3D CAD 플랫폼으로, 부품·조립·도면 관리 등 전 과정을 통합하고 설계 프로세스를 최적화했다. 함께 공개된 상호작용형 기술문서 설루션 3D 프로세스 마스터(3D Process Master) 및 PDM 시스템과 연계해 지능형·협업형 설계 생태계 구축을 완성했다. 이번 심포지엄에서는 설계 자동화와 생산성 향상을 위한 AI 기술도 소개됐다. AI 렌더링(AI Rendering), AI 스테어 디자인(AI Stair Design), AI 커스터머 서비스(AI Customer Service) 등 다양한 기능이 공개되었으며, 모델링 자동화·오류 검출·레이아웃 최적화·AI 기반 상호작용을 통해 설계 효율과 정확도를 높였다. 이를 통해 기업은 설계 비용 절감과 품질 향상이라는 실질적 효과를 기대할 수 있다.     한편 지스타소프트는 헝가리의 BIM 전문 개발사 캐드라인(CadLine) 인수, 국제 BIM 개발 자회사 지스타 호크3D(Gstar Hawk3D) 설립, 그리고 직셀 테크놀로지와의 차세대 3D CAD 공동 개발 협력 강화 등을 통해 글로벌 시장 확대에 속도를 내고 있다고 전했다. 현재 175개국, 23개 언어, 750개 이상의 글로벌 파트너 네트워크를 보유한 지스타소프트는 CAD·BIM 소프트웨어 분야에서 혁신과 지능화를 선도하는 글로벌 기술 기업으로 자리매김하고 있다.   모두솔루션은 이번 심포지엄에 대표이사, 지스타사업부 대표, 마케팅팀장을 포함한 핵심 인력이 참석해 지스타소프트의 신제품 전략과 기술 방향성을 직접 확인했다고 전했다. 모두솔루션 지스타사업부의 성기정 상무는 “이번 행사에서 지스타캐드만으로는 충족되지 않았던 3D 및 BIM 시장 영역에 제조, 건설, 건축 등 전 산업을 아우를 수 있는 설루션 포트폴리오가 강화되었다는 점이 인상적이었다”며, “앞으로 한국 시장에서 범용 CAD 설루션인 지스타캐드를 기반으로, 신규 3D·BIM 설루션의 시장 확대에도 주력할 계획”이라고 밝혔다. 또한 마케팅팀 한운선 팀장은 “AI는 이제 CAD 산업에서 선택이 아닌 필수 요소가 되었다”며, “이번 심포지엄을 통해 지스타소프트가 AI 기반 설계 보조 기능과 자동화 기술을 실질적으로 구현하고 있음을 직접 확인할 수 있었다”고 말했다. 이어 “지스타캐드 역시 자연어 기반 설계 지원 기능 등 AI 기술의 도입을 가속화하여, 사용자 경험을 혁신하는 방향으로 발전하길 기대한다”고 덧붙였다.
작성일 : 2025-10-23
PTC, ‘온쉐이프 AI 어드바이저’ 출시하면서 CAD AI 제품군 강화
PTC는 자사의 클라우드 네이티브 CAD/PDM 플랫폼인 온쉐이프(Onshape)를 위한 최신 AI 기술인 ‘온쉐이프 AI 어드바이저(Onshape AI Advisor)’를 발표했다. 온쉐이프 AI 어드바이저는 설계 환경에 직접 내장되어 사용자가 설계를 진행하는 동안 실시간 가이드를 제공한다. 이번 업데이트로 모든 사용자는 최신 AI 기능에 즉시 접근할 수 있게 됐다. 온쉐이프 AI 어드바이저는 메인 작업 공간 내에서 쉽게 접근할 수 있도록 새롭게 디자인된 인터페이스를 갖추고 있다. 사용자에게 단계별 권장 사항, 문제 해결 기능, 모범 사례를 모두 설계 환경 내에서 제공한다. PTC는 “아마존 베드록(Amazon Bedrock)을 기반으로 하는 온쉐이프 AI 어드바이저의 최신 릴리스는 제품 개발에 AI를 도입하려는 PTC의 비전을 실현하는 다음 단계”라고 소개했다. PTC는 온쉐이프를 사용하는 엔지니어의 생산성을 높이는 동시에 엔터프라이즈급 보안 및 데이터 보호를 유지하기 위해 에이전트 워크플로를 발전시키고 있다. 팀은 워크플로에 직접 내장된 지능형 설계 에이전트와 협력하여 모델 메타데이터와의 상호 작용을 지원받을 수 있다. 또한 모델 문제 해결 및 작업 지원, 피처스크립트(FeatureScript) 코드 생성, 반복 작업 간소화 등을 수행할 수 있다. 이에 더해, AI 지원 렌더링은 시각화 및 설계 검토 워크플로를 가속화할 수 있는 잠재력을 보여줄 수 있다.     PTC는 온쉐이프의 클라우드 네이티브 아키텍처와 광범위한 공용 모델 라이브러리를 통해 파일 기반 CAD 도구와 차별화되는 고급 AI 기능을 위한 기반을 제공한다는 전략을 소개했다. PTC는 자동화된 지오메트리 생성, 지능형 설계 최적화, 자체 AI 이니셔티브를 가진 고객을 위한 툴킷 등 AI 기능을 모색하고 있다. 온쉐이프는 3주의 릴리스 주기를 통해 모든 사용자에게 새로운 기능과 플랫폼 향상 기능을 제공할 뿐만 아니라, 고객이 자체 AI 프로젝트를 추진할 수 있는 도구도 제공한다. 개방형 API, 확장 가능한 클라우드 컴퓨팅 리소스, 광범위한 공용 데이터 라이브러리, 맞춤형 구성 도구를 앞세워 AI 모델을 쉽게 학습시키고 합성 데이터를 생성할 수 있게 돕는다. PTC는 이러한 강점을 바탕으로 빠르게 성장하는 기업들이 기존의 파일 기반 시스템보다 더 빨리 AI를 실험하고 채택하도록 돕는다는 계획이다. PTC의 데이비드 캐츠먼(David Katzman) 온쉐이프 및 아레나(Arena) 총괄 부사장은 “AI 어드바이저를 온쉐이프에 직접 내장한 것은 설계 인텔리전스의 새로운 시대를 여는 것”이라면서, “우리는 단순히 AI 기능을 출시하는 것이 아니라, AI가 설계 과정에서 신뢰할 수 있는 파트너가 되는 엔지니어링 문화를 형성하고 있다. 업계 유일의 클라우드 네이티브 CAD 및 PDM 플랫폼인 온쉐이프는 제품 개발에 AI를 통합하는 데 있어 업계를 선도할 수 있는 위치에 있다”고 전했다.
작성일 : 2025-10-21
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
어도비, 기업용 LLM 옵티마이저 출시… AI 기반 챗 서비스 및 브라우저 전반 가시성 제고
어도비가 ‘어도비 LLM 옵티마이저(Adobe LLM Optimizer)’의 정식 출시를 발표했다. 새로운 기업용 애플리케이션은 생성형 AI 기반 인터페이스가 빠르게 확산되는 시대에 기업이 브랜드의 연관성과 영향력을 확보할 수 있도록 지원한다. LLM 옵티마이저를 통해 기업은 생성형 엔진 최적화(GEO : Generative Engine Optimization)를 위한 포괄적인 설루션을 활용할 수 있다. 가령, AI 기반 트래픽을 모니터링하고 브랜드 가시성을 벤치마킹할 수 있으며, 자사 디지털 채널은 물론 브랜드가 인용되는 서드 파티 디지털 채널에서 발견 가능성을 향상시키기 위한 방법을 취할 수 있다. AI 기반 챗 서비스와 브라우저는 소비자들이 제품을 검색하고 조사하는 데 필수적인 툴이 되었다. 어도비의 최신 데이터에 따르면, 기업들이 디지털 존재감을 재정비해야 할 필요성이 그 어느 때보다 커지고 있다. 2025년 9월 기준, 어도비는 미국 소매 웹사이트로 유입된 AI 트래픽이 전년 대비 1100% 증가한 것을 확인했다. 생성형 AI 소스를 통한 방문자는 비 AI 트래픽(유료 검색, 제휴사 및 파트너, 이메일, 오가닉 검색, 소셜 미디어 등) 유입 대비 체류 시간 및 페이지 뷰 등과 같은 참여도는 12%,  전환율은 5% 각각 더 높게 나타났다. 이는 디지털 행동의 근본적인 변화를 시사하는 것으로, AI가 제품 검색 단계에서 더 많은 정보를 가진 소비자를 만들어내는 만큼 기업은 뒤처지지 않도록 대비해야 한다는 것이 어도비의 설명이다.     기업용 어도비 LLM 옵티마이저는 ▲AI 기반 트래픽, 인용 측정 및 벤치마킹 ▲가시성 향상을 위한 콘텐츠 및 코드 최적화 ▲비즈니스 가치 입증 등의 기능을 제공한다. LLM 옵티마이저는 AI 인터페이스가 사용자 질의에 대한 응답을 제공하는 데 활용하는 자사 콘텐츠를 식별할 수 있다. 이를 통해 LLM이 우선시하는 디지털 채널(예 : 특정 웹 페이지)을 파악하고 AI 추천의 변화를 모니터링할 수 있다. 또한 벤치마킹을 통해 가치가 높은 질의에서 경쟁사 대비 가시성을 평가할 수 있다. LLM 옵티마이저의 초기 고객 분석 결과, 80%가 AI 접점이 주요 제품 정보나 리뷰에 접근하지 못하는 문제를 안고 있었다. 이를 해결하기 위해 LLM 옵티마이저 내 추천 엔진은 브랜드 가시성 격차를 감지하고, 웹페이지와 FAQ 같은 자사 채널 및 위키피디아, 공개 포럼 등의 외부 채널 전반을 아우르는 개선 사항을 제안한다. 여기에는 콘텐츠 최적화뿐 아니라 누락되거나 잘못된 메타데이터 같은 기술적 수정 사항이 포함되며, LLM이 인식하지 못하는 웹 사이트 영역을 자동 감지해 콘텐츠 가시성을 높이는 조치도 해당된다. 이를 통해 팀은 한 번의 클릭으로 최적화 방안을 검토, 승인 및 배포할 수 있어 인사이트를 실질적인 성과로 전환할 수 있다.   또한, LLM 옵티마이저는 AI 가시성을 사용자 행동과 비즈니스 성과로 연결하는 기여도 기능을 제공한다. 이로써 참여도 및 전환율에 미치는 영향을 입증할 수 있고, 즉시 사용 가능한 리포트 기능을 활용해 조직 전반에 인사이트를 빠르게 공유할 수 있다. LLM 옵티마이저는 단독 애플리케이션으로 제공되며, 콘텐츠 관리 시스템인 어도비 익스피리언스 매니저 사이트(Adobe Experience Manager Sites)와 네이티브 통합된다. 또한 에이전트 투 에이전트(A2A) 및 모델 컨텍스트 프로토콜(MCP)과 같은 업계 표준을 지원해, 다양한 서드파티 설루션 워크플로와의 원활한 상호운용성을 제공한다. 어도비는 누구나 쉽게 AI 가시성 인사이트를 활용할 수 있도록 LLM 옵티마이저 기반 무료 크롬 확장 프로그램 ‘Is Your Webpage Citable?’도 출시했다. 이 도구를 통해 LLM이 웹사이트에서 인식하는 내용과 놓치는 부분을 확인할 수 있어,  AI 가시성의 숨겨진 격차를 발견할 수 있다. LLM 옵티마이저는 이 같은 기본 인사이트를 바탕으로 엔터프라이즈급 측정, 최적화 및 보고 기능을 포함한 종합 설루션을 제공한다. 어도비의 로니 스타크(Loni Stark) 익스피리언스 클라우드 전략 및 제품 부문 부사장은 “생성형 엔진 최적화는 경영진의 주요 관심사로 급부상하고 있으며, 선도 기업들은 이미 다양한 AI 채널에서 영향력을 구축하고 경쟁 우위를 확보하고 있다”면서, “어도비 LLM 옵티마이저는 자사 사이트 및 타 채널에서의 브랜드 성과 인사이트를 바탕으로 자동으로 최적화 조치를 취하는 즉각적인 가치를 제공함으로써, 기업이 급변하는 환경 속에서 두각을 드러낼 수 있도록 지원한다”고 전했다.
작성일 : 2025-10-17
유라, 캐드바이저에 배선도 및 작업지시서 자동 생성 기능 탑재
유라가 자사의 전장 설계 설루션 ‘캐드바이저(CADvizor)’에 제조 설계 자동화 시스템을 선보였다고 전했다. 차량 전장용 와이어링 하네스 생산 기업인 유라는 IT 사업 본부를 통해 제품 개발과 생산에 필요한 다양한 설루션을 자체 개발해 공급하고 있다. 그 중 캐드바이저는 전기 설계를 위한 ECAD 제품으로, 전장 와이어링 하네스 설계에 최적화된 설루션을 제공한다. 이번 제조 설계 자동화 시스템 도입으로 조인트는 이제 수동 배치 대신 3D 경로 데이터를 바탕으로 와이어 길이와 재질 단가를 함께 고려해, 총비용이 최소가 되는 지점에 자동 배치된다. 이 결과가 제조용 배선도에 자동 반영되고, 이어 작업지시서 생성까지 연결돼 설계부터 생산 준비까지의 흐름이 하나로 이어진다.     이번 캐드바이저의 고도화 효과에 대해 유라는 프로젝트 기준 수작업 192시간이 12시간으로 줄어 93.8%의 시간 절감이 기대된다고 설명했다. 현장에서는 자동 배치 후 간단한 검토·보정만으로 곧바로 출도가 가능하고, 원가 측면에서도 배치 최적화로 와이어 사용량이 감소해 10만 대 기준 9.0~10.5억 원 규모의 절감이 예상된다는 것이다. 캐드바이저는 특히 자동차 전장 하네스 개발·생산팀이 겪어온 빈번한 변경에 따른 배선도 재작업, 작업자별 편차, 작업지시 전달 지연 같은 문제에 대해 ‘배선도 자동 설계 − 원가 최소 배치 − 작업지시서 자동 생성’을 한 흐름으로 묶어 속도·일관성·비용 측면에서 동시에 풀어낼 수 있도록 했다. 유라는 배선도 자동 설계·원가 최소 배치·작업지시서 생성을 하나로 묶어 자동 배치 → 검토·보정 → 확정(출도)의 간결한 절차를 구축, 설계부터 생산 준비까지의 자동화를 강화했다고 밝혔다. 이어 2026년에는 회로 설계 단계에 AI 기반 자동 설계·원가 최적화·라이브러리 추천을 도입하고, 디지키·마우저 등 대형 부품 공급사 데이터와 연계해 부품 선택을 고도화함으로써 회로 설계 → 3D 경로 설계 → 제조 설계 → 작업지시서까지 전 과정을 완성할 것이라고 덧붙였다.
작성일 : 2025-10-15
인텔, 추론 최적화 데이터센터용 GPU 신제품 발표
인텔은 2025 OCP 글로벌 서밋에서, 자사 AI 가속기 포트폴리오에 추가되는 주요 제품인 인텔 데이터센터용 GPU 신제품 코드명 ‘크레센트 아일랜드(Crescent Island)’를 발표했다. 이 GPU는 증가하는 AI 추론 워크로드 수요를 충족하도록 설계되었으며, 고용량 메모리·에너지 효율적인 성능을 제공한다. 추론이 주요한 AI(인공지능) 워크로드로 자리잡으며, 강력한 칩 이상의 요소, 즉 시스템 차원의 혁신이 성공을 가늠하는 주요 요소가 되었다. 하드웨어부터 오케스트레이션까지, 추론은 다양한 컴퓨팅 유형을 개발자 중심의 개방형 소프트웨어 스택과 통합하는 워크로드 중심의 개방형 접근 방식을 필요로 하며, 이러한 접근 방식은 배포 및 확장이 용이한 시스템으로 제공된다. 인텔은 “인텔 제온 6 프로세서, 인텔 GPU를 기반으로 구축한 설루션을 통해 AI PC부터 데이터 센터, 산업용 에지까지 엔드 투 엔드 설루션을 제공할 수 있는 입지를 갖추고 있다”면서, “성능, 에너지 효율성, 개발자 연속성을 위한 시스템 공동 설계 및 OCP(Open Compute Project)와 같은 커뮤니티와의 협력을 통해 AI 추론이 가장 필요한 모든 곳에서 실행될 수 있도록 지원하고 있다”고 전했다. 코드명 크레센트 아일랜드로 명명된 새로운 데이터센터 GPU는 공랭식 엔터프라이즈 서버에 맞춰 전력 및 비용 최적화를 이루었으며, 추론용 워크플로에 최적화된 대용량 메모리 및 대역폭을 제공하도록 설계되었다. 와트당 성능(PPW)이 최적화된 Xe3P 마이크로아키텍처에 기반을 둔 크레센트 아일랜드 GPU는 160GB의 LPDDR5X 메모리를 탑재했다. 또한 ‘서비스형 토큰(Token-as-a-Service)’ 공급업체 및 추론 사용 사례에 적합한 광범위한 데이터 유형을 지원한다. 인텔의 이기종 AI 시스템을 위한 개방형 통합 소프트웨어 스택은 조기 최적화 및 이터레이션(iteration) 작업이 가능하도록 현재 아크 프로 B(Arc Pro B) 시리즈 GPU에서 개발 및 테스트 중이다. 새로운 데이터센터용 GPU의 고객 샘플링은 2026년 하반기에 제공될 예정이다. 인텔의 사친 카티(Sachin Katti) 최고기술책임자(CTO)는 “인공지능은 정적 학습에서 에이전트형 AI가 주도하는 실시간·전역 추론으로 전환되고 있다”면서, “이러한 복잡한 워크로드를 확장하려면 적절한 실리콘을 적절한 작업에 매칭하는 이종 시스템이 필요하다. 인텔의 Xe 아키텍처 데이터센터 GPU는 토큰 처리량이 급증함에 따라 고객이 필요로 하는 효율적인 헤드룸 성능과 더 큰 가치를 제공할 것”이라고 밝혔다. 
작성일 : 2025-10-15
지멘스-두카티, 모터사이클 기술 연구 개발 통합 및 최적화 위해 파트너십 확대
지멘스 디지털 인더스트리 소프트웨어가 두카티 코르세와의 기술 파트너십 협약을 향후 2년간 갱신한다고 발표했다. 더불어 지멘스 엑셀러레이터(Siemens Xcelerator) 플랫폼이 더욱 강력하고 안전하며 지속 가능한 모터사이클을 만들고자 하는 두카티의 사명을 달성하는데 어떠한 중요한 역할을 해왔는지 소개했다. 두카티의 연구개발팀이 채택한 지멘스 엑셀러레이터에는 다양한 소프트웨어와 기능이 포함된다. 폴라리온(Polarion) 소프트웨어는 요구사항 파악과 관리 기능을 제공하며, 디자인센터 NX(Designcenter NX) 소프트웨어는 혁신적인 설계를 지원한다. 팀센터(Teamcenter) 소프트웨어는 설계 및 엔지니어링 데이터를 두카티의 ERP(전사 자원 관리) 시스템에 연결하는 디지털 스레드 백본 역할을 수행함으로써 부서 간 협업과 중앙집중식 데이터 동기화를 가능하게 한다. 심센터(Simcenter) 소프트웨어와 심센터 테스트랩(Simcenter Testlab) 소프트웨어를 통해 두카티 코르세는 가상 시뮬레이션을 수행하고 디지털 시뮬레이션을 주말 레이스 동안 트랙에서 수집한 데이터와 물리적 테스트 과정과 통합할 수 있게 됐다. 아울러 지멘스의 설루션은 설계 및 엔지니어링을 생산 단셰로 연결하는 데에도 중요한 역할을 하는데, 지멘스의 파이버심(Fibersim) 소프트웨어는 복잡한 카본 파이버(탄소섬유) 부품의 개발 기간을 단축할 수 있도록 지원한다. 두카티는 모터사이클 레이싱 트랙에서 우위를 점유하는 것은 물론, 지멘스 엑셀러레이터를 통해 모터 레이싱과 일반 도로용 바이크 사업을 연결하고 있다. 팀센터는 이 둘을 하나로 연결하는 중추 역할을 하고 있다.     두카티 모터 홀딩의 피에트로 마파(Pietro Mappa) CAD/PLM 매니저는 “지멘스 엑셀러레이터 덕분에 레이싱 세계의 데이터를 일반 도로용 바이크 세계로 완벽히 공유해 개발 시간을 단축할 수 있었다. 일반 모터사이클과 레이싱 양쪽의 기계, 전자, 소프트웨어 팀은 협업과 데이터 공유를 위한 단일 도구를 갖게 됐다. 더 이상 부서 간 장벽은 존재하지 않으며, 트랙 엔지니어와 차량 설계 엔지니어가 함께 협업할 수 있는 단일 통합 환경을 구축하게 됐다”고 설명했다. 두카티 모터 홀딩의 마시밀리아노 베르테이(Massimiliano Bertei) CTO는 “지멘스와의 파트너십은 현재의 당면과제를 해결하는 데 도움이 됐을 뿐만 아니라 레이스 트랙과 글로벌 시장에 대한 앞으로의 도전에도 완벽하게 대비할 수 있는 기반을 마련해 줬다. 우리는 혁신을 기본 원칙으로 삼아, 항상 최고의 경쟁력을 유지할 수 있는 기술 파트너와 함께 꾸준히 성공을 이어나갈 준비가 돼 있다. 레이싱 세계에서는 마지막 순간까지 바이크를 수정할 수 있는 능력이 매우 중요하다. 예를 들어, 경기가 있는 주말에는 지멘스의 기술을 사용해 원격으로 새로운 부품을 설계한 다음, 이를 트랙으로 보내 3D 프린터로 출력할 수 있다”고 말했다. 지멘스 디지털 인더스트리 소프트웨어의 프랑코 메갈리(Franco Megali) 이탈리아, 이스라엘, 그리스 지역 부사장 겸 CEO는 “두카티와의 협업은 디지털 전환이 레이싱 트랙을 위한 최첨단 기술을 개발하고 이러한 인사이트를 더욱 광범위한 산업 분야에 신속히 적용하는 데 어떻게 기여하는 지를 보여주는 사례이다. 이는 여러 분야의 팀이 협업해 기업 전체에서 놀라운 속도로 혁신을 달성할 수 있도록 지원하는 지멘스 엑셀러레이터의 힘을 보여주는 완벽한 예시”라고 말했다.
작성일 : 2025-10-15