• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 진단"에 대한 통합 검색 내용이 1,031개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
한국산업지능화협회, ‘중견기업 디지털혁신형 사업전환 교육’ 개최
한국산업지능화협회는 10월 17일 서울 위플레이스 강남교육장에서 중견기업을 대상으로 ‘디지털혁신형 사업전환 교육’을 개최했다고 밝혔다. 이번 교육은 중견기업 핵심인재 육성 아카데미의 일환으로, 산업 구조 변화에 대응해 디지털 기술을 기반으로 한 기존 사업 고도화 역량을 강화하기 위해 마련됐다. 교육은 ▲산업전환 정책 동향과 구조적 사업전환의 필요성 ▲국내외 중견기업의 전환 성공사례를 중심으로 진행됐으며, ▲디자인 씽킹을 활용한 기존사업 재해석 ▲가치사슬 재편 ▲디지털 프로세스 개선 등 실무 중심의 전략을 중점적으로 다루었다. 이어 디지털 전환 수준 진단 워크숍을 통해 자가진단 툴을 활용한 조직 내 디지털 준비도 점검과 변화 인식 진단이 이뤄졌고, 데이터 기반 신사업 기획 세션에서는 참가자들이 자사 상황에 맞는 시장 탐색, 고객 분석, MVP 기획 등을 구체화해보는 실습도 진행했다. 또한 AI·IoT·RPA 등 기술 공급기업의 협력 사례와 정부 연계사업 활용방안이 공유되었으며, 참가자들은 자사 중심의 사업전환 전략을 수립하고 전문가의 1:1 피드백을 통해 실질적인 개선 방향을 모색했다.     한국산업지능화협회 추현호 센터장은 “이번 교육이 중견기업이 디지털 기술을 활용해 기존 사업을 고도화하고, 새로운 성장 방향을 모색하는 데 실질적 도움이 되었기를 바란다”며, “협회는 앞으로도 현장 중심의 교육과 연계를 통해 중견기업의 디지털혁신 역량 강화를 지속 지원하겠다”고 밝혔다. 한편 협회는 이번 교육에 이어 오는 10월 23일 ‘산업일자리전환 우수기업 벤치마킹’, 10월 24일 ‘중견DX 커넥티드 데이’를 개최해 중견기업 간 디지털 혁신성과 공유와 협력 네트워킹을 이어갈 예정이라고 전했다.
작성일 : 2025-10-17
슈나이더 일렉트릭, 실시간 모터 관리 설루션으로 해양산업 효율 향상 지원
슈나이더 일렉트릭이 조선·해양 산업의 설비 운용 효율과 안정성을 높일 수 있는 방법으로 자사의 실시간 모터 관리 설루션인 ‘테시스 테라(TeSys Tera)’를 제시했다. 조선·해양 산업에서 모터는 전기 에너지를 회전 및 기계 에너지로 변환하는 핵심 장비로, 전체 전력 소비의 약 80%를 차지할 만큼 에너지 소모가 큰 설비다. 때문에 모터의 안정적인 운전과 체계적인 유지관리는 산업 전반의 효율과 직결되며, 최근에는 친환경 규제 강화 및 스마트 선박 기술 도입에 따라 더욱 정교한 모터 관리 설루션의 필요성이 부각되고 있다. 슈나이더 일렉트릭의 테시스 테라는 이러한 산업 트렌드에 부합하는 디지털 기반의 고도화된 모터 관리 시스템이다. 테시스 테라는 지정된 통신 버스를 통해 모터의 상태, 운전 전류, 전압, 전력, 역률, 외부 냉각 팬 동작까지 실시간으로 수집·모니터링하며, 인더스트리 4.0 표준을 충족해 중앙 제어 시스템과의 연동을 지원한다. 슈나이더 일렉트릭은 “특히 모터 권선과 베어링, 본체 온도를 측정하는 외부 센서를 통해 과열이나 냉각 이상 등 이상 징후를 사전에 감지할 수 있어 치명적인 고장을 예방하고 유지보수 비용을 절감에도 기여한다. 또한 고조파까지 정밀하게 측정할 수 있는 기능은 슈나이더 일렉트릭의 고도화된 전력 관리 기술력을 잘 보여준다”고 소개했다.     진단 기능과 관련해서는 각 보호 기능별 트립(차단) 횟수를 개별적으로 기록하며, 최대 100개의 이벤트를 시간 정보와 함께 순차적으로 저장하는 FIFO(선입선출) 방식 로그 기능을 지원한다. 더불어 열 메모리, 선 전류, 접지 전류 등 20개의 상세 고장 로그를 기록해 고장 원인 분석과 시스템 개선에 유용한 데이터를 제공한다. 시동 전류 곡선은 최대 250포인트까지 기록할 수 있어, 실제 운전 조건에 따른 보호 설정(Trip Class 등)을 최적화할 수 있으며, 시간 기반의 로그 데이터는 공정 정지나 시스템 장애 발생 시 정확한 사건 순서(SOE)를 파악할 수 있게 해준다. 이는 24시간 가동이 필수적인 조선·해양 현장에서 더욱 높은 신뢰성과 운영 효율성을 확보하는 데 도움이 된다. 아울러 테시스 테라는 온도 센서를 활용해 모터 권선, 베어링, 본체 각각에 대해 개별적인 보호 기능을 제공해 과열로 인한 손상을 사전에 방지한다. 모든 보호 기능은 활성화/비활성화, 경보 및 차단 수준 설정, 자동 또는 원격 리셋 기능(시간 지연 포함) 등 사용자가 공정 환경에 맞춰 완벽하게 구성할 수 있다. 또 외부 디지털·아날로그 입력도 고장 조건으로 인식하도록 설정 가능하다. 사용자 친화적인 소프트웨어 인터페이스도 특징이다. 윈도우 기반의 다국어 지원 소프트웨어는 메뉴와 아이콘 중심의 직관적인 UI를 제공한다. 동일 기능 내 여러 데이터를 한 화면에서 탐색할 수 있도록 안내형 내비게이션을 지원함으로써, 복잡한 설정이나 진단 과정도 간소화했다. 또한 별도의 HMI(Human-Machine Interface)를 통해 현장에서 직접 제어기 구성 및 파라미터 변경이 가능하며, 제어 키패드가 내장된 HMI는 상태 확인과 제어 명령을 로컬에서 즉시 수행할 수 있어 네트워크 연결이 원활하지 않은 환경에서도 독립적인 운용이 가능하다. 슈나이더 일렉트릭 코리아 파워 프로덕트 사업부의 김은지 본부장은 “슈나이더 일렉트릭의 디지털 모터 관리 설루션 테시스 테라는 실시간 디지털 모니터링과 정밀한 보호 기능을 통해 모터의 성능 저하와 고장을 사전에 방지함으로써 조선 및 해양 산업의 안전성과 생산성을 높이는 필수적인 설루션으로 주목받고 있다”고 말했다. 한편 슈나이더 일렉트릭 코리아는 오는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 테시스 테라를 선보일 예정이라고 전했다.
작성일 : 2025-10-16
[케이스 스터디] 확장현실로 건설 장비의 사용 교육과 운영 효율 강화
포지FX가 VR 훈련 설루션을 만드는 방법   콘크리트 레벨링 기술 기업인 소메로 엔터프라이즈(Somero Enterprises)는 포지FX(ForgeFX)와 파트너십을 맺고 S-22EZ 레이저 스크리드 장비용 몰입형 가상 현실(VR) 설루션으로 작업자 교육에 혁신을 가져왔다. 콘크리트 전문가를 위한 이 몰입형 교육 설루션은 높은 교육 비용과 물류 문제를 줄이는 동시에 작업자에게 안전하고 참여도가 높은 실습 학습 환경을 제공한다. 소메로와 같은 제조업체는 유니티(Unity)의 기술 및 XR 인터랙션 툴킷(XR Interaction Toolkit)과 같은 툴을 활용하여 교육 프로세스를 간소화하고, 운영자의 숙련도를 개선하며, 운영상의 제약을 줄일 수 있다. ■ 자료 제공 : 유니티 코리아     오늘날 건설 업계에서 숙련된 인재를 찾는 것은 인력 부족으로 인해 프로젝트가 중단될 위기에 처한 것과 마찬가지로 벅찬 일이다. 2024년 미국 건설업협회에 따르면, 현재 건설업체의 79%가 숙련된 인력을 구하기 어려워 프로젝트 일정과 비용에 영향을 받고 있다고 한다. 전미 주택 건설업자 협회에 따르면 2031년까지 인력의 41%가 은퇴할 것으로 예상되는 등 인력 고령화도 이러한 격차의 원인 중 하나이다. 건설업계의 기술 인력 부족에 대한 스마트 설루션의 필요성이 그 어느 때보다 커졌다.   기존 교육의 과제 소메로는 고품질의 평탄한 콘크리트 바닥을 만들기 위한 핵심 도구인 S-22EZ 레이저 스크리드 기계를 비롯한 레이저 유도 콘크리트 스크리드 장비 전문 업체이다. 이들의 목표는 높은 출장 비용, 장비의 마모, 물류의 한계 등 글로벌 수용 능력의 제약을 해결하면서, 안전하고 효율적으로 운영자를 교육할 수 있는 VR 시뮬레이터를 개발하는 것이었다. 교육생들은 물리적 기계 없이도 컨트롤을 다루고 공간 역학을 이해하는 경험이 필요했다. 콘크리트 평탄화 기술을 마스터하려면 단순한 도구가 아니라 수년간의 신체적 연습을 통해 연마한 기술을 전수받아야 한다. 소메로의 데이브 라사카(Dave Raasakka) 글로벌 고객 지원 담당 부사장은 “콘크리트는 부패하기 쉬운 제품이다. 일단 땅에 떨어지면 한 시간 내에 완료해야 한다. 그렇지 않으면 문제가 생길 수 있다”고 설명했다. S-22EZ 레이저 스크리드 장비와 같은 중장비 교육에는 일반적으로 기계 자체, 레이저 트랜스미터와 같은 특수 장비, 적절한 콘크리트 형태와 타설 조건을 갖춘 전용 교육 공간 등 광범위한 물리적 자원이 필요하다. 이러한 실제 시나리오는 종종 기계의 마모를 포함하여 높은 비용을 수반하며 장비 가용성, 악천후, 높은 부품에 접근하는 동안의 미끄러짐 및 추락과 같은 위험과 같은 요인으로 인해 방해를 받을 수 있다. 6개의 글로벌 서비스 센터와 연간 수백 명의 교육생을 보유한 소메로 콘크리트 인스티튜트(Somero Concrete Institute)는 이러한 물류, 재무 및 안전 문제를 효과적으로 해결할 수 있는 확장 가능한 설루션이 필요했다. 소메로는 그들의 요구 사항을 충족하고 제약 조건을 해결하는 일관된 고품질 학습 경험을 제공하기 위해 대체 교육 설루션으로 포지FX 시뮬레이션(ForgeFX Simulations)을 선택했다. 실제 기계로 작업하는 경험을 모방하는 데 필요한 촉각적 피드백과 시각적 사실감을 포착하는 등 레이저 스크리드의 작동을 정확하게 재현하는 몰입형 교육 시뮬레이터를 설계해야 하는 복잡한 과제에 직면했다. 유니티 기반의 이 설루션은 S-22EZ의 복잡한 컨트롤을 복제하여 교육생에게 가상 환경에서 실제와 같은 실습 경험을 제공하므로 학습 과정에서 물리적 장비가 필요하지 않다.     사실감을 높여주는 기술/기능 유니티의 XR(확장현실) 툴은 S-22EZ 레이저 스크리드 VR 시뮬레이터를 구동하여 사실적인 몰입형 3D 환경에서 장비 동작을 정밀하게 재현할 수 있다. 유니티 클라우드(Unity Cloud)의 예외 보고 기능은 실행 가능한 스택 추적을 제공하여 최소한의 수동 개입으로 QA 및 이슈 추적을 지원한다. 성능의 경우, 유니티의 CPU 및 GPU 프로파일러를 사용하여 병목 현상을 진단하고 프레임 속도를 최적화하여 원활하고 반응이 빠른 VR 경험을 보장한다. 이러한 도구는 특히 물리 계산에서 비효율적인 부분을 파악하고 해결하여, 원활한 상호 작용과 안정적인 시뮬레이션을 유지하도록 안내한다. XR 인터랙션 툴킷(XRITK)은 가상 상호작용을 간소화하는 직관적인 크로스 플랫폼 설루션으로, 소메로 트레이닝 시뮬레이터의 몰입도와 운영 효율을 높인다. 유니티는 XRITK를 사용하여 VR 릭을 관리함으로써 메타 퀘스트 3에서 컨트롤러와 고급 핸드 트래킹 기능을 지원하여 교육생의 몰입도를 극대화하는 원활하고 반응이 빠른 교육 환경을 만들 수 있었다. 이 설정은 스냅 회전, 순간 이동, 오브젝트 조작과 같은 인터랙션 구성 요소를 표준화하여 개발 시간을 최소화하고 향후 하드웨어 및 소프트웨어 업데이트에도 시뮬레이터가 적응력을 유지할 수 있도록 한다.   ▲ 충돌기가 작동하는 모습을 보여주는 개발자 화면   유니티의 잡 시스템을 사용하면 메인 스레드의 성능에 영향을 주지 않고 보조 스레드에서 콘크리트를 사실적으로 시뮬레이션할 수 있다. 트리거 충돌기를 바운딩 박스로 사용하여 의도적이든 비의도적이든 콘크리트에 영향을 줄 수 있는 요소(예 : 스크리드 헤드 또는 기계 타이어로 인한 요소)를 정의했다. 여기에는 강체(rigid body)가 없고 충돌(collision)에 대한 레이어 마스크가 아무것도 포함하지 않도록 설정되어 있으므로, 메인 스레드에서 최소한의 작업이 수행되고 있다. 작업 시스템을 사용하면 메인 스레드 성능에 영향을 주지 않고 독립형 퀘스트 헤드셋에서 최대 4개의 스레드를 동시에 실행할 수 있다.(메인 스레드에서는 콘크리트에 영향을 줄 수 있는 기계 조각을 나타내는 바운딩 박스의 위치를 추적한다.)   ▲ 핸드 트래킹을 통해 기계 컨트롤과 현실감 있게 상호작용할 수 있다.   유니티는 다음을 활용한다. 유니티 터레인(Unity Terrain)을 활용하여 콘크리트 표면을 사실적으로 렌더링하고 텍스처를 블렌딩하여 타설 전반에 걸쳐 다양한 마감과 일관성을 반영한다. 유니티 잡(Unity Job)은 커스텀 콘크리트 시뮬레이션의 계산을 오프로드하여 쟁기나 진동기와 같은 콘크리트 충돌기가 콘크리트의 매끄러움이나 거칠기에 미치는 영향과 표면에서 콘크리트를 밀고 당기는 방식을 결정하는 커스텀 콘크리트 시뮬레이션에 배포된다. ‘러프’ 및 ‘스무스’ 텍스처가 있으며, 기본값은 러프이다. 지형 높이 맵의 각 지점에서 얼마나 부드러운 텍스처를 표시할지에 대한 알파 값을 설정한다. 메인 스레드에는 작업에 쓰이는 하이트맵 및 알파 맵 데이터와 일치하도록 지형을 업데이트하는 두 가지 빠른 함수가 있다. 이러한 시스템은 사용자가 콘크리트 작업의 시각적, 촉각적 뉘앙스를 경험할 수 있는 몰입형 가상 환경을 강화하여 복잡한 건설 활동을 충실하게 재현함으로써 교육 효과와 사용자 참여를 높인다.   ▲ 워크어라운드 검사 강의 시연하기   고객 피드백 파일럿 단계가 끝날 무렵, 소메로는 VR 교육을 마친 후 22EZ 레이저 스크리드에서 작업자 기술이 향상되었음을 보여주는 두 가지 사례 연구를 수행했다. 사례 1 : 비사용자 직원이 VR 교육을 받고 성공적으로 기계 사용법을 시연할 수 있었다. 사례 2 : 교육을 받은 비사용자를 대상으로 설문조사를 실시한 결과, 기계 작동에 자신감이 생겼다고 응답했다.   시뮬레이터의 향후 계획 보다 효과적인 교육 소메로 S-22EZ 고급 레이저 스크리드 VR 교육 시뮬레이터는 건설 교육 기술의 도약을 상징한다. 이 몰입형 교육 플랫폼은 기존 교육 방법의 문제를 해결함으로써 전 세계 운영자에게 높아진 정확성, 접근성 및 참여도를 제공한다. 복잡한 실제 시나리오를 시뮬레이션하고 환경에 미치는 영향을 줄이며 기술 유지를 강화하는 기능을 갖춘 이 시뮬레이터는 작업자가 최적의 성과를 낼 수 있도록 준비할 뿐만 아니라 소메로가 더 높은 효율과 ROI를 달성할 수 있도록 지원한다.   시장 도달 범위 확대 이 시뮬레이터는 유통업체가 대규모 기계를 원격으로 대화형으로 시연할 수 있는 기능을 제공함으로써, 소메로의 글로벌 시장 진출에 긍정적인 영향을 미칠 것으로 보인다. 소메로는 판매 주기를 가속화하고, 고객의 의사 결정을 개선하며, 글로벌 입지를 확장하는 동시에 기존 장비 쇼케이스와 관련된 물류 비용과 환경에 미치는 영향을 줄일 수 있는 잠재력을 가지고 있다.   체계적인 수업 그 이상 소메로는 시뮬레이터 2단계에 대한 추가 테스트를 진행하면서 3단계 로드맵을 구상하고 있다. 다양한 슬럼프 수준이나 건조 단계와 같은 요소를 재현하는 고급 콘크리트 시뮬레이션, 구조화된 수업 단계를 넘어, 교육생이 가상 기계와 자유롭게 상호작용할 수 있는 샌드박스 스타일의 수업 등이 잠재적인 집중 분야이다. 포지FX와 소메로는 유니티 플랫폼에서 혁신을 거듭하면서, 제조 업계에서 혁신적인 교육 경험을 제공할 수 있는 가능성을 높이고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
슈나이더 일렉트릭, ‘코마린 2025’에서 조선·해양 산업을 위한 설루션 소개
슈나이더 일렉트릭 코리아가 2025년 10월 부산 벡스코에서 열리는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가한다고 밝혔다. 1980년에 첫 선을 보인 이래 올해로 24회째를 맞이하는 코마린은 대한민국 최대 규모의 조선·해양·에너지 산업 전문 전시회로 자리 잡았다. 올해는 ‘에너지 전환과 탄소중립’이라는 공동 과제에 대해, HD현대, 삼성중공업, 한화오션 등 대한민국을 대표하는 조선 기업을 비롯해 스웨덴, 네덜란드 등 15개국 이상이 국가관 형식으로 참가해 첨단 기술을 선보일 예정이다. 슈나이더 일렉트릭은 이번 코마린 2025에서 ‘넷제로 시대의 항해, 디지털 전환과 회복탄력성을 위한 임팩트’라는 주제를 기반으로, 조선·해양 산업이 당면한 핵심 과제인 탄소중립(Net-Zero), 디지털 전환(Digital Transformation), 운영 회복탄력성(Operational Resilience)에 대응할 수 있는 포괄적 설루션을 전시한다. 슈나이더 일렉트릭은 글로벌 시장에서의 경험과 노하우를 바탕으로, 해양 산업의 고객들이 효율과 안정성, 지속가능성을 동시에 확보할 수 있도록 지원할 예정이다.     먼저 탄소중립 존에서는 슈나이더 일렉트릭의 IoT 기반 디지털 설루션인 에코스트럭처(EcoStruxure)를 활용한 마린 설루션을 그래픽월을 통해 만나볼 수 있다. 이 그래픽월에서는 해양 업계의 에너지 효율을 높이는 슈나이더 일렉트릭의 다양한 제품군과 통합 에너지관리 서비스를 한 눈에 확인 가능하다.   또한 슈나이더 일렉트릭의 통합 전력 관리 플랫폼인 ‘에코스트럭처 파워 모니터링 엑스퍼트(EcoStruxure Power Monitoring Expert : PME)’가 소개된다. PME는 선박과 해양 플랜트의 전력 소비를 실시간으로 모니터링하고, 에너지 사용 패턴을 분석해 효율을 극대화할 수 있는 디지털 플랫폼이다. 이를 통해 운영자는 불필요한 에너지 낭비를 줄이고, 탄소 배출을 최소화할 수 있다. 특히 IMO(국제해사기구)의 환경 규제가 강화되는 상황에서, PME는 조선·해양 기업이 국제 규제 기준을 충족하면서 동시에 경쟁력을 유지할 수 있도록 돕는다. 운영 회복탄력성 존에서는 안정적인 전력 공급과 긴급 상황 대응을 위한 핵심 설루션이 전시된다. 차폐형 고체 절연 시스템에 기반한 ‘프림셋(PremSet)’은 차세대 고압 (MV) 스위치 기어로, 가압 발생 시에도 사고가 발생하지 않으며 물이 프림셋 주변으로 차올라도 정상적인 운전이 가능하다. 또한 해양 산업의 까다로운 환경에서도 안정적인 전력을 보장하는 단상 UPS 설루션도 만나볼 수 있다. 이는 선박 및 통신 장비의 연속 가동을 지원하며, 소형 설비에도 최적화된 전원 보호 기능을 제공해 해양 산업 전반에 걸쳐 신뢰성 있는 운영을 가능하게 한다. 디지털 전환 존에서는 대표적으로 ‘마스터팩트MTZ 액티브(MasterPacT MTZ Active)’를 선보인다. 마스터팩트MTZ 액티브는 즉각적인 대응 능력을 갖춘 디지털 차단기로, 고장이나 이상 상황 발생 시 신속히 문제를 차단해 선박 및 해양 플랜트의 연속 가동을 지원한다. 디지털 기반의 아키텍처를 통해 원격 진단과 업그레이드가 가능해 유지관리 효율성 또한 높다는 것이 슈나이더 일렉트릭의 설명이다. 이와 함께 지난 6월에 출시한 프로페이스(Pro-face)의 HMI ‘GP6000’도 확인 가능하다. GP6000은 산업 자동화 현장에서 설비 상태를 실시간으로 모니터링하고 제어하는 HMI 설루션으로, 다양한 화면 사이즈와 모듈형 구조, 높은 해상도 및 디스플레이 품질을 바탕으로 최적의 구성과 성능을 제공하는 최신형 인터페이스 제품이다. 고객의 요구에 맞춰 어드밴스드 모델과 스탠다드 모델 두 가지로 구분되어 있으며, 어드밴스드 모델은 올해 말 출시될 예정이다. 슈나이더 일렉트릭 코리아 권지웅 대표는 “조선·해양 산업은 글로벌 에너지 전환과 탄소중립 실현을 위한 중요한 산업군이며, 무엇보다 안정적이고 효율적인 운영이 요구되는 분야”라며, “슈나이더 일렉트릭은 글로벌 리더십과 현지 경험을 기반으로 디지털 전환, 에너지 최적화, 운영 회복탄력성을 실현할 수 있는 임팩트 설루션을 제공함으로써 고객이 지속가능성과 경쟁력을 동시에 확보하도록 지원하겠다”고 말했다.
작성일 : 2025-09-23
민병수 엠아이티 대표 별세
민병수 엠아이티 대표   민병수 엠아이티 대표가 8월 23일 별세했다. 향년 69세. 고 민병수 대표는 현대중공업 해양사업본부 해양정보부장을 역임한 뒤, 2018년 1월 스마트팩토리 솔루션 전문 기업 엠아이티를 창업했다. 그는 기업부설연구소를 설립하고 XR 기술 연구를 통해 산업용 XR 플랫폼을 개발, 기업들의 디지털 역량 강화와 경쟁력 향상에 크게 기여했다. 특히 2021년에는 한국신지식인협회로부터 '중소기업 분야 신지식인'으로 선정되기도 했으며, 같은 해 PTC코리아와 산업 설비 원격 진단 및 제어를 위한 XR 기반 통합 플랫폼 개발 MOU를 체결하는 등 활발한 활동을 펼쳤다. 민병수 대표는 미국 캐롤라인대학교에서 경영학 박사학위를 받았으며, 서울대학교 공과대학 미래융합기술최고위과정(FIP)을 졸업하는 등 학업에도 정진했다. 고인은 2022년 과학기술정보통신부가 주최한 '제23회 소프트웨어산업인의 날' 기념식에서 대한민국 소프트웨어산업 발전 유공자로 선정되어 과학기술정보통신부 장관상을 수상했다. 당시 엠아이티가 개발한 산업용 XR 플랫폼의 혁신성과 산업 발전에 대한 공로를 인정받았다. 그는 평소 "대기업에서 오랜 시간 배우고 익힌 지식과 경험을 중소기업의 시스템을 혁신하여 기업들이 선진화할 수 있는 마중물이 되겠다"는 포부를 밝히며 끊임없는 기술 개발과 인재 발굴에 힘썼다. 또한 메타버스 시장 진출을 통해 글로벌 ICT 기업으로 도약하겠다는 계획을 세우는 등 미래를 향한 비전을 제시해왔다. 고인의 빈소는 울산영락원 100호(1층)에 마련됐다.  빈소 정보 및 상주 확인은 링크에서 확인 가능하다.
작성일 : 2025-08-24
유니티 6.2 정식 출시… “합리적이고 효율적인 개발 생태계 확장”
유니티가 유니티 6의 두 번째 업데이트인 ‘유니티 6.2(Unity 6.2)’ 정식 버전을 출시했다. 이번 업데이트는 데이터 중심의 안정성 개선, AI 기반 생산성 극대화, 최신 플랫폼 개발 환경 강화 등 개발자들이 한층 더 합리적이고 효율적으로 창작할 수 있는 생태계 확장에 초점을 뒀다.     먼저, 유니티는 개발자가 유니티 생태계 전반에서의 데이터 수집, 관리, 사용 등을 파악하고 통제할 수 있도록 새로운 ‘개발자 데이터 프레임워크(Developer Data Framework)’를 제공한다. 이 프레임워크는 각 프로젝트 내에서 데이터가 활용되는 방식을 개발자에게 투명하게 보여주고, 세부적으로 직접 제어할 수 있는 기능을 지원한다. 또한 다양한 기기에 걸쳐 프로젝트의 성능과 안정성을 실시간으로 모니터링하는 데 도움을 주는 ‘향상된 진단 기능’을 제공한다. 충돌 및 ANR(Application Not Responding) 등에 대한 문제를 빠르게 진단하고, 심층적인 데이터를 제공함으로써 더 원활한 게임 플레이와 플레이어 유지율 향상에 도움을 준다. 유니티 6.2부터 에디터에 통합된 ‘유니티 AI(Unity AI)’는 번거로운 작업 자동화, 애셋 생성 등 개발 워크플로 간소화 및 가속화를 지원한다. 컨텍스트 기반 ‘어시스턴트(Assistant)’ 기능을 통해 개발자들은 자세한 내용을 설명하지 않고도 프로젝트 애셋을 프롬프트로 드래그하면 게임 오브젝트, 스크립트, 프리팹 등에 대해 신속한 지원을 받을 수 있다. 스크립트나 오류 메시지 등 문제를 더 쉽게 파악하고 해결하는 ‘콘솔 오류 디버그’ 기능도 제공한다. 아울러 오브젝트 생성, 애셋 배치, 신 설정 자동화를 비롯해 스프라이트, 텍스처, 애니메이션, 사운드 등 다양한 플레이스홀더 애셋을 워크플로 내에서 매끄럽게 생성하고 활용할 수 있다. 일정 기준 이상의 광원이나 리지드보디(Rigidbody, 게임 개체의 물리적 속성을 시뮬레이션하는 데 사용되는 구성 요소)가 없는 오브젝트를 손쉽게 검색하고, 이름·레이어·컴포넌트 등을 일괄 수정 및 정리하는 것도 가능하다. 현재 유니티 AI는 베타 버전으로 제공하며, 개발자 커뮤니티 피드백을 바탕으로 더욱 고도화해 나갈 예정이다. 유니티 6.2는 ‘안드로이드 XR 패키지(Android XR package)’를 통해 관련 애플리케이션 제작에 필요한 안정적이고 완성도 높은 기반을 제공한다. 핸드 메시를 시각화해 오클루전에 활용할 수 있으며, URP(Universal Render Pipeline)에서 후처리 효과에 대한 GPU 부하를 줄여 색 보정 및 비네팅과 같은 이미지 효과를 보다 실용적으로 구현할 수 있다. 또한 디스플레이의 주사율을 동적으로 조정하는 기능을 지원해 더욱 매끄러운 성능을 제공한다. 이밖에 ▲맞춤형 에디터 기반 그래프 툴을 구축할 수 있도록 지원하는 API 프레임워크 ‘그래프 툴킷’ ▲자동으로 LOD(Level of Detail)를 생성해 반복 수정 작업을 최소화하는 ‘메시 LOD’ ▲몰입형 XR 및 게임 환경을 위한 사용자 인터페이스(UI)를 직접 렌더링할 수 있는 ‘월드 스페이스 UI’ 등의 기능도 제공한다.
작성일 : 2025-08-20
엔텍시스템, AI 기반 모터 진단 솔루션으로 산업 예지보전 선도
전력 계측 및 AI 기반 모터 진단 솔루션 전문기업, 엔텍시스템   산업 현장에서 고장이나 생산이 중단될 수 있는 상황을 미리 예측해, 장비 가동 중지 등의 사태를 막는 예지보전의 중요성이 높아지고 있다. AI 기반 산업 진단 기술 전문기업 엔텍시스템(www.nteksys.com)은 전력 계측과 모터 진단 분야에서 20년 이상 축적된 기술력으로 산업 설비의 안전성과 효율성을 높이는 데 앞장서고 있다.   엔텍시스템 김영식 부사장   산업 현장의 숨은 위험 신호, AI가 먼저 알아챈다 2002년 설립된 엔텍시스템은 전력 계측 및 AI 기반 모터 진단 솔루션을 전문으로 제공하는 기술 기업이다. 전기 신호 분석과 머신러닝 기술을 융합해 설비의 이상을 조기에 탐지하고, 운영 최적화를 유도하는 ‘AI 예지정비’ 분야에서 독자적 위치를 구축해왔다. 주요 제품으로는 ▲멀티채널 미터(GEMS 3500 시리즈) ▲AI 모터 진단 시스템(GEMS 5500 시리즈) ▲전기실 온라인 진단 시스템(EMS) 등이 있다. 이 중 멀티채널 미터는 수배전반의 인입 및 분기 회로를 동시에 고정밀 측정하여 에너지 효율과 전력 품질 감시에 활용되고, AI 모터 진단 솔루션은 전기 신호를 분석해 이상 징후를 조기에 탐지하고 머신러닝 기반 예지보전으로 설비 안정성 및 운영 효율을 향상시킨다. 또 전기실 온라인 진단 시스템은 실시간 전력 감시와 변압기 진단을 가능케 하여 원격 모니터링과 이상 감지에 강점을 보이고 있다. 삼성전자·LG전자·포스코 등 100여 개 이상의 기업과 150여 개 공장에 솔루션을 공급해 온 엔텍시스템은  2024년에는 미국 메릴랜드 법인을 설립하며 본격적인 글로벌 시장 공략에도 나섰다. 이와 함께 CE, UL, FCC 등 국제 인증을 확보하여 글로벌 경쟁력을 강화하고 있다. 산업AI EXPO에서 혁신적인 AI 진단시스템과 산업현장 적용 사례 소개 이 회사는 9월 3일부터 5일까지 코엑스 마곡에서 열리는 2025 산업AI EXPO에 참가해 대표 제품인 ‘SV500’ 모터 진단 시스템과 클라우드 기반 SaaS 서비스를 선보이며, 산업계의 스마트 유지보수 전환을 본격화할 계획이다. 엔텍시스템이 산업AI EXPO 2025 참가를 결정한 배경에는 “AI 기술의 실효성과 방향성을 업계에 선도적으로 제시하고자 하는 의지”가 있다. “국내 산업 AI 생태계 확산을 위한 첫 이정표로서, AI 기술의 방향성과 산업 현장 적용 사례를 업계에 선도적으로 알릴 수 있는 중요한 기회라고 판단해 산업AI EXPO에 참가하게 되었다”는 엔텍시스템 관계자는 “이번 전시를 통해 이미 여러 산업 현장에서 적용 사례를 갖춘 솔루션인 SV500의 기술 신뢰성과 실제 효과를 널리 알리고 싶다”고 전했다. 엔텍시스템이 주력으로 전시할 SV500은 24비트 해상도와 8kHz 샘플링의 전류·전압 실시간 파형 분석을 기반으로 인버터와 모터 전기 신호를 정밀 분석한다. 또 디지털 트윈 기술을 활용한 이상 탐지와 토크·고조파 분석, 웹기반 대시보드 시각화로 현장 상태를 실시간 확인할 수 있다. 이와 함께 이 회사의 전시부스에서는 클라우드 기반 실시간 모터 진단 SaaS 서비스도 선보일 예정이다. 이 서비스는 모터 이상 탐지 및 진단, 시공간 제약 없이 진단 현황 확인, 원격 실시간 모니터링 기능을 제공하여 현장 유지보수 업무의 효율성을 극대화한다. “산업AI EXPO는 산업계와 AI 기술이 실질적으로 만나는 통합 플랫폼으로서 의미가 크다”는 김영식 부사장은 “제조, 에너지, 인프라 분야에서 디지털 전환이 가속되는 가운데, 기업 간 AI 적용 경험과 니즈를 공유하고 협력할 수 있는 소통의 장이 될 것”이라고 덧붙였다. 특히 엔텍시스템은 이번 EXPO 참가를 통해 ‘스마트 유지보수의 새로운 기준’을 제시하며, 다양한 산업 고객 및 파트너와 실질적인 비즈니스 협업을 확대하는 계기로 삼을 계획이다. 이를 위해 전시 기간 내 SV500 실물 데모를 운영하여 방문객들이 센서 설치와 웹 대시보드를 직접 체험하도록 할 예정이다. 맞춤형 AI 유지보수 솔루션으로 산업계 표준 제시 엔텍시스템의 향후 목표는 명확하다. 산업 현장에서 발생할 수 있는 다양한 모터 고장 패턴을 AI가 정확히 예측할 수 있도록 머신러닝 및 딥러닝 알고리즘을 고도화하고, 고객 맞춤형 유지보수 기능을 강화해 신뢰도 높은 예지보전 시스템을 완성하겠다는 것이다. 특히 사용자 맞춤 알람 임계값 설정 기능, 모바일 최적화 UI·UX 개선, 클라우드 기반 플랫폼 강화 등을 통해 산업 전반에 AI 유지보수 솔루션을 표준화해 나갈 계획이다. 더불어, 일본, 베트남, 중동 등지로의 해외 진출도 확대하며 글로벌 SaaS 플랫폼 기업으로의 도약을 준비 중이다.  
작성일 : 2025-08-09
제조에 특화된 디지털 트윈 플랫폼, Smart Digital Twin
주요 디지털 트윈 소프트웨어 제조에 특화된 디지털 트윈 플랫폼, Smart Digital Twin 개발 및 공급 : 엠아이큐브솔루션, www.micube.co.kr    엠아이큐브솔루션은 제조 현장에서 생성, 수집되는 정보, 즉 데이터를 통합하고 지능화하는 스마트팩토리 및 자율제조 솔루션을 개발, 공급하고 있다. 당사는 제조실행시스템(MES) 구축을 주요 사업 영역으로 하여 2010년에 설립했다. 이후 전기∙전자, 반도체, 디스플레이, 이차전지, 기계∙설비, 자동차, 제철, 금속, 화학, 식품 등 주요 산업의 디지털 전환(DX)에 적용되는 설비 온라인 솔루션, 설비종합효율(OEE, Overall Equipment Effectiveness) 관리 솔루션, 제조 물류 자동화 솔루션, 제조 특화 AI 및 디지털 트윈 플랫폼을 차례로 자체 개발, 출시하였다. 1. 주요 특징 Smart Digital Twin(스마트 디지털 트윈)은 제조 데이터 통합 및 실시간 처리를 통해 자동화된 데이터 파이프라인을 구축하여 가상 제조 현장에서의 공정, 설비 운영 시뮬레이션을 지원하는 제조 특화 디지털 트윈 플랫폼이다. 자동화된 가상 운영 시나리오를 수립하고 검증, 최적화하여 강건한 제조 현장 운영 시스템을 구축하는데 활용하며, 디지털 트윈 모델의 효율적 생성과 배포, 운영을 지원하는 다양한 가상 모델 개발 및 운영 도구를 제공한다. 기간 시스템, 외부 솔루션과의 연계를 통해 신속하고 정확한 업무 실행 및 안정성을 확보하여 실제 공장 운영 및 모니터링, 검증과 진단, 예측 업무를 수행한다. 2. 주요 기능 실시간 데이터 기반의 3D 인터랙티브 뷰 계층 구조를 활용하여 공장 및 설비의 운영 현황을 모니터링하고, 이를 바탕으로 공정 설비의 안정적인 운영과 예지 보전을 위한 AI 플랫폼 연계 방안을 지원한다. 수립된 다양한 가상 시나리오를 통해 최적의 공장 운영 방식을 도출하고, 동적∙정적 변경 사항을 적용하며 What-If 시뮬레이션을 통해 도출된 여러 방안을 검증하고 적용한다. 제조 현장의 핵심 성과 지표(KPI) 분석을 위해 수요, 품질, 안전 등의 예측 분석 결과를 시각화하고, 제조 환경의 조건 변화를 반영하여 최적의 생산 지표를 도출하며 데이터 기반 의사결정을 지원하는 종합 대시보드를 제공한다. 3. 도입 효과 디지털 트윈 플랫폼의 현장 적용을 통해 공장 라인 증설, 설비 신규 투자 등에 앞서 최적의 운영 방안을 가상 시뮬레이션 기반으로 미리 검증해 볼 수 있어 불필요한 투자에 따른 낭비를 예방하고 구축 기간을 단축한다. 제조 데이터의 실시간 수집, 처리, 분석 기반의 신속한 문제 파악과 예측, 의사결정 지원 시스템을 제공하는 국제 표준(ISO 23247) 기반 자율형 공장 구축 및 운영의 핵심 플랫폼이다. 4. 주요 고객 사이트 2022년 출시 이후 삼성SDI, 삼성전자, HL만도, 현대아이에이치엘, 동서기공, 조선내화, 전남테크노파크 등 전기∙전자, 이차전지, 자동차, 세라믹 등 주요 산업 내 제조 대기업과 기관에 적용 및 확산 중이다.      상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-08-09