• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 자연어 처리"에 대한 통합 검색 내용이 187개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
지스타소프트, ‘제품 출시 및 기술 심포지엄’에서 신제품 라인업 및 글로벌 전략 공개
지스타캐드(GstarCAD)를 국내 공급하는 모두솔루션은 지스타캐드 개발사인 지스타소프트(Gstarsoft)의 ‘제품 출시 및 기술 심포지엄’에 참가했다고 밝혔다. 이번 심포지엄에서는 지스타캐드 2026을 비롯해 아크라인.XP(ARCHLine.XP), 지스타-직셀 3D CAD(Gstar-ZIXEL 3D CAD) 등 지스타소프트의 주요 신제품과 AI 설계 기술이 공개됐다. 지스타캐드 2026은 대용량 도면을 즉시 열 수 있을 만큼 처리 속도와 성능이 향상되어, 핵심 작업 속도는 20%, 도면 열기 속도는 40% 향상됐다. 새롭게 추가된 매개변수 구속 조건(Parametric Constraints) 기능은 반복 설계나 규칙 기반 수정의 효율을 높여 설계 정확도와 생산성을 함께 개선했다. 또한 클라우드 기반 협업 및 멀티 플랫폼 지원을 강화해, 산업별 맞춤형 설계 생태계 구축이 한층 가속화되고 있다.   지스타소프트가 함께 공개한 아크라인.XP는 2D 도면 작성부터 3D 모델링, 기술 문서화, 시각 디자인까지 전 과정을 통합 지원하는 BIM 설계 및 시각화 설루션이다. 자체 BIM 엔진을 활용해 RVT, IFC, SKP, DWG/DXF 등 주요 포맷을 지원하며, CAD의 정밀성과 빠른 시각화를 결합해 효율적인 설계 환경을 제공한다. 또한 직셀 테크놀로지(Zixel Technology)와 협력을 통해 개발된 지스타-직셀 3D CAD는 클라우드 네이티브 기반의 차세대 3D CAD 플랫폼으로, 부품·조립·도면 관리 등 전 과정을 통합하고 설계 프로세스를 최적화했다. 함께 공개된 상호작용형 기술문서 설루션 3D 프로세스 마스터(3D Process Master) 및 PDM 시스템과 연계해 지능형·협업형 설계 생태계 구축을 완성했다. 이번 심포지엄에서는 설계 자동화와 생산성 향상을 위한 AI 기술도 소개됐다. AI 렌더링(AI Rendering), AI 스테어 디자인(AI Stair Design), AI 커스터머 서비스(AI Customer Service) 등 다양한 기능이 공개되었으며, 모델링 자동화·오류 검출·레이아웃 최적화·AI 기반 상호작용을 통해 설계 효율과 정확도를 높였다. 이를 통해 기업은 설계 비용 절감과 품질 향상이라는 실질적 효과를 기대할 수 있다.     한편 지스타소프트는 헝가리의 BIM 전문 개발사 캐드라인(CadLine) 인수, 국제 BIM 개발 자회사 지스타 호크3D(Gstar Hawk3D) 설립, 그리고 직셀 테크놀로지와의 차세대 3D CAD 공동 개발 협력 강화 등을 통해 글로벌 시장 확대에 속도를 내고 있다고 전했다. 현재 175개국, 23개 언어, 750개 이상의 글로벌 파트너 네트워크를 보유한 지스타소프트는 CAD·BIM 소프트웨어 분야에서 혁신과 지능화를 선도하는 글로벌 기술 기업으로 자리매김하고 있다.   모두솔루션은 이번 심포지엄에 대표이사, 지스타사업부 대표, 마케팅팀장을 포함한 핵심 인력이 참석해 지스타소프트의 신제품 전략과 기술 방향성을 직접 확인했다고 전했다. 모두솔루션 지스타사업부의 성기정 상무는 “이번 행사에서 지스타캐드만으로는 충족되지 않았던 3D 및 BIM 시장 영역에 제조, 건설, 건축 등 전 산업을 아우를 수 있는 설루션 포트폴리오가 강화되었다는 점이 인상적이었다”며, “앞으로 한국 시장에서 범용 CAD 설루션인 지스타캐드를 기반으로, 신규 3D·BIM 설루션의 시장 확대에도 주력할 계획”이라고 밝혔다. 또한 마케팅팀 한운선 팀장은 “AI는 이제 CAD 산업에서 선택이 아닌 필수 요소가 되었다”며, “이번 심포지엄을 통해 지스타소프트가 AI 기반 설계 보조 기능과 자동화 기술을 실질적으로 구현하고 있음을 직접 확인할 수 있었다”고 말했다. 이어 “지스타캐드 역시 자연어 기반 설계 지원 기능 등 AI 기술의 도입을 가속화하여, 사용자 경험을 혁신하는 방향으로 발전하길 기대한다”고 덧붙였다.
작성일 : 2025-10-23
마이크로소프트, 윈도우 11에 코파일럿 기반 AI 기능 강화하는 업데이트 발표
마이크로소프트가 코파일럿을 통해 윈도우 11 PC에 강력한 AI 경험을 제공하는 대규모 업데이트를 발표하면서, 모든 윈도우 11 PC를 AI PC로 전환하기 위한 노력을 이어갈 것이라고 전했다. 이번 업데이트는 AI 기능을 윈도우 사용 환경에 통합해, 윈도우 11 사용자가 보다 쉽고 직관적으로 AI를 활용할 수 있도록 설계됐다. 마이크로소프트는 AI PC에 필요한 요소를 ▲자연어 문자 및 음성을 기반으로 상호작용하고 사용자를 이해 ▲사용자가 보는 시각적 정보를 같이 인식하고 도움을 추천 ▲사용자 승인 하에 능동적으로 작업 수행 등 세 가지로 제시하고 있다. 윈도우 11은 코파일럿과의 음성 기반 상호작용을 지원한다. 마이크로소프트는 음성 사용 시 코파일럿과의 상호작용 빈도가 문자보다 두 배 이상 높다는 점에 주목하면서, 간편한 음성 기반 접근으로 사용자가 코파일럿과 더욱 깊은 상호작용을 할 수 있도록 지원한다. 윈도우 11 PC의 코파일럿 앱 설정에서 이 기능을 활성화시키면 호출어인 ‘헤이 코파일럿(Hey, Copilot)’으로 코파일럿 보이스(Copilot Voice)를 실행할 수 있다. 사용자가 호출어를 말하면 화면에 마이크 아이콘이 표시되고 인식 신호음이 울리며 대화가 시작된다. 대화 종료는 ‘굿바이(Goodbye)’라는 음성 명령 또는 종료 버튼으로 실행되며, 몇 초간 상호작용이 없는 경우에도 신호음과 함께 자동으로 코파일럿이 대화를 종료한다. 코파일럿 비전(Copilot Vision)도 코파일럿이 제공되는 전 세계 윈도우 11에서 정식 지원된다. 이 기능은 사용자가 데스크톱 화면이나 앱을 공유하면 코파일럿이 화면 콘텐츠를 인식해 관련 인사이트를 제공하고, 질문에 응답하거나 음성으로 가이드를 제공하는 방식으로 작동한다. 게임 탐색, 이력서 작성, 창작 프로젝트 개선 등 다양한 작업에 활용할 수 있다.     또한, 사용자는 ‘쇼 미 하우(Show me how)’라는 음성 명령어를 통해 특정 작업의 수행 절차를 보여주도록 요청할 수 있다. 코파일럿은 앱 내 클릭 위치와 절차를 시각적으로 안내하며, 게임 플레이, 사진 보정, 여행지와 일정에 따른 준비물 검토 등 다양한 작업 환경에서 조언을 제공한다. 코파일럿 비전과의 문자 기반 대화도 가능해진다. 기존에는 음성 기반의 상호작용만 가능했으나, 마이크로소프트는 윈도우 인사이더 프로그램(Windows Insider Program)을 통해 코파일럿 비전과 텍스트 입력 방식으로도 상호작용할 수 있는 기능을 공개할 예정이다. 윈도우 11의 작업 표시줄에는 새로운 ‘애스크 코파일럿(Ask Copilot)’ 기능이 추가된다. 애스크 코파일럿 활성화를 통해 사용자는 코파일럿 비전과 코파일럿 보이스를 한 번의 클릭으로 손쉽게 이용하고, 코파일럿을 PC 사용 경험에 자연스럽게 통합해 지원, 안내, 협업 등 필요한 기능을 언제든지 활용할 수 있다. 새로운 작업 표시줄은 사용자가 더 적은 노력으로 더 많은 것을 성취하도록 돕고, 한층 생산적이고 재미있는 작업 경험을 제공하는 허브로서 기능한다. 사용자는 앱, 파일, 설정 등에 더욱 빠르게 접근함으로써 검색어를 입력하는 즉시 결과를 확인할 수 있다. 지난 5월 웹 기반 작업 수행 기능으로 공개된 코파일럿 액션(Copilot Actions on the web)은 윈도우 내 로컬 파일에서도 직접 작업을 수행할 수 있도록 기능이 확장된다. 이 기능은 윈도우 인사이더의 코파일럿 랩스(Copilot Labs)에서 프리뷰 형태로 제공될 예정이다. 범용 에이전트로서 코파일럿은 PC에 있는 맥락을 기반으로 데스크톱과 웹 애플리케이션과 상호작용하며 사진 정리, PDF 정보 추출 등 작업을 대신 수행한다. 사용자는 자연어로 작업을 지시한 후 다른 업무에 집중하며 작업 진행 상황을 실시간으로 확인하고 어떤 작업이 수행되었는지 검토할 수 있다. 코파일럿은 외부 서비스와의 연동도 지원한다. 사용자가 연결을 승인하면, 원드라이브(OneDrive), 아웃룩(Outlook), 지메일(Gmail) 등 이메일, 연락처, 일정 기반의 주요 플랫폼 서비스를 코파일럿 온 윈도우(Copilot on Windows)에 직접 연동해 활용할 수 있다. 사용자는 “치과 예약 세부 정보 찾아줘”, “이메일 주소 알려줘” 등의 명령어를 통해 캘린더나 이메일에서 필요한 정보를 빠르게 검색할 수 있으며, 원드라이브에 저장된 문서도 함께 확인할 수 있다. 검색 결과는 워드(Word), 엑셀(Excel), 파워포인트(PowerPoint) 등 다양한 형식으로 내보내는 것도 가능하다. 윈도우 설정과도 연동된다. 사용자가 윈도우 PC 설정에 대해 “화면을 더 읽기 쉽게 만들어줘”, “집중을 위해 방해 요소 줄여줘” 등 자연어 명령으로 요청하면, 코파일럿이 관련 설정 페이지로 자동 안내한다. 더 간편하게 작업을 완료할 수 있는 AI 액션 기능도 추가됐다. 매너스(Manus)는 다양한 작업을 수행할 수 있는 범용 AI 에이전트로, 파일 탐색기(File Explorer) 내에서 한 번의 클릭으로 로컬 폴더의 문서를 활용한 웹사이트를 자동 생성할 수 있다. 문서를 선택한 뒤 마우스 오른쪽 버튼을 눌러 ‘매너스로 웹사이트 만들기’를 실행하면, 별도의 업로드나 코딩 없이 몇 분 만에 웹사이트가 제작된다. 이 기능은 현재 비공개 프리뷰 단계에 있으며, 향후 파일 탐색기에서 필모라(Filmora)를 실행해 쉽고 간편하게 영상을 편집할 수 있는 새로운 AI 액션도 공개될 예정이다. 마이크로소프트는 코파일럿+ PC를 대상으로, 클릭 투 두(Click to Do)와 줌(Zoom) 연동 기능을 윈도우 인사이더 프로그램을 통해 도입할 예정이다. 이 기능을 통해 사용자는 화면에 표시된 이메일 주소 위에 마우스를 올리기만 해도, 별도의 앱 전환 없이 줌 미팅을 즉시 예약할 수 있다. 한편, 마이크로소프트는 “윈도우 11은 마이크로소프트의 시큐어 퓨처 이니셔티브(Secure Future Initiative)에 따라 역대 운영체제들 중 가장 안전하다. 특히 윈도우에 에이전트 기능이 도입되면서, 개인정보와 시스템 보호를 위한 방어 체계가 한층 강화됐다”고 소개했다. 코파일럿 액션은 사용자가 모든 실행 권한을 직접 제어할 수 있도록 설계됐다. 이 기능은 기본적으로 비활성화된 상태로 제공되며, 사용자가 직접 활성화 여부를 선택할 수 있다. 모든 실행 과정은 사용자에게 투명하게 공유되며, 민감한 작업 단계에서는 특정 작업을 위해 사용자에게 별도의 승인을 요청할 수 있다. 마이크로소프트는 프리뷰 테스트를 통해 사용자 피드백을 반영하고, 기능의 안전성과 개인정보 보호 수준을 지속적으로 개선해 나갈 계획이다. 마이크로소프트의 유수프 메흐디(Yusuf Mehdi) 최고 소비자 마케팅 책임자는 “이번 업데이트를 통해 마이크로소프트는 모든 윈도우 11 PC를 코파일럿 중심의 AI PC로 전환하는 데 한 걸음 더 나아갔다”며, “매일 사용하는 윈도우 환경에 AI를 통합함으로써 사용자들이 가장 강력한 AI 기술을 보다 쉽게 활용할 수 있도록 했다”고 말했다.
작성일 : 2025-10-17
유아이패스-엔비디아, 민감한 워크플로에 신뢰할 수 있는 에이전틱 자동화 제공
유아이패스가 엔비디아와의 협력을 발표하면서, 금융 사기 탐지나 의료 분야 환자 관리처럼 높은 신뢰가 요구되는 환경에서 기업 고객의 기존 자동화 워크플로를 AI 기능으로 강화할 수 있도록 지원한다고 밝혔다. 유아이패스의 에이전틱 자동화 역량과 엔비디아 네모트론(Nemotron) 공개 모델, 엔비디아 NIM을 결합해 기업은 자연어 처리, 이미지 해석, 예측 분석 등 엔터프라이즈급 AI 모델을 마이크로서비스 형태로 더욱 빠르고 손쉽게 배포할 수 있다. 이를 통해 민감한 워크플로에서 에이전틱 AI와 자동화를 효율적이고 정확하게 대규모로 도입할 수 있다.   이번 협력의 핵심은 유아이패스와 엔비디아 NIM, 네모트론을 연결하는 인티그레이션 서비스(Integration Service) 커넥터를 도입하는 것이다. 이를 통해 기업은 엔비디아 NIM을 활용해 생성형 AI 기능을 자사 애플리케이션과 서비스에 원활하고 신속하게 통합할 수 있어, 자동화 역량과 성능을 한층 강화할 수 있다. 이번 협력은 민감한 업무를 다루는 고객이 높은 신뢰가 요구되는 환경에서도 에이전트, 로봇, 인간 전문가를 활용해 엔드투엔드 비즈니스 프로세스를 자동화할 수 있도록 한다.   유아이패스는 서비스 커넥터 외에도 에이전틱 자동화 전반에서 새로운 기회를 모색하고 있다. 주요 영역에는 ▲AI 기반 에이전트를 효과적으로 조율하기 위한 에이전틱 오케스트레이션 고도화 ▲유아이패스의 자동화 전문성과 맞춤형 오픈소스 엔비디아 네모트론 모델 및 가속 컴퓨팅을 결합한 차별화된 에이전트 개발 ▲온프레미스와 에어갭(air-gapped) 환경까지 역량을 확장해 규제가 엄격한 산업에서도 AI를 안전하게, 대규모로 도입할 수 있도록 지원하는 것이 포함된다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “사기 탐지나 의료 워크플로처럼 민감한 프로세스에는 강력하면서도 신뢰할 수 있는 AI가 필요하다”면서, “엔비디아 NIM 모델을 유아이패스 플랫폼에 통합함으로써, 고객은 엔터프라이즈급 거버넌스를 기반으로 자체 호스팅 모델을 배포하고 체계적으로 관리할 수 있다. 이를 통해 기업은 가장 중요한 프로세스에도 관리 체계와 투명성, 신뢰를 바탕으로 AI를 적용해 실질적인 비즈니스 성과를 창출할 수 있다”고 말했다.   엔비디아의 조이 콘웨이(Joey Conway) 엔터프라이즈 생성형 AI 소프트웨어 시니어 디렉터는 “기업들은 복잡하고 독자적인 운영을 위해 안전하고 신뢰할 수 있는 AI를 원한다”며, “엔비디아 네모트론 공개 모델과 NIM 마이크로서비스를 기반으로, 유아이패스는 규제 환경에서도 복잡한 활용 사례에 대응할 수 있으며, AI 에이전트를 활용해 고도화된 자동화 시스템을 신속히 구축할 수 있다”고 말했다.
작성일 : 2025-10-14
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
[피플&컴퍼니] 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표
시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다   제품이 복잡해지면서 반도체 설계와 전체 시스템의 구현을 통합하는 엔지니어링이 필수가 됐다. 앤시스는 EDA(전자 설계 자동화) 기업 시높시스와 통합을 통해 제품 개발의 전체 과정을 단일 플랫폼으로 지원한다는 비전을 마련했다. 이와 함께 AI(인공지능) 기술을 자사 포트폴리오 전반에 적용해, 전문가의 전유물이었던 시뮬레이션의 장벽을 허문다는 전략도 제시했다. ■ 정수진 편집장   ▲ 앤시스 패드메쉬 맨들로이 부사장   ‘실리콘부터 시스템까지’ 아우르는 엔지니어링 시대 연다 제품이 점차 스마트해지고 복잡해지면서 물리 세계와 전자 세계의 만남이 그 어느 때보다 중요해지고 있다. 앤시스와 시높시스는 지난 7월 통합 완료를 발표했는데, 두 회사는 각자의 전문성을 결합해 반도체 칩 설계(실리콘)부터 최종 시스템에 이르는 전체 과정을 지원하는 통합 설루션을 제공할 계획이다. 앤시스의 패드메쉬 맨들로이(Padmesh Mandloi) 고객지원 부문 아시아 부사장은 “오늘날의 제품은 단순히 기능을 수행하는 것을 넘어 스스로 사고하고, 협업하며, 환경에 적응하는 지능형 시스템으로 발전하고 있다. 이런 변화는 엔지니어링의 복잡성을 가중시키고 있으며, 반도체 설계와 물리적 시스템의 구현을 별개로 볼 수 없게 되었다”면서, “시뮬레이션 분야의 선도 기업 앤시스와 EDA 1위 기업 시높시스가 손을 잡은 것은 이런 시대적 요구에 부응하기 위한 것”이라고 설명했다. 맨들로이 부사장은 “시스템은 실리콘의 요구사항을, 실리콘은 시스템의 요구사항을 정확히 이해해야 한다”고 짚었다. 예를 들면, 자동차 기업이 자율주행 기능을 구현하기 위해서는 AI 반도체 설계를 고려해야 하고, 반도체 기업은 칩이 자동차에 쓰일지 데이터센터에 쓰일지에 따라 다른 접근법을 선택해야 한다는 것이다. 제품 개발을 위해 엔지니어링 시뮬레이션과 EDA의 긴밀한 상호작용이 필수가 되면서, 앤시스는 시높시스와의 통합이 큰 시너지를 낼 수 있을 것으로 기대하고 있다.   물리 기반 시뮬레이션을 EDA 흐름에 통합 양사 통합의 핵심 전략은 앤시스의 강점인 물리 기반 시뮬레이션을 시높시스의 EDA 설계 흐름에 통합하는 것이다. 이를 통해 차세대 인공지능(AI) 칩, 3D IC 등 고도의 반도체를 설계할 때 필수로 고려해야 하는 열, 구조 변형, 뒤틀림 같은 물리적 문제를 설계 초기 단계부터 해결할 수 있게 된다는 것이다. 앤시스코리아의 박주일 대표는 “특히 고대역폭 메모리(HBM)와 같이 여러 칩을 쌓는 ‘스택 구조’에서 이러한 통합 설루션의 가치가 크다. 앤시스는 이미 HBM의 전력 무결성, 열, 구조적 스트레스 분석 분야에서 삼성전자, SK하이닉스 등과 협력해왔다. 앞으로 시높시스와 함께 칩 설계 단계부터 최종 분석까지 아우르는 단일 플랫폼을 제공할 수 있을 것”이라고 전했다. 앤시스와 시높시스는 조직을 통합하기보다는 각자의 비즈니스 운영 방식을 유지하며 시너지를 낼 수 있는 분야를 탐색하는 데 집중하고 있다. 시높시스가 소수의 반도체 기업을 깊이 있게 지원하는 반면, 앤시스는 수천 개의 다양한 산업군 고객을 보유하고 있어 사업 운영 방식에 차이가 있기 때문이라는 것이 박주일 대표의 설명이다. 그는 “다만, HBM 설루션처럼 시장의 요구가 높은 분야의 기술 통합은 더 빠르게 진행될 수 있다”고 덧붙였다. 앤시스는 시높시스와의 통합 설루션이 특히 복잡한 요구조건을 가진 첨단 산업에서 강점을 발휘할 것으로 보고 있다. 앤시스의 월트 헌(Walt Hearn) 글로벌 세일즈 및 고객 담당 부사장은 “이번 합병이 고객들에게 새로운 기술과 기회를 제공할 것으로 기대한다"면서, “물리 시뮬레이션과 EDA의 결합은 제품 개발의 어려운 과제를 해결하는 최고의 포트폴리오가 될 것”이라고 말했다.   ▲ 앤시스 월트 헌 부사장   AI로 엔지니어링의 문턱 낮춘다 앤시스는 인공지능(AI) 기술을 자사 포트폴리오 전반에 통합해 시뮬레이션의 효율과 속도를 높이고, 전문가 수준의 지식이 필요했던 기술의 문턱을 낮추는 데 주력하고 있다. 복잡한 제품 개발 환경에서 더 많은 엔지니어가 시뮬레이션 기술을 쉽게 활용하도록 돕는 것이 앤시스 AI 전략의 핵심이다. 맨들로이 부사장은 “시뮬레이션은 고도의 전문 지식을 갖춘 전문가의 영역으로 여겨져 왔다. 하지만 디지털 전환이 가속화되면서 기업의 비용 절감과 시장 출시 기간 단축을 위해 시뮬레이션의 활용을 확대하려는 요구가 커졌다”면서, “앤시스는 전문 지식에 대한 의존도를 낮추고 더 많은 사용자가 쉽게 접근할 수 있도록 AI 기술이 탑재된 플랫폼을 제공하는 것을 최우선 과제로 삼고 있다”고 설명했다. AI 기술은 초기 머신러닝(ML) 기반의 최적화 도구를 넘어, 대규모 언어 모델(LLM)과 AI 비서를 거쳐 완전히 자율화된 에이전틱 AI(agentic AI)로 나아가고 있다. 헌 부사장은 크게 네 가지 방향에서 AI를 앤시스 설루션에 적용하고 있다고 소개했다. 스마트 UI(사용자 인터페이스) : UI에 AI를 내장해 반복적인 작업을 자동화함으로써 엔지니어의 작업 효율을 높인다. 앤시스GPT(AnsysGPT) : 오픈AI의 기술을 기반으로 하는 앤시스GPT는 자연어 질의응답을 통해 사용자가 엔지니어링 문제에 대한 답을 더 빠르게 찾도록 돕는다. AI 내장 솔버 : 엔지니어링 해석의 핵심 엔진인 솔버 자체에 AI 기술을 통합해 문제 해결 속도를 이전보다 크게 높였다. 심AI(Ansys SimAI) : 과거의 방대한 시뮬레이션 데이터셋을 학습한 AI 솔버이다. 예를 들어, 기존에 일주일이 걸리던 자동차 외부 공기역학 해석 작업에 심AI를 활용하면 단 하루 만에 완료할 수 있다. 헌 부사장은 “앤시스GPT는 이미 2만여 고객사에서 활발히 사용되고 있으며, ‘앤시스 엔지니어링 코파일럿’도 개발하고 있다. 이 코파일럿은 지난 50년간 축적된 앤시스의 제품 개발 지식을 LLM에 탑재한 형태이다. 유동, 구조, 전자기학 등 모든 분야의 엔지니어링 콘텐츠를 단일 플랫폼 안에서 쉽게 검색하고 활용할 수 있게 될 것”이라고 소개하면서, “이런 혁신을 바탕으로 앤시스와 시높시스는 고객이 미션 크리티컬한 과제를 해결하고 AI 기반 제품과 서비스를 성공적으로 개발할 수 있도록 지원을 아끼지 않겠다”고 밝혔다.   솔버 최적화와 클라우드로 컴퓨팅 인프라 부담 해결 시뮬레이션과 AI 기술은 모두 대량의 컴퓨팅 자원을 필요로 한다. 기업에서는 컴퓨팅 인프라의 구축과 운용에 대한 부담이 클 수밖에 없다. 헌 부사장은 “소프트웨어 최적화와 유연한 클라우드 지원을 통해 고객들이 인프라 제약 없이 혁신에 집중할 수 있도록 돕겠다”고 밝혔다. 우선 R&D 차원에서 앤시스는 자사 솔버의 코드를 전면 재작성하고 있다. CFD(전산 유체 역학)와 전자기를 비롯해 모든 분야의 솔버를 GPU(그래픽 처리 장치) 환경에서 구동되도록 최적화하는 것이 핵심이다. 또한, 앤시스는 AWS(아마존 웹 서비스) 및 마이크로소프트 애저(Azure)와 협력해 클라우드 서비스를 제공하고 있다. 고객사가 대규모 해석과 같이 추가적인 컴퓨팅 성능이 필요할 경우 언제든지 클라우드 자원을 활용해 작업을 확장할 수 있도록 하겠다는 것이다. 헌 부사장은 “시높시스 역시 자체 클라우드를 통해 컴퓨팅 리소스를 제공하고 있는데, 향후 이를 통합하면 더욱 시너지를 낼 수 있을 것”이라고 전했다.   ▲ 앤시스코리아 박주일 대표   한국은 가장 복잡한 제품 개발하는 전략적 요충지 앤시스코리아는 최근 몇 년간 두 자릿수의 성장세를 유지하고 있으며, 올해는 예년보다 더 큰 폭의 성장을 예상하고 있다. 박주일 대표는 “이런 성장의 배경에는 국내 시장의 확고한 디지털 전환(DX) 트렌드와 갈수록 복잡해지는 제품 설계 환경이 있다”고 짚었다. 그는 “한국 기업들은 반도체, 자동차, 조선, 항공우주 등 모든 산업 영역에서 최고 수준의 복잡한 제품을 설계하며 글로벌 기업과 경쟁하고 있으며, 그만큼 국내 고객의 기술적 요구 수준 또한 높다”면서, “앤시스 코리아는 높은 수준의 국내 고객 요구를 시뮬레이션 기술로 충족시키는 것을 최우선 과제로 삼고 있으며, 이를 위해 국내 리소스뿐만 아니라 글로벌 조직과의 긴밀한 협업을 통해 한국 시장과 고객을 적극 지원하고 있다”고 설명했다. 앤시스는 HBM, 3D IC와 같은 스택 구조 반도체의 전력 무결성, 열, 구조 변형 문제 해결을 위해 국내 반도체 기업들과 협력하고 있다. 그리고 고밀도 AI 칩을 개발하는 국내 스타트업들과도 협력을 진행 중이다. 우주 산업에서는 국내 스타트업과 협력해 인공위성의 수명과 성능을 위협하는 우주 잔해물 문제 해결을 돕고 있다. 또한, 삼성전자, LG전자, 현대자동차 등 국내 대기업을 중심으로 AI 기술이 탑재된 시뮬레이션 설루션 도입을 빠르게 진행 중이다. 맨들로이 부사장은 “한국 앤시스 고객의 만족도는 96.8%로 역대 최고치를 기록했으며, 이는 지난 몇 년간 꾸준히 상승해 온 결과이다. 앤시스는 이러한 높은 만족도에 큰 자부심을 가지고 있으며, 앞으로도 최고의 기술을 통해 한국 고객들을 지원하는 데 집중할 것”이라고 전했다.    ▲ 앤시스코리아는 9월 17일 연례 콘퍼런스 ‘시뮬레이션 월드 코리아 2025’를 열고, 최신 기술 트렌드와 함께 자사의 비전, 신기술, 고객 사례를 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[포커스] 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개
알테어는 9월 5일 ‘2025 추계 AI 워크숍’을 진행했다. ‘엔지니어를 위한 AI’를 주제로 진행된 이번 워크숍에서 알테어는 AI를 활용해 제품 개발 프로세스를 가속화하고 의사결정의 정확성을 높이며, 지능형 디지털 트윈을 완성한다는 비전을 선보였다. 또한 AI 기반 시뮬레이션, 생성형 AI, AI 에이전트, 지식 그래프 등 최신 AI 기술의 실제 적용 사례와 활용 방안을 소개했다. ■ 정수진 편집장     한국알테어의 김도하 지사장은 개회사를 통해 AI 기술이 산업 고객의 현장에서 빠르게 내재화되며 동반 성장하고 있다면서, “이는 고객들이 명확한 비전과 단계별 로드맵을 가지고 각자의 환경에 맞춰 AI를 접목하고 있기 때문”이라고 설명했다. 또한, 국가 AI 프로젝트가 시작되어 1만 4000 장의 GPU가 1차 도입되는 등 정부가 주도하는 ‘소버린 AI’ 시대가 열리고 있는 점에 주목하면서, “AI를 통한 제조 산업의 르네상스가 도래하고 있으며, 알테어 또한 시장과 함께 성장하기 위해 준비하고 있다”고 전했다.   엔지니어링 언어를 학습하는 AI 알테어의 케샤브 선다레시(Keshav Sundaresh) 디지털 전환 총괄 시니어 디렉터는 “AI는 더 이상 개념이 아니라 실제 현장의 핵심 기술”이라면서, 엔지니어링 수명주기 전반에 걸친 로코드·고효율 AI 접근법을 구현해야 한다고 짚었다. MIT의 연구에 따르면, 기업의 생성형 AI 파일럿 프로젝트 가운데 95%가 실질적인 재무 성과를 내는 데 실패하고 있는 것으로 나타났다. 그 원인으로는 ▲특정 결과에 편중된 데이터 ▲단편적이고 사일로화된 데이터 ▲값비싼 컴퓨팅 자원 ▲도메인 지식과 AI 기술 간 격차 ▲기존 시스템과의 통합 및 신뢰성 문제 등이 꼽힌다. 선다레시 시니어 디렉터는 이런 현실적 장벽을 극복할 수 있도록 알테어와 지멘스의 기술 역량을 결합해 AI 기반의 통합 설루션 포트폴리오를 제공할 수 있다는 점을 강조했다. “제품의 요구사항 정의부터 폐기에 이르는 모든 과정에서 AI를 활용하고, 단절된 디지털 스레드를 통합하여 데이터 기반의 신속한 의사결정을 지원하겠다”는 것이다. 이를 위한 핵심 전략은 ‘AI에게 엔지니어링 및 제조의 언어’를 가르치는 것이다. 기존의 LLM(대규모 언어 모델)이 텍스트나 이미지 등 일반 데이터에 강점을 보인다면, 지멘스와 알테어는 기계 설계, 전기/전자, BOM(Bill-of-Materials), 시뮬레이션 데이터 등 산업 특화 데이터를 학습시켜 신뢰도 높은 ‘산업용 파운데이션 모델(Industrial Foundation Model)’을 구축하고 있다는 것이 선다레시 시니어 디렉터의 설명이다.   AI 확산으로 제조 혁신의 속도 높인다 AI 비전을 구체화하는 방법론으로 알테어는 ‘라이프사이클 인텔리전스(Lifecycle Intelligence)’ 프레임워크를 제시했다. 이 프레임워크는 AI 도입의 장벽을 낮추고 모든 엔지니어가 AI를 손쉽게 활용해 혁신을 가속화할 수 있도록 하는 데에 중점을 두고 있다. 선다레시 시니어 디렉터는 ▲반복 작업의 자동화 및 대규모 데이터 분석으로 인간 전문가의 역량을 강화하고 ▲기존 워크플로와 도구에 AI 기능을 통합하여, 학습 부담 없이 자연스러운 AI 활용을 도우며 ▲코딩 지식과 관계 없이 모든 사용자가 AI를 구축하고 배포할 수 있는 환경을 제공하는 세 가지 접근법을 통해 AI 도입을 가속화한다는 로드맵을 소개했다. 이 프레임워크를 활용하면 전처리 영역에서는 형상 인식 AI 기술로 부품 분류 및 군집화를 자동화하거나, 자연어 처리(NLP) 기반 코파일럿을 통해 모델 정리부터 전체 해석 설정까지 대화형으로 수행할 수 있다. 솔빙 영역에서는 기존의 시뮬레이션 데이터를 학습해 CAD 또는 메시 단계에서 물리 현상을 빠르게 예측할 수 있고, 시스템 레벨의 시뮬레이션 속도를 높일 수 있다. 후처리 영역에서는 AI가 핫스폿이나 파손 영역을 자동 식별해 결과 분석을 돕는다. 이 프레임워크의 기술적 기반은 분산된 데이터를 연결하는 ‘데이터 패브릭’과 AI 모델을 개발·운영하는 ‘AI 팩토리’의 결합이다. 선다레시 시니어 디렉터는 알테어의 데이터 분석/AI 플랫폼인 래피드마이너(RapidMiner)와 로코드 앱 개발을 지원하는 지멘스 멘딕스(Mendix)를 통해 라이프사이클 인텔리전스를 구현할 수 있다고 설명했다.     엔지니어링 AI의 혁신 동력 에이전틱 AI(Agentic AI), 지식 그래프(Knowledge Graph), 생성형 AI 등 최신 AI 기술이 R&D부터 설계와 제조까지 엔지니어링 전반의 혁신을 가속화하고 있다. 알테어는 이들 기술이 개별적으로도 강력하지만, 서로 결합하면서 데이터 기반의 신속한 의사결정을 지원하고 기존 워크플로를 지능적으로 전환하는 핵심 동력으로 작용한다고 소개했다. AI 에이전트는 사용자를 대신해 특정 목표를 이해하고 자율적으로 판단 및 실행하는 ‘지능형 디지털 대리인’이다. 단순 반복 작업을 자동화하는 것을 넘어서, 여러 에이전트가 협업하는 다중 에이전트 구조를 통해 복잡한 과업을 수행하는 것이 최근의 흐름이다. 엔지니어링 현장에도 공정 상 발생한 문제에 대해 자연어로 질문하면 해결 방법을 제시하거나, 생산 라인의 다운타임 원인을 분석하고 관련 데이터를 종합해 보고하는 등의 AI 에이전트가 도입되고 있다. 알테어는 시각적 워크플로 설계 도구를 통해 이러한 AI 에이전트를 쉽게 구축하고 AI 클라우드 프로세스와 원활하게 연결하는 방법을 제시했다. 지식 그래프는 다양한 출처(소스)에 분산된 데이터를 하나의 의미 계층(semantic layer)으로 통합해서 데이터 간의 숨겨진 관계를 파악하게 하는 기술이다. 이는 AI 모델의 가장 큰 문제점으로 꼽히는 환각(hallucination) 현상을 최소화하고, 장기적인 맥락을 이해하는 메모리로 기능하면서 신뢰성 높은 AI 에이전트를 구현할 수 있게 돕는다. 엔지니어링 분야에서 지식 그래프는 여러 AI 에이전트가 일관된 지식 베이스를 공유하게 해서 협업의 효율을 높이고, 공장 문제 해결 시 여러 데이터베이스에 동적으로 접근하여 질문에 답하는 아키텍처를 구현하는 데 쓰인다.   PLM과 AI의 시너지로 더 큰 혁신도 가능 알테어는 지난 3월 지멘스와의 합병을 완료했다. 제조 기술에 강점을 가진 지멘스와 엔지니어링 및 AI 기술에 집중해 온 알테어의 시너지에 대해, 이번 워크숍에서 한 가지 실마리를 발견할 수 있었다. 알테어는 AI와 PLM(제품 수명주기 관리)의 결합이 제조업의 패러다임을 바꿀 것으로 보았다. 한국알테어 최병희 본부장은 “많은 기업이 PLM 시스템에 제품의 설계부터 생산, 운영까지 대량의 데이터를 축적하고 있지만, 이를 제대로 활용하지 못하고 있다. 이 PLM 데이터를 AI로 분석해 기업의 핵심 자산으로 만들고, 경험에 의존하던 사후 대응 방식의 업무 환경을 미래가 예측하고 문제를 예방하는 예측 기반의 업무 환경으로 혁신할 수 있다”고 소개했다. 지멘스의 PLM 설루션인 팀센터(Teamcenter)가 제품의 모든 역사를 기록한 단일 진실 공급원(single source of truth)이라면, 알테어의 래피드마이너는 코딩 지식이 없이도 AI 모델을 개발할 수 있는 ‘똑똑한 AI 분석가’라고 할 수 있다. 두 설루션을 통합하면 래피드마이너가 팀센터의 데이터를 분석해 숨겨진 패턴과 인사이트를 찾아내고, 이를 바탕으로 미래 예측 모델을 생성할 수 있다. 그리고 이 예측 결과를 다시 팀센터에 전달해 시스템 전체가 똑똑해지는 선순환 구조를 만든다. 최종적으로는 현실을 명확히 이해하고 미래를 예측하는 ‘지능형 디지털 트윈’을 완성할 수 있다는 것이 최병희 본부장의 설명이다. 이 외에 공급망 최적화, 품질 이상의 조기 탐지, 고객 피드백의 반영 등 다양한 분야로 시너지를 확장할 수 있는 가능성도 점칠 수 있다. 최병희 본부장은 “PLM 데이터를 시작으로 ERP, MES, CRM 등 분산된 기업 데이터를 통합하면 더 큰 범위의 업무 혁신이 가능하다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
어도비, 기업의 고객 경험 오케스트레이션 혁신을 지원하는 AI 에이전트 정식 출시
어도비가 기업의 고객 경험 및 마케팅 캠페인 구축, 전달, 최적화 방식을 혁신적으로 바꿀 AI 에이전트(AI Agents)의 정식 출시를 발표했다. 또한 어도비는 익스피리언스 플랫폼(Adobe Experience Platform : AEP) 에이전트 오케스트레이터(Agent Orchestrator)를 통해, 자사 및 서드파티 생태계 전반에서 에이전트가 맥락을 파악하고, 여러 단계의 작업을 계획하며, 응답을 개선하는 등 다양한 기능을 수행할 수 있도록 에이전트를 맞춤화, 관리하는 기업용 AI 플랫폼도 구축하고 있다고 밝혔다. 에이전트 오케스트레이터의 토대가 되는 어도비 익스피리언스 플랫폼은 기업들이 전사적으로 실시간 데이터를 연결해 기업 데이터, 콘텐츠, 워크플로에 대한 심층적인 인사이트를 제공하는 플랫폼이다. 어도비 익스피리언스 플랫폼 고객의 70% 이상이 어도비 및 서드파티 전반의 에이전트와 팀이 상호작용할 수 있도록 지원하는 대화형 인터페이스인 어도비의 AI 어시스턴트를 사용하고 있다. 허쉬 컴퍼니, 레노버, 머클, 웨그먼스 푸드 마켓, 윌슨 컴퍼니 등의 브랜드가 어도비의 에이전틱 AI 설루션을 사용해 조직 내 전문성을 강화하고 영향력 있는 고객 경험을 제공하고 있다.     어도비 익스피리언스 플랫폼 에이전트 오케스트레이터는 의사결정 과학 및 언어 모델 기반의 추론 엔진을 탑재해, 동적 및 적응형 추론도 지원한다. 자연어 프롬프트에서 사용자의 의도를 해석하고, 전체적으로 조율된 계획에 따라 어떤 에이전트를 활성화할지 상황에 맞춰 결정한다. 그 결과 에이전트 오케스트레이터는 맥락에 맞게 목표를 이룰 수 있도록 자동화 작업을 수행하고, 사람이 개입하는 방식을 사용해 세부 조정도 지원한다.  ▲오디언스 에이전트(Audience Agent ▲저니 에이전트(Journey Agent) ▲익스페리멘테이션 에이전트(Experimentation Agent) ▲데이터 인사이트 에이전트(Data Insights Agent) ▲사이트 옵티마이제이션 에이전트(Site Optimization Agent) ▲프로덕트 서포트 에이전트(Product Support Agent) 등의 AI 에이전트는 어도비 실시간 고객 데이터 플랫폼(Adobe Real-Time Customer Data Platform : RT-CDP), 어도비 익스피리언스 매니저(Adobe Experience Manager), 어도비 저니 옵티마이저(Adobe Journey Optimizer), 어도비 커스터머 저니 애널리틱스(Adobe Customer Journey Analytics) 등 어도비 엔터프라이즈 애플리케이션 내에서 직접 사용할 수 있다. 기업은 AI 에이전트를 활용해 마케터의 역량을 강화하고 고객 경험 오케스트레이션(CXO)를 가속화할 수 있다. 출시를 앞둔 익스피리언스 플랫폼 에이전트 컴포저(Experience Platform Agent Composer)는 기업이 브랜드 가이드라인, 조직 정책 관리 등에 기반해 AI 에이전트를 맞춤화하고 구성할 수 있는 단일 인터페이스를 제공한다. 이를 통해 팀은 AI 에이전트 작업을 세밀하게 조정하고 성과를 가시화하는 시간을 단축할 수 있다. 또 에이전트 SDK(Agent SDK) 및 에이전트 레지스트리(Agent Registry)를 포함한 새로운 개발자 툴을 통해 개발자는 에이전틱 애플리케이션을 구축, 확장 및 조율할 수 있게 돼, 새로운 산업과 사용자 페르소나에 맞춰 사용 사례를 확장할 수 있다. 팀이 더 나은 성과를 내기 위해 에이전틱 AI를 도입함에 따라, 서로 다른 생태계에 속한 AI 에이전트 간 상호운용성은 매우 중요하다. 에이전트 컴포저는 기업이 Agent2Agent 프로토콜을 사용해 여러 에이전트의 협업을 추진할 수 있는 툴을 제공한다. 특정 요구사항을 충족하는 맞춤형 역량을 통해 더 많은 워크플로에 걸쳐 에이전틱 AI의 가치를 확장시킨다. 또한 코그니전트, 구글 클라우드, 하바스, 메달리아, 옴니콤, PwC, VML과의 새로운 에이전틱 AI 파트너십을 통해 에이전트 간 워크플로의 원활한 실행과 다양한 산업 및 사용 사례에 걸친 맞춤화도 가능해졌다. 안줄 밤브리(Anjul Bhambhri) 어도비 익스피리언스 클라우드 엔지니어링 수석 부사장은 “어도비는 오랫동안 디지털 데이터를 실행 가능한 인사이트로 전환함으로써, 기업들이 고객에게 매력적인 경험을 제공하도록 지원해왔다. 이제 어도비는 에이전틱 AI(Agentic AI)를 활용해 특화된 에이전트를 구축하고, 이를 데이터, 콘텐츠, 경험 생성 워크플로에 내장하고 있다”면서, “어도비의 AI 혁신은 프로세스를 재구상하고 마케팅 팀의 생산성을 높이고, 개인화된 경험을 대규모로 제공해 비즈니스 성장을 촉진함으로써 고객 경험을 향상하고 있다”고 말했다.
작성일 : 2025-09-12
파수, ‘AI-R Privacy’ GS 인증 획득… 공공 및 기업 AI 시장 확대 가속화
파수는 자사의 AI 기반 비정형 데이터 개인 정보 보호 설루션인 ‘AI-R Privacy’(에어 프라이버시)가 GS 인증을 획득했다고 전했다. 파수는 GS 인증 1등급 획득을 통해 품질을 공인받은 AI-R Privacy를 발판으로, 최근 관심이 높은 기업 및 공공 개인정보보호시장의 고객 확대를 가속화한다는 계획이다. GS 인증은 국제표준화기구(ISO)가 정한 국제표준에 따라 안전성, 기능성, 신뢰성 등의 소프트웨어 품질을 평가하고 인증하는 제도이다. GS 인증을 획득한 제품은 공공기관 사업에서 우선 구매 대상으로 지정된다. AI-R Privacy는 AI를 기반으로 비정형 데이터 내에서 개인정보를 검출 및 마스킹할 수 있는 GS 인증 개인 정보 보호 설루션이라는 점을 내세운다. AI-R Privacy는 AI로 문서, 이미지, PDF 등의 비정형 데이터 내 개인정보를 식별 및 보호하는 설루션이다. AI 기반의 자연어 처리(NLP) 기술과 광학식 문자판독장치(OCR) 기술, 파수 자체 딥러닝 기술을 활용해 높은 개인정보 검출 정확도가 특징이다. 트랜스포머 기술 기반의 언어 모델을 적용해 복잡한 문장에서도 맥락을 파악하고, 이름, 주민등록번호, 주소, 은행 계좌, 카드 번호 등 다양한 유형의 개인정보를 검출 및 마스킹할 수 있다. 파수는 “기존 방식으로는 검출이 어렵던 서버 내 PDF, 이미지 등의 비정형 데이터에서 개인정보를 검출하고 가명처리할 수 있다는 점에서 고객 만족도가 높다. 또한 많은 인력이 투입돼 일일이 직접 개인정보를 찾아 가명화하던 기존 방식을 AI-R Privacy를 통해 혁신해, 시간 및 비용 절감 효과를 경험하고 있다”고 소개했다. 파수의 고동현 상무는 “개인정보보호가 최근 기업 및 기관에 가장 큰 보안 이슈로 떠오른 가운데, AI 기반으로 복잡한 맥락에서 개인정보 검출이 가능한 파수 AI-R Privacy가 엄격한 심사를 통해 그 품질을 인증받았다”면서, “업계 최초로 GS 인증을 획득한 만큼, 비정형 데이터 내 개인정보보호 강화가 필요한 공공, 방산, 금융 등 다양한 산업군의 고객 확보가 가속화될 것으로 기대된다”고 말했다.
작성일 : 2025-09-10