• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 제5회 매트랩 대학생 AI 경진대회"에 대한 통합 검색 내용이 1,260개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
매스웍스, 생성형 AI로 엔지니어링 생산성 향상 및 개발 가속화 지원하는 ‘매트랩 코파일럿’ 출시
매스웍스는 엔지니어, 과학자, 연구원의 생산성을 높이고 개발을 가속화하는 매트랩(MATLAB)용 생성형 AI 어시스턴트 ‘매트랩 코파일럿(MATLAB Copilot)’을 출시했다. 매트랩 및 시뮬링크 릴리스 2025b(Simulink Release 2025b, R2025b)에서 제공되는 매트랩 코파일럿은 매트랩 환경 내에서 코딩, 디버깅, 학습을 간소화하도록 설계되었다. 매트랩 코파일럿은 개발 워크플로 전반에 걸쳐 사용자를 지원하는 지능형 기능을 제공한다. 사용자는 매트랩 코파일럿 채팅(MATLAB Copilot Chat)에서 질문을 하고 매스웍스 문서와 실제 코드 예제를 기반으로 답변을 받아, 매트랩 환경을 벗어나지 않고도 신뢰할 수 있고 상황에 맞는 정보에 빠르게 접근할 수 있다. 사용자가 매트랩 편집기(MATLAB Editor)를 사용할 때 코파일럿이 자동 완성과 코드 예측을 제안하거나 자연어로 작성된 설명으로부터 코드를 생성하여, 더 빠른 개발과 더 효율적인 프로토타이핑을 가능하게 한다. 매트랩 코파일럿은 익숙하지 않은 코드를 설명하고, 주석을 추가하며, 오류 설명을 명확히 설명하고, 매트랩 테스트(MATLAB Test)를 사용하여 테스트를 생성하기도 한다. 이러한 기능은 디버깅 시간을 줄이고, 코드 품질을 향상시키며, 팀 간 더 빠른 온보딩과 협업을 지원한다.     매스웍스 엔지니어링 부서의 로이 루리(Roy Lurie) 부사장은 “매트랩 코파일럿은 사용자가 프로그래밍이 아닌 엔지니어링과 연구에 집중할 수 있도록 지원한다는 매스웍스의 오랜 접근 방식을 이어간다”면서, “기존 매트랩 워크플로에 생성형 AI를 직접 통합함으로써 매트랩 코파일럿은 매트랩과 시뮬링크를 엔지니어링 혁신 플랫폼으로 강화하여, 수백만 명의 엔지니어와 과학자가 세계에서 가장 혁신적인 엔지니어링 시스템을 설계하고 구축할 수 있도록 지원한다”고 말했다. 매스웍스의 세스 디랜드(Seth DeLand) 생성형 AI 부문 수석 제품 마케팅 매니저는 “매트랩 코파일럿은 엔지니어, 과학자, 연구원들이 이미 익숙하고 신뢰하는 매트랩 환경 안에서 그대로 활용할 수 있도록 설계되었다”면서, “이는 코드를 더 빠르게 작성할 수 있도록 지원할 뿐만 아니라 전체 개발 프로세스를 더 직관적이고, 협력적이며, 궁극적으로 더 강력하게 만드는 것이다. 앞으로 사용자들이 매트랩 코파일럿을 어떻게 활용할지 기대된다”고 말했다.
작성일 : 2025-10-13
무엇을 볼 것인가?
시점 – 사물이나 현상을 바라보는 눈 (10)   지난 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일을 다양한 사례를 들어가며 조금 특별한 시각으로 바라보았다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등에 관해서 소개했다. 이번 호부터는 3회에 걸쳐서 ‘무엇을 볼 것인가?’, ‘무엇을 믿을 것인가?’, ‘가설, 모델, 이론의 설득력의 시대성’의 이야기를 다룰 예정이다. 이번 호에서는 그 첫 번째 이야기로 ‘무엇을 볼 것인가?’에 관해서 생각해 보고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 일제 강점기에 촬영된 청계천의 수위를 관찰하던 수표교의 모습   하천의 수위 측정 수표교는 하천의 수위를 측정할 수 있도록 눈금(수표)이 새겨져 있는 청계천에 있던 다리이다.(그림 1) 세종 2년(1420년)에 만들어질 당시는 그곳에 마전(馬廛)이 있어 마전교라 불렸다. 세종 23년(1441년) 다리 밑을 지나는 개천(청계천)에 흐르는 수위를 측정하기 위해서 수표를 세웠다. 이후부터 수표교로 부르게 되었으며, 주변에 있는 마을은 수표동이라고 부르게 되었다. 수표는 하천의 수위를 과학적, 계량적으로 측정할 수 있는 기구로, 측우기와 함께 세종 때 만들어진 대표적인 과학 기기의 하나로 꼽힌다. 수표교는 현재의 서울특별시 종로구 수표동에 있었으나, 1958년 청계천 복개 공사로 장충단공원에 옮겨졌다. 2005년 청계천 복원 당시 원래 자리에 다시 놓으려고 했으나, 복원된 청계천의 폭과 수표교의 길이가 맞지 않아 옮겨지지 못했다.(그림 2) 대신 그 자리에는 임시 다리가 설치되어 있다. 원래의 수표교는 동대문구 청량리동에 있는 세종대왕기념관으로 이전되었다. 수표교에서 오른쪽으로 다섯 번째 다리의 이름이 오늘날의 마전교로 되어 있다. 초기의 수표는 청계천의 마전교 서쪽과 한강변에 세워졌다. 물속에 기둥을 꽂을 수 있도록 구멍을 판 받침돌을 놓고 그 구멍에 나무 기둥을 세웠다. 나무 기둥에는 눈금을 새겨 수위를 알아볼 수 있도록 하였으나, 나무로 만든 수표는 쉽게 망가져 15세기 성종 때 돌기둥으로 교체하였다. 아마도 물이 차면 부력으로 떠내려가기도 쉽고 물에 젖었다가 마르기를 반복하는 부분은 쉽게 썩지 않았을까 싶다. 돌기둥으로 만들어진 수표 양면에는 1척에서 10척까지 눈금을 새겼으며, 3, 6, 9척의 위치에는 ○표를 새겨서 각각 갈수(渴水), 평수(平水), 대수(大水)를 판단하는 기준으로 삼았다. 6척 안팎의 물이 흐르면 보통의 수위이고, 9척 이상이 되면 위험 수위로 개천의 범람 징후를 미리 헤아릴 수 있도록 한 것이다. 영조 36년(1760년)에 다리를 수리하면서 돌기둥에 ‘庚(경)·辰(진)·地(지)·平(평)’이라는 글씨를 새겨 물 높이를 4단계로 측정하였다. 순조 때 개천을 다시 준설할 때 새로운 수표를 세웠으며, 지금 남아 있는 수표는 이때 만들어진 것이다.   그림 2. 복원된 청계천의 22개 다리 중에서 옛 모습을 찾지 못한 수표교(빨간 별표로 표시된 다리)   강우량을 측정하는 측우기 현존하는 세계 최고의 강우량 측정기구도 우리나라가 가지고 있다. 국보로 지정된 ‘공주 충청감영 측우기’이다.(그림 3) 헌종 3년(1837년)에 제작된 공주 충청감영(금영) 측우기는 농업을 위한 조상의 과학적 발명과 구체적 실행을 증명해주는 유물로 매우 가치가 크다. 금영 측우기는 조선 시대 충남지역 감독관청이었던 충청감영에 설치되었던 것으로, 1915년경 일본인 기상학자 와다 유지가 국외로 반출한 것을 1971년 일본으로부터 환수한 것이다. 현재 서울 기상청 박물관에 보관되어 있다. 조선 시대에는 중앙정부에서 규격이 같은 측우기를 제작해 전국의 감영에 보냈기 때문에, 여러 점이 만들어졌을 것으로 추정된다. 다만 지금까지 남아 있는 것은 금영 측우기가 유일하다. 빗물을 그릇에 받아 강우량을 재는 측우기는 조선 세종 때에 처음 만들어진 후 여러 차례 다시 만들어졌다는 기록은 남아 있으나, 현재 실물로 남아 있는 것은 헌종 3년(1837년)에 만들어진 이 측우기뿐이다. ‘조선왕조실록’ 세종 23년(1441년) 8월 18일의 기록에는 서운관(기상관측 기관)에 대(臺)를 설치해 빗물을 받아 강우량을 측정했으며, 이듬해인 1442년 5월 8일에는 측정방식이 미진해 다시 원칙을 세웠다고 한다. 이때 세운 원칙대로 만들어진 것이 금영 측우기이다. 강우량 측정의 표준이 필요함을 절감하고 표준을 정해서 시행한 셈이다. 오늘날의 표준화 작업과 품질관리가 실행된 구체적인 사례이다. 도량형 표준이 측우기에도 적용된 셈이다. 금영 측우기의 제작 시기와 크기 등은 바깥 면 가운데쯤에 새겨진 명문(銘文)을 통해 알 수 있다. 명문에 따르면 이 측우기는 헌종 3년(1837년)에 만들었으며 높이는 1자(尺) 5치(寸), 지름 7치, 무게 11근으로 제작되었다. 상·중·하단의 3개의 금속 부품으로 구성되었으며, 상부가 약간 넓고 하부가 약간 좁게 만들어져 서로 끼워서 조립하는 형태의 구조이다. 금속 부품을 끼우는 접합부는 대나무 마디처럼 두껍게 만들어 부품의 모양이 변형되지 않도록 고안된 형태이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
데이터 분석 로코드 설루션을 배워보자 Ⅱ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (3)   지난 호에서는 로코드 분석 솔루션인 KNIME(나임)에 대해 알아보고 전력 판매량(Electric Power Sales) 예측에 대한 따라하기를 진행해 보았다. KNIME을 통해 ‘데이터 불러오기’와 ‘데이터 병합’에 대한 분석을 진행하였다. 이를 통해 KNIME이 어떻게 동작하는지 그리고 어떻게 데이터 분석을 시작할 수 있는지 대략적으로는 파악할 수 있었을 것으로 생각하고 있다. 이번 호에서는 지난 호에 이어서 나머지 전력 판매량 예측 따라하기 부분을 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   규칙 엔진과 데이터 전처리   그림 1   우선 진행해야 할 부분은 Rule Engine(규칙 엔진)이다. Rule Engine이 무엇이고 어떤 데이터 노드인지 알아보자.   그림 2   KNIME 왼쪽 상단의 info 탭을 클릭해서 Rule Engine에 대한 설명을 찾아보도록 하자. 대략의 내용을 읽어보면 Rule Engine은 사용자가 정의할 수 있는 규칙(Rule) 목록을 설정하는 기능인데, 해당 규칙에 매칭이 이루어지면 칼럼(Column)이 새롭게 추가된다. 여기서 규칙은 해당 라인(line)별로 정의되어야 하며, 해당 칼럼은 $name$로 표현되어야 한다.   그림 3   Rule Engine을 통해 시간대별 발전량에서 발전량이 있는 경우를 1, 없는 경우를 0으로 분류하고 ‘is_y_positive’라는 칼럼을 생성하였다. Rule은 $9H$ > 0 => 1로 설정하면 되고, Append column = is_y_positive로 입력한다.   그림 4   노드를 실행(Excute)해 보면 ‘is_y_positive’라는 칼럼이 추가된 것을 알 수 있다.   그림 5   이제 is_y_positive 컬럼이 추가되었으니, 우선 발전량이 있는 경우와 없는 경우로 나누어 각각 얼마나 되는지 카운트해보자.(Value counter 노드)   그림 6   노드를 실행(Excute)해보면 <그림 7>과 같이 발전량이 없는 경우가 12건이 있고, 발전량이 있는 경우는 1448건이라는 것을 알 수 있다.   그림 7     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
프로세스 자동화 Ⅲ - 유로 형상 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (8)   이번 호에서는 파이프 유로 형상 설계 최적화를 위해 NX CAD와 심센터 스타-CCM+(Simcenter STAR-CCM+)를 사용하여 CAD 치수 변수를 수정하며 유동해석의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다. ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   이번에 사용할 심센터 스타-CCM+는 2006년에 첫 버전이 공개되었으며, 통합된 환경과 클라이언트-서버 접근 방식은 당시의 CFD 해석 방법에 새로운 패러다임을 제시했다. 첫 출시 이후 주요 기능이 빠르게 확장되었는데, 대표적으로 코드의 기반이 되는 ‘메시 파이프라인(mesh pipeline)’과, 산업용 CFD 최초로 다면체(polyhedral) 메시 기술을 도입한 점이 큰 변화였다. 2010년에는 컴퓨팅 하드웨어의 가격이 저렴해지는 반면, 라이선스 비용이 하드웨어 활용의 제약이 된다는 시장의 목소리를 반영해 ‘파워 세션(Power Session) 라이선스’를 도입하였고, 이를 통해 하나의 고정 비용으로 무제한 코어에서 대규모 병렬 해석을 수행할 수 있게 되어, 소프트웨어 사용 비용과 하드웨어 활용 간의 한계를 완전히 해소하는 사용 환경을 마련하였다. 2012년에는 업계 최초로 ‘오버셋 메시(overset meshes)’ 기능을 도입해 실제 현장에서 움직이는 격자 기반 해석을 더욱 직관적으로 구현할 수 있게 되었고, 2015년에는 산업용 CFD를 넘어 유체-구조 연성 등 진정한 다중물리 해석을 지원하기 위해 유한요소(finite elements) 해석 솔버를 통합했으며 전자기 해석까지 기능을 확장했다. 오늘날 스타-CCM+는 자동화 기능, 설계 탐색 도구, 포괄적인 다중물리 해석, 그리고 산업을 선도하는 데이터 분석 및 협업형 가상현실 환경까지 지원하며 그 성장을 지속하고 있다. 그 외에도 다양한 혁신적 진보를 이루었지만, 이 내용만으로도 지난 짧은 기간 내 스타-CCM+가 얼마나 빠르게 발전했는지 잘 보여준다고 할 수 있다.   그림 1   프로세스 자동화 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시 설계 및 분석에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 다이렉트 인터페이스 포털(Direct Interface Portal)이 필요하다. HEEDS(히즈)에서는 심센터 스타-CCM+를 위한 포털(Portal)을 제공하므로 빠른 설정이 가능하다. 그림 2는 HEEDS에서 제공하는 다양한 설루션의 다이렉트 인터페이스 포털 목록이다.   그림 2   <그림 3>은 파이프 유로 설계 최적화 자동화 워크플로의 주요 단계와 각 툴의 역할을 요약한다.   그림 3   첫째, NX_CAD 포털에서는 HEEDS가 NX CAD의 파트 파일(*.prt)을 NX Expressions를 활용하여 변수(치수 등)를 자동으로 수정한다. 수정된 파이프 형상이 파라솔리드(parasolid) 형식(*.x_t)으로 내보내지는데, 이 파일에는 해석에 필요한 Named Face(경계면) 정보를 포함한다. 둘째, STAR-CCM+ 포털에서는 스타-CCM+ 해석 파일(*. sim)이 전달받은 신규 형상(*.x_t)을 읽고, 메시 업데이트와 경계조건 수정이 자동으로 적용된다. 이후 유동 해석이 수행된 뒤, 결과값은 HEEDS가 자동 추출한다. <그림 3>은 NX CAD와 스타-CCM+ 간의 입력/출력 파일 흐름, 형상 전송, 변수-응답 데이터 매핑 관계를 시각적으로 정리한다. 이처럼 각 단계를 자동화로 설정하면 설계 변수 변경부터 해석 실행 및 결과 평가까지 전체 최적화 과정을 빠르고 효율적으로 반복할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
매스웍스, ETRI의 직교형 레이더 신호 개발에 FPGA 워크플로 지원
매스웍스는 한국전자통신연구원(ETRI)이 매스웍스의 매트랩(MATLAB)과 시뮬링크(Simulink)를 활용하여 직교형 레이더 신호 송수신용 실시간 신호처리 모듈을 개발했다고 발표했다. 이 모듈은 내셔널인스트루먼트(NI) FPGA(Field-Programmable Gate Array) 기반 레이더 에뮬레이션 동작을 가속화한다. ETRI 입체통신연구소의 전파연구본부는 소출력 레이더 시스템에서 동작하는 직교형 레이더 신호 송수신이라는 복잡한 신호 처리 과제를 해결하기 위해, 매트랩과 시뮬링크를 활용한 모델 기반 설계(MBD) 접근 방식을 도입했다. 이를 통해 알고리즘을 시스템 수준에서 설계하고 검증한 뒤 자동 HDL 코드 생성과 하드웨어 구현까지 가능해졌으며, FPGA 기반 실시간 처리 시스템의 개발 효율성과 구현 정확도를 동시에 향상시켰다. 실시간 신호처리 모듈을 개발하는 과정에서 ETRI 연구팀은 그래픽 프로그래밍 환경을 이용한 기존의 CPU 기반 실행 방식만으로는 정해진 시간 내에 다중 신호를 동시에 분석하고 처리해야 하는 성능 요구사항을 충족할 수 없음을 확인했다. 신호 간섭을 줄이기 위한 정합 필터 뱅크(matched filter bank)와 같은 병렬 처리 알고리즘은 실시간 실행이 필요했고, 직교 신호 수신기는 파이프라인 구조로 구현되어야 했다. 이에 연구팀은 이러한 성능 목표 달성을 위해 NI FPGA로의 전환이 필수라고 판단했다. 그러나 매트랩 알고리즘을 HDL 코드로 변환하는 과정은 비효율적이고 오류가 발생하기 쉬웠으며, 특히 알고리즘이 변경될 때마다 수동으로 코드를 업데이트해야 하는 문제가 있었다.  또한, 알고리즘과 HDL 코드 간의 구조적 불일치로 인해 디버깅 과정이 복잡해졌다.     이러한 문제를 해결하기 위해 연구팀은 알고리즘을 시뮬링크 모델로 변환한 후 HDL 코더(HDL Coder)를 통해 HDL 코드를 자동 생성하는 워크플로를 선택했다. 이러한 접근 방식을 통해 아키텍처, 고정소수점 데이터 타입, 구현 방법 등 FPGA 구현을 위한 다양한 설계 옵션을 쉽게 평가할 수 있었다. 또한 매스웍스의 HDL 베리파이어(HDL Verifier)를 활용해 생성된 HDL 코드와 원본 알고리즘의 동작을 코시뮬레이션을 통해 비교함으로써, 시스템 수준에서의 동작 검증과 성능 테스트를 효과적으로 수행했다. ETRI는 기존의 수동 코딩 워크플로 대비 HDL 코드 구현과 검증에 소요되는 시간과 노력을 약 50% 절감할 수 있었다. 더 나아가, 알고리즘 설계자와 하드웨어 엔지니어 간의 워크플로를 통합하여 반복 작업을 줄이고 인적 오류를 최소화했다. ETRI는 머신러닝 기반 알고리즘이 포함된 향후 프로젝트에서도 동일한 방식으로 HDL Coder를 활용한 자동 코드 생성을 적극 적용할 계획이다. 한국전자통신연구원 전파연구본부의 책임연구원인 김형중 박사는 “매트랩 펑션 블록(MATLAB Function blocks)을 사용하면 주요 알고리즘 코드 대부분을 별도 작업 없이 그대로 사용할 수 있어 특히 유용하다”면서, “HDL 전문 지식이 없어도 HDL 코더를 사용해 알고리즘을 HDL 코드로 쉽게 변환할 수 있었다”고 설명했다. 매스웍스코리아의 정승혁 애플리케이션 엔지니어는 “한국전자통신연구원의 직교형 레이더 신호 개발에서복잡한 신호처리 알고리즘을 FPGA 하드웨어로 효율적으로 구현하는 데 매트랩과 시뮬링크가 핵심 역할을 했다. 이번 성과는 매스웍스의 모델 기반 설계 접근법이 한국의 첨단 연구개발 프로젝트에서 실질적인 혁신을 가능하게 한다는 것을 보여준다”면서, “매스웍스는 앞으로도 한국의 선도적인 연구기관들과 지속적인 협력을 통해 차세대 기술 개발에 적극 지원할 것”이라고 말했다.
작성일 : 2025-09-25
앤시스, ‘시뮬레이션 월드 코리아 2025’ 콘퍼런스에서 최신 기술 비전과 고객 사례 소개
앤시스코리아가 글로벌 연례 행사인 ‘시뮬레이션 월드 코리아(Simulation World Korea) 2025’를 마쳤다고 밝혔다.   ‘시뮬레이션 월드 코리아’는 국내외 산학연 전문가와 고객들을 초청해 앤시스의 최신 설루션, 고객 사례 그리고 기술 트렌드를 소개하는 시뮬레이션 콘퍼런스다. 또한 앤시스 시뮬레이션 전문가 및 국내 시뮬레이션 공학자들이 교류하는 자리이기도 하다. 올해 행사는 ‘더 나은 미래를 위한 역량 강화(Empower Innovators to Drive Human Advancement)’를 주제로 9월 16일 롯데호텔월드에서 열렸다. 현장에는 다양한 산업군의 고객 및 업계 관계자 1400명이 참여했다.     ‘시뮬레이션 월드 코리아 2025’의 오전 세션에서는 앤시스코리아 박주일 대표의 환영사를 시작으로 ▲앤시스 월트 헌(Walt Hearn) 글로벌 세일즈 및 고객 담당 부사장의 ‘시뮬레이션을 통한 더 빠른 혁신’ ▲한국항공우주연구원(KARI) 이상률 박사의 ‘대한민국 우주개발 현황과 미래에 대한 통찰’ ▲삼성전자 이영웅 부사장의 ‘제조 산업에서의 디지털 트윈 기반 시뮬레이션 적용 현황 및 향후 전망’ ▲앤시스 패드메쉬 맨들로이(Padmesh Mandloi) 고객지원 부문 아시아 부사장의 ‘실리콘에서 시스템으로 확장되는 미래’ 등의 기조연설이 이어졌다.   이어서 ▲현대자동차 노일주 파트장의 ‘버추얼개발 체계 구축을 위한 표준 구조 해석 솔버의 유효성 및 미래 확장성 연구’ ▲엘레트리 이남권 대표의 ‘프리미엄 전기자전거 배터리의 초급속 충전 및 열 안정성 혁신 기술 개발’ ▲스페이스앤빈 민경령 대표의 ‘고효율 무선 전력 전송 시스템용 경량 차폐 소재 개발 사례’ ▲유니컨 김영동 대표의 ‘60GHz 초근거리 In-band Full-duplex 통신 구현’ 등의 발표가 진행되며 최신 기술 트렌드와 사례에 대한 인사이트를 공유하는 시간을 가졌다. 그리고 앤시스코리아가 대학생·대학원생을 대상으로 시행한 시뮬레이션 경진대회 ‘앤시스 시뮬레이션 챌린지 2025’에서 대상을 수상한 성균관대학교 기계공학과 에너지공학연구실 SAVE팀이 ‘화력발전 암모니아 혼소를 위한 전산해석모델 개발 및 최적 연소 방안 연구’를 발표했다.   오후에는 전자, 반도체, 모빌리티, 항공우주·방위 및 우주, 산업기계&헬스케어 등 총 5개의 트랙이 동시에 진행되면서 현재 업계 내의 주요 화두에 대한 정보 공유와 네트워킹이 지속됐다. 이와 함께 디지털 세이프티 콘퍼런스 및 플랫폼 트랙이 별도로 마련되었다.   앤시스코리아 박주일 대표는 “시뮬레이션 월드 코리아 2025는 국내 최대 규모의 시뮬레이션 콘퍼런스로 앤시스의 고객 및 관계자를 한 자리에 모시고 업계가 당면한 도전과제를 조망하고, 앞으로의 비전과 인사이트를 공유하기 위해 마련한 자리”라면서, “작년에 이어 올해도 국내외를 대표하는 연사들의 기조연설과 전문가 발표를 통해 한 순간도 놓칠 수 없는 귀중한 시간을 보낼 수 있었다. 앞으로도 앤시스는 분야를 막론하고 모든 고객들께 최고의 기술력을 바탕으로 부족함 없는 지원군이 될 수 있도록 노력할 것”이라고 말했다.
작성일 : 2025-09-17
작용, 반작용, 상호작용
시점 – 사물이나 현상을 바라보는 눈 (9)   지난 호에서는 ‘개별 관찰’, ‘집단 관찰’, ‘확률과 통계’에 관한 주제의 세 번째 이야기로 ‘확률과 통계’에 관해서 생각해 보았다. 통계는 단순한 숫자놀음이지만 그 숫자를 어떻게 얻었는지 어떻게 해석해야 하는지를 고민하지 않고 사용하게 되면 의도와는 다르게 엉뚱한 결론에 도달할 수 있다. 룰렛 돌림판과 주사위의 경우를 예로 들어 확률과 통계에 관해서 생각해 보았다.  이번 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일들을 조금 특별한 시각으로 바라보고자 한다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리 현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등을 예로 들어가며 이야기를 전개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본   유체 베어링 오래전에 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본을 보고 신기해했던 기억이 있다.(그림 1) 마치 중력이 작동하지 않는 듯한 인상을 받았다. 지구본을 만든 돌의 무게를 상상하면 그런 느낌이 들 수밖에 없다. 기계적 베어링 대신에 물을 베어링으로 사용한 유체 베어링이 사용된 것이다. 유체 베어링(fluid bearing 또는 fluid dynamic bearing)은 베어링 표면 사이에서 빠르게 움직이는 가압 액체 또는 가스의 얇은 층에 의해 하중이 지지되는 베어링이다. 움직이는 부품 사이에 접촉이 없다. 부품 사이에 마찰이 없어 유체 베어링은 다른 많은 종류의 베어링보다 마찰, 마모 및 진동이 적은 것이 특징이다. 일부 유체 베어링은 올바르게 작동하는 조건에서는 부품의 마모가 거의 없다. <그림 1>의 경우에는 지구본이 완벽한 구의 형태가 되어야만 물이 베어링의 역할을 할 수 있다. 물이 지구본에 작용하는 중력을 거슬러 지구본을 들어올려야 하는데 지구본을 감싸고 있는 링(ring)과의 간격이 장소에 따라 차이가 있으면 압력이 고르게 걸리지 않게 된다. 따라서 무거운 지구본을 부양할 수 없게 되고 지구본을 자유롭게 회전시킬 수도 없다. 지구본이 떠 있는 상태에서 자유롭게 회전할 수 있다면 작은 힘으로 회전 방향과 속도를 바꿀 수 있다. 마찰력이 거의 없기 때문이다.   뉴턴의 운동법칙 고전역학에서 뉴턴의 운동법칙(Newton's laws of motion)은 물체의 운동을 세 가지의 원리로 설명한 물리 법칙이다.(그림 2) 영국의 수학자, 물리학자, 천문학자였던 아이작 뉴턴이 도입한 이 법칙은 고전역학의 기본 바탕을 이루고 있다. 라틴어로 1687년에 출판된 ‘자연철학의 수학적 원리(Philosophiæ Naturalis Principia Mathematica, Mathematical Principles of Natural Philosophy)’라는 책에서 뉴턴의 운동법칙 세 가지가 소개되었다. 제1법칙은 ‘관성의 법칙’ 또는 ‘갈릴레이의 법칙’으로 불린다. 물체의 질량 중심은 외부 힘이 작용하지 않는 한 일정한 속도로 움직인다. 마찰이나 에너지 손실이 없다면 관성으로 속도가 유지된다. 즉, 물체에 가해진 알짜 힘(net force)이 0일 때 물체의 속도가 변하지 않으므로 질량 중심의 가속도는 0(a = 0, V : Constant)이다. 제2법칙은 ‘가속도의 법칙’으로 불린다. 물체의 운동량의 시간에 따른 변화율(가속도, a)은 그 물체에 작용하는 힘(F, 크기와 방향에 있어서)과 같다. 물체에 더 큰 알짜 힘이 가해질 수록 물체의 운동량 변화는 더 커진다.(F = ma) 물체에 힘을 가하면 힘이 가해진 물체는 운동량이 바뀐다. 제3법칙은 ‘작용과 반작용의 법칙’으로 불리며, 물체 A가 다른 물체 B에 힘을 가하면 물체 B는 물체 A에 크기는 같고 방향은 반대인 힘을 동시에 가한다.(FAB = -FBA ). ‘모든 작용에 대해 크기는 같고 방향은 반대인 반작용이 존재한다’라고 설명하기도 한다. 당연한 이야기같기도 하고 알 듯 말 듯한 이야기같기도 하다. 필자도 글을 쓰면서 아무리 간단한 사실도 언어를 사용해서 표현한다는 것이 얼마나 어려운 일인지 생각하게 된다. 실제로 언어로 표현된 많은 사실, 느낌, 감정이 얼마나 정확하게 표현된 것이고 그 의미를 얼마나 정확하게 이해할 수 있는지 의문스러울 때가 많다.   그림 2. 뉴턴의 세 가지 운동법칙   작용, 반작용, 상호작용의 사전적 의미 때로는 이미 잘 알고 있고 자주 사용하는 용어나 단어도 어떤 의미로 사용되는지 살펴보면 의외로 새로운 발견을 하게 되는 경우가 있다. 이번 기회에 작용, 반작용, 상호작용이라는 단어의 뜻을 사전에서 찾아보자. 작용(action) 어떠한 현상을 일으키거나 영향을 미침 [물리] 어떠한 물리적 원인이나 대상이 다른 대상이나 원인에 기여함 또는 그런 현상. 역학에서 물체 사이의 힘도 이 결과로 생긴다.  [철학] 현상학에서, 표상·의식·체험 따위의 심리적 과정에 있어서 대상의 의미 내용을 지향하는 능동적인 계기를 이르는 말 반작용(reaction)  어떤 움직임에 대하여 그것을 거스르는 반대의 움직임이 생겨남 또는 그 움직임 [물리] 물체 A가 물체 B에 힘을 작용시킬 때, B가 똑같은 크기의 반대 방향의 힘을 A에 미치는 작용. 한쪽에 미치는 힘을 작용이라 할 때, 그 다른 쪽에 미치는 힘을 이른다.  상호작용(interaction)  [생명] 생물체 부분들의 기능 사이나, 생물체의 한 부분의 기능과 개체의 기능 사이에서 이루어지는 일정한 작용 [사회] 일반 사람이 주어진 환경에서 다른 사람이나 사물과 서로 관계를 맺는 모든 과정과 방식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
데이터 분석 로코드 설루션을 배워보자 Ⅰ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2)   지난 호에서는 로코드 분석 설루션이 필요한 이유에 대해 알아보았다. 또한 데이터 분석이 일반적으로 거치는 과정에 대해서도 살펴 보았는데, 이러한 과정에 파이썬(Python)과 같은 프로그래밍 언어가 활용되는 상황 또한 정리해 보았다. 이번 호에서는 로코드 분석 설루션인 KNIME(나임)에 대해 알아보고, 전력 판매량 예측에 대한 분석 과제를 따라하기 과정을 통해 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   지난 호에서 살펴본 일반적인 데이터 분석 과정은 다음과 같다.   요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   이전에 강조한 바와 같이, 아무리 쉬운 코딩 언어라고 할지라도 데이터 분석을 요청받은 데이터 과학자(data scientist)가 이를 실제 업무에 적용하여 원하는 결과를 빠르고 정확하게 구현해내는 것은 어려운 일이다. 또한 코딩에 능숙한 데이터 과학자라고 해도 깃허브(Github) 및 인터넷 상에 공유된 소스코드를 다운받아 재활용 및 가공하여 사용하는 경우가 많은데, 이때 악성 코드 등에 대한 보안 이슈도 문제가 될 소지가 있다. 사실 데이터 과학자는 수학 및 통계적 지식을 활용하여 빠르게 정확하게 데이터 분석을 하고 싶은 것이고, 이를 위해 효율적인 툴을 사용하고자 한다. 우리는 이러한 현상을 극복해 나가고자 로코드 분석 설루션(low code analytics solution)을 대안으로 검토하였고, 이를 활용하여 데이터 분석을 수행해 나가는 과정을 따라가 보고자 한다. 지난 호에서 유관부서로부터 전력 판매량(electric power sales) 예측에 대한 분석 과제를 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황의 시민 데이터 과학자(citizen data scientist)로 가정하여 주어진 과제 목표를 달성하였다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 이를 처리하기 위해 파이썬으로 코드를 작성한 사례를 공유하였고, 동일한 내용을 로코드 분석 설루션인 KNIME을 활용하여 처리한 사례도 공유하였다.   그림 1   이번 호에서는 KNIME에 대해 알아보고 전력 판매량 예측에 대한 분석과제를 따라하기 과정을 통해 완성해 보도록 하겠다. 우선 구글 제미나이(Google Gemini)에게 KNIME에 대한 역사와 특징에 대해 알려 달라고 해보자.(그림 2~4)   그림 2   그림 3   그림 4   가트너(Gatner)의 피어 인사이트(Peer insight) 리뷰를 확인해 보았는데, 평점(rating)이 상당히 높은 편이고 사용자의 반응도 높다는 것을 확인하였다. 또한 오픈소스 기반 소프트웨어로서 기업에서도 무료로 자유롭게 설치하여 사용할 수 있다는 측면에서(KNIME Analytics Platform) 로코드 분석 설루션으로 선택하기에 부족함이 없다는 것을 확인하였다.   그림 5   현재 KNIME은 데이터 사이언스를 위한 최적의 설루션을 위해 세 가지 서비스를 제공하고 있다. 이번 호에서는 KNIME Analytics Platform을 활용하여 전력 판매량 예측에 대한 분석 과제를 따라해보고자 한다.   그림 6     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03