• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 자동화"에 대한 통합 검색 내용이 2,920개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
인텔 가우디 3 AI 가속기, IBM 클라우드 통해 첫 상용 클라우드 서비스 제공
인텔은 IBM 클라우드가 클라우드 서비스 제공사로는 처음으로 인텔 가우디 3(Intel Gaudi 3) AI 가속기 기반 상용 서비스를 제공한다고 밝혔다. 인텔은 이로써 클라우드 서비스 고객이 고성능 인공지능 역량을 보다 쉽게 활용할 수 있도록 지원하고, AI 특화 하드웨어의 높은 비용 장벽을 낮출 수 있을 것이라고 밝혔다. 이번 IBM 클라우드 상용화는 가우디 3의 첫 대규모 상업 배포이다. 양사는 IBM 클라우드에서 인텔 가우디 3를 활용해 고객이 합리적인 비용으로 생성형 AI를 테스트·혁신·배포하도록 돕는 것을 목표로 하고 있다. 가트너의 최근 조사에 따르면 2025년 전 세계 생성형 AI 관련 지출은 2024년 대비 76.4% 증가한 6440억 달러에 이를 전망이다. 가트너는 “생성형 AI가 IT 지출 전 영역에 변혁적 영향을 미치고 있으며, 이에 따라 AI 기술이 기업 운영과 소비재에 필수 요소로 자리 잡을 것”이라고 분석했다. 많은 기업이 생성형 AI와 같은 도구가 자동화·워크플로 개선·혁신 촉진 등에 분명한 이점이 있다는 것을 알고 있으나, AI 애플리케이션 구축에는 막대한 연산 능력이 필요하고 대개의 경우 고가의 특화된 프로세서를 요구하기 때문에 많은 기업들은 AI 혜택을 누리지 못하고 있다.     인텔 가우디 3 AI 가속기는 개방형 개발 프레임워크를 지원하면서 생성형 AI·대규모 모델 추론·파인튜닝 등에 대한 폭발적인 수요를 충족하도록 설계됐으며, 멀티모달 LLM(대규모 언어 모델)과 RAG(검색 증강 생성) 워크로드에 최적화되어 있다. IBM 클라우드는 다양한 기업 고객, 특히 금융 서비스, 의료 및 생명 과학, 공공 부문 등 규제 산업에 종사하는 고객에게 서비스를 제공한다. 현재 가우디 3는 독일 프랑크푸르트, 미국 워싱턴 D.C., 택사스 댈러스의 IBM 클라우드 리전에 적용되어 사용할 수 있다. 가우디 3은 IBM의 광범위한 AI 인프라스트럭처 제품에도 통합되고 있다. 고객들은 현재 IBM VPC(가상 프라이빗 클라우드)의 IBM 클라우드 가상 서버를 통해 가우디 3를 사용할 수 있으며, 2025년 하반기부터 다양한 아키텍처에 배포할 수 있다. 레드햇 오픈시프트(Red Hat OpenShift)와 IBM 왓슨엑스 AI 플랫폼(IBM’s watsonx AI platform)에 대한 지원은 이번 분기 내 가능해질 예정이다. 인텔의 사우라브 쿨카니(Saurabh Kulkarni) 데이터센터 AI 전략 담당은 “인텔 가우디 3 AI 가속기가 IBM 클라우드에 도입되며 기업 고객에게 추론 및 파인 튜닝을 위해 최적화된 성능으로 생성형 AI 워크로드를 확장할 수 있도록 지원하게 되었다”면서, “이번 협력은 전 세계 기업이 AI를 더 쉽게, 비용효율적으로 구현할 수 있도록 지원하려는 양사의 공동 노력의 일환”이라고 밝혔다. IBM의 사틴더 세티(Satinder Sethi) 클라우드 인프라스트럭처 서비스 총괄은 “더 많은 데이터 처리 능력과 더 높은 성능 구현은 전 세계 고객의 AI 도입을 촉진할 것”이라며 “인텔 가우디 3는 고객에게 AI의 하드웨어에 대한 더 많은 선택권과 더 많은 자유, 더 비용 효율적인 플랫폼을 제공해준다”고 밝혔다.
작성일 : 2025-05-08
한국후지필름BI, ‘레보리아 프레스’ 신제품 2종 로드쇼 개최
한국후지필름비즈니스이노베이션(이하 한국후지필름BI)은 5월 13일부터 전국 5개 도시에서 ‘레보리아 프레스(Revoria Press)’ 신제품 2종 로드쇼를 개최한다고 밝혔다. 이번 행사는 디지털 인쇄기 신제품과 함께, 인쇄 산업의 디지털 전환(DX)을 지원하는 다양한 솔루션을 소개할 예정이다.   한국후지필름BI는 부산(5월 13일)을 시작으로 대구(5월 14일), 대전(5월 15일), 서울(5월 16일), 광주(5월 20일) 순으로 로드쇼를 개최할 예정으로, 빠르게 변화하는 인쇄 시장 환경 속에서 고객이 직면한 과제를 진단하고 한국후지필름BI의 자동화 기반 솔루션을 직접 체험할 수 있는 기회를 제공한다.   첫번째 세션에서는 상업용부터 소형 오피스 환경에 이르기까지 폭넓은 활용이 가능한 디지털 인쇄기 ‘레보리아 프레스’ 신제품 2종이 소개된다. 해당 신제품은 고화질 LED 프린트 헤드와 특수 토너로 선명한 색상 구현이 가능하며, AI 기반 프린트 서버와 ‘스마트 모니터링 게이트(Smart Monitoring Gate)’ 기능을 탑재해 출력 품질과 작업 효율을 동시에 향상시킨 것이 특징이다. 이번 신제품을 통해 중소형 상업 인쇄 시장에서도 특수 토너를 활용해 새로운 비즈니스 기회를 창출할 수 있다.   이어지는 세션에서는 고객의 니즈에 따라 인쇄 프로세스별 ▲업무 자동화(RPA) 솔루션 ▲클라우드 기반 협업 플랫폼 ‘FUJIFILM IWpro(Integrated Working Process)’, ▲원스톱 IT 운영 관리 서비스 ‘IT 엑스퍼트 서비스(ITESs)’ ▲디지털 프린트 워크플로우 소프트웨어 ‘레보리아 XMF 프레스레디’ 등 다양한 DX 솔루션을 제안한다.   이번 서울 로드쇼는 서울 중구에 위치한 한국후지필름BI ‘CHX 라이브 오피스’에서 진행된다. 대전은 KW컨벤션, 대구는 대구인터불고호텔, 광주는 라마다호텔에서 개최된다. 부산 로드쇼는 한국후지필름BI의 쇼룸 ‘라이브 오피스 부산’에서 열린다.   한국후지필름BI 하토가이 준 대표는 ”한국후지필름BI는 고객의 CHX(Customer Happiness Experience) 실현을 위해 업종별 맞춤형 디지털 전환을 적극 지원하고 있다”며, “이번 로드쇼와 신제품을 통해 인건비 및 인력 부족 문제를 해결하고, 생산성과 수익성 향상이라는 고객의 핵심 과제에 기여할 수 있기를 기대한다”고 말했다.
작성일 : 2025-05-08
델, 뉴타닉스 클라우드 플랫폼 통합된 ‘델 파워플렉스’ 오퍼링 출시
델 테크놀로지스가 ‘뉴타닉스 클라우드 플랫폼’과 통합된 외장형 스토리지 오퍼링을 공식 출시했다. 델의 고성능 확장형 시스템과 뉴타닉스의 소프트웨어 정의 아키텍처가 결합된 이 오퍼링은 IT 현대화를 가속하고 운영 효율을 강화하는 동시에 스토리지 및 인프라 관리 간소화를 돕는다. ‘델 파워플렉스 위드 뉴타닉스 클라우드 플랫폼(Dell PowerFlex with Nutanix Cloud Platform)’은 회복탄력성, 보안, 확장성 및 고성능이 필수적인 대규모 미션 크리티컬 환경에 적합하도록 설계됐다. 소프트웨어 정의 설루션으로서 델 파워플렉스의 확장성 및 성능과 뉴타닉스의 하이퍼바이저, 통합형 재해 복구 기능 및 네트워크 보안을 결합했다. 이제 파워플렉스는 ‘뉴타닉스 AHV(Nutanix Acropolis Hypervisor)’에 대한 지원 확장으로 더욱 유연한 하이퍼바이저 옵션을 제공하게 됐다.      이번에 출시한 델 파워플렉스 위드 뉴타닉스 클라우드 플랫폼’은 가상화 및 베어메탈 미션 크리티컬 워크로드를 단일 플랫폼에 통합하여 사일로를 없애고 운영 비용을 절감한다. 컴퓨팅 및 스토리지를 독립적으로 확장하고 각각의 자원을 손쉽게 조정함으로써 운영 중단 없이 변화하는 요구사항에 대응하기 용이하다. 이 제품은 파워플렉스 매니저(PowerFlex Manager) 및 뉴타닉스 프리즘 센트럴(Nutanix Prism Central)과 같은 자동화 툴을 사용해 업데이트, 리소스 할당, 지속적인 관리와 같은 IT 프로세스를 간소화한다. 이를 통해 IT 팀은 비즈니스 성과에 직결되는 전략적 우선순위에 더 많은 시간을 할애할 수 있다. 또한, 최신 워크로드에 요구되는 고성능 및 엔터프라이즈급 보안을 제공한다. 이를 통해 워크로드를 통합하고, 동적으로 확장하며, 중요한 프로세스를 자동화하는 동시에 내장된 사이버 회복탄력성 및 재해 복구 기능을 통해 강력한 데이터 보호 기능을 활용할 수 있다. 중요한 애플리케이션의 보안과 고가용성, 변화하는 요구 사항에 대한 적응력을 유지하여 오늘날의 급변하는 디지털 환경에서 높은 안정성과 유연성을 확보할 수 있다.  델과 뉴타닉스는 전통적인 워크로드와 최신 워크로드를 모두 쉽게 관리할 수 있는 설루션을 제공하기 위해 지속적으로 협력하고 있다. 파워플렉스의 동급 최고 수준의 소프트웨어 정의 스토리지 및 컴퓨팅 기능과 뉴타닉스 클라우드 플랫폼의 가상화 및 관리 기능을 완벽하게 통합하여, 유연성, 성능, 효율성을 높인 유니파이드 설루션으로 제공한다. 한국 델 테크놀로지스의 김경진 총괄사장은 “급변하는 디지털 환경에 맞춰 성장을 촉진하기 위해서는 민첩성과 유연성은 물론 인프라 단에서의 강력한 보안 조치를 확보해야 한다. 뉴타닉스와의 협력은 혁신을 향한 델의 꾸준한 노력에 새로운 힘을 더한다”고 말했다. 
작성일 : 2025-05-07
디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder
주요 디지털 트윈 소프트웨어 디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder 개발 : Ansys, www.ansys.com 자료 제공 : Ansys Korea, 02-6009-0500, www.ansys.com   Ansys Twin Builder는 디지털 트윈(Digital Twin) 기술을 활용하여 실제 물리 시스템을 가상 환경에서 시뮬레이션하고 최적화할 수 있는 솔루션이다. 멀티피직스 시뮬레이션 기술을 기반으로 물리 모델과 실시간 센서 데이터를 결합하여 예측 유지보수 및 성능 최적화를 지원한다. 제조, 자동차, 항공우주, 전자, 에너지, 의료 등 다양한 산업에서 활용된다.   1. 주요 특징 (1) Physics 기반의 디지털 트윈 구축 IoT 데이터 및 시뮬레이션 모델을 결합하여 정밀한 디지털 트윈 모델 생성 (2) 실시간 시뮬레이션 및 예측 유지보수 지원  센서 데이터를 활용하여 장비의 고장 가능성 예측 및 유지보수 최적화 (3) 멀티피직스 통합 분석  전자기, 유체, 구조, 열 해석을 통합하여 복잡한 시스템 성능 분석 가능 (4) AI 및 머신러닝 연계 가능  OptiSLang을 활용한 AI 기반 최적화 및 데이터 분석 지원 (5) IoT 및 클라우드 플랫폼과 연계  AWS, Microsoft Azure, PTC ThingWorx 등 다양한 IoT 플랫폼과의 호환성 제공 2. 주요 기능 (1) 디지털 트윈 생성 및 실행  시뮬레이션 모델을 물리 데이터와 연결하여 실시간 가상 시뮬레이션 수행 (2) Model-Based Systems Engineering(MBSE) 지원  시스템 레벨 설계를 위한 MBSE 기반 시뮬레이션 제공 (3) 고급 시뮬레이션 및 자동화  MATLAB, Simulink, FMI 모델과 통합 가능하여 복잡한 시스템 해석 (4) PLM 및 데이터 관리 통합  Siemens Teamcenter, PTC Windchill 등 주요 PLM 시스템과 연계하여 제품 수명주기 관리 지원 (5) Predictive Maintenance 기능 내장  실시간 데이터 분석을 통해 유지보수 전략 개선 3. 도입 효과 ■ 설비 가동률 향상: 디지털 트윈을 활용한 사전 예측 유지보수로 시스템 다운타임 감소 ■ 제품 개발 기간 단축: 프로토타입 제작 없이 가상 환경에서 제품 설계 검증 가능 ■ 운영 비용 절감: 최적화된 유지보수 전략을 통해 운영 및 유지보수 비용 절감 ■ 설계 품질 향상: 실제 운영 데이터를 기반으로 제품 설계 개선 및 성능 최적화 4. 주요 고객 사이트 ■ 제조업: 두산 그룹, POSCO  ■ 자동차: 현대자동차그룹, LS Automotive Technologies, HL Mando ■ 항공우주: Korea Aerospace Industries (KAI), Hanwha Aerospace ■ 반도체/전자: Samsung Electronics, SK Hynix, LG Electronics, Samsung Electro-Mechanics, Samsung Display, LG Display, LG Innotek, LX Semicon ■ 에너지: LG Energy Solution, SK On, Samsung SDI, Hyundai Electric & Energy Systems, Doosan Enerbility, Hanwha Solutions   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-04
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
AI 기반 크리에이티브 워크플로 혁신
AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (2)   영상 제작은 수작업 중심의 접근 방식에서 디지털화와 함께 컴퓨터 기반의 자동화된 워크플로까지 변화했다. 최근에는 AI 기술과 멀티모달 제작 방식이 결합되어 콘텐츠 제작의 효율과 창의성을 극대화하고 있다.   ■ 연재순서 제1회 AI 영상 제작 생태계의 현재와 미래 제2회 AI 기반 크리에이티브 워크플로 혁신 제3회 소셜 미디어 최적화 AI 영상 제작 전략 제4회 AI 특수효과 및 후반작업 마스터하기 제5회 AI 기반 몰입형 사운드 디자인   ■ 최석영 AI프로덕션 감성놀이터의 대표이며, 국제고양이AI필름페스티벌 총감독이다. AI 칼럼니스트로도 활동하고 있다.    이미지와 영상 제작을 위한 기존의 제작 방식   그림 1. ‘달리는 열차(Arrival of a Train at La Ciotat)’, 뤼미에르 형제, 1896   아날로그 제작 방식 : 개념과 흐름 디지털 도구가 도입되기 전에, 이미지와 영상 제작은 사전 기획과 여러 단계에 걸친 수작업 과정을 기반으로 한 접근 방식을 따랐다. 이 과정에서 기획자는 제작자와 협력하여 구체적인 제작을 위한 기획 단계를 만들어 낸다. 모든 작업은 계획적으로 이루어지며, 각 단계에서 창작자의 직접적인 개입과 섬세한 조정이 이루어진다. 디지털 도구가 상용화되기 전에는 스토리보드 작성, 레이아웃 결정, 시나리오 등이 기획 단계에서 만들어졌다. 영화용 카메라로 장면을 촬영하고, 촬영 감독과 조명 팀이 각종 기기를 수동으로 조작하며 원하는 장면을 구현한다. 후반 작업에서는 필름을 절단하고 이어 붙여 편집하며, 음향은 따로 녹음하여 영상을 보완한다. 이러한 방식은 기술적인 장치뿐만 아니라 창작자의 기술과 창의성에 크게 의존하며, 디지털화가 이루어지기 전까지 오랜 시간 이어져 온 기본적인 영상 제작 방식이다.   그림 2. ‘달나라 여행(Le Voyage dans la Lune)’, 1902   ‘달나라 여행’ 작품은 아이디어가 스토리보드화되어 영상화되는 전형적인 제작 과정으로 만들어졌다. 영상 제작 과정을 3단계로 보통 나누어지는데, 좀 더 자세히 5단계로 구조화하여 설명한다.  기획 단계 디자인 및 촬영 준비 제작 단계 후반 작업 단계 배포 및 관리 기존의 제작 방식은 오랜 기간 창작자의 창의적 역량을 극대화하고, 하나의 결과물을 정교하게 다듬는 데 중점을 둔 체계적인 접근법이었다. 하지만 이 과정은 기술적 도구와 인력이 많이 요구되며, 비용과 시간이 많이 들었다. 이러한 점에서 기존 제작 방식은 디지털화를 통해 새로운 워크플로로 발전하게 되었다.   디지털 도구의 도입과 디지털화된 제작 방식   그림 3. The iconic ship · ‘스타워즈’의 특수 효과,1977   디지털 도구의 도입 이후, 이미지와 영상 제작은 큰 변화를 겪으며 효율성과 창의성을 동시에 향상시킬 수 있는 새로운 접근 방식을 채택하게 되었다. 디지털화된 제작 방식은 전통적인 수작업 기반 방식에서 벗어나, 컴퓨터와 소프트웨어를 활용한 자동화 및 고도화된 기술을 중심으로 이루어진다.  이 과정은 기획, 디자인 및 촬영 준비, 제작 단계, 후반 제작 단계, 배포 및 관리 등 여러 단계로 나뉘며, 각 단계마다 디지털 기술이 어떻게 적용되는지 구체적으로 살펴볼 수 있다.    그림 4. ‘아바타’의 제임스 카메론 감독   필자가 영화를 공부하던 1997년에는 전통적인 아날로그 제작 방식을 공부하면서 비디오 캠코더가 나왔으며, 촬영과 후반 제작 과정에서 디지털화가 가속화되었다. 컴퓨터의 발전과 응용 프로그램의 향상에 힘입어, ‘스타워즈’가 아날로그 촬영을 디지털화하고 CG를 추가하여 다시 상영하였다. 아날로그 제작 방식과 디지털 제작 방식 믹스되는 부분이 있었으며, 2000년대 이후 점차 디지털화되어 갔다. 현재의 방식은  촬영, 편집, 후반 제작 과정 모두 디지털화(데이터로 저장)하여 제작되고 있다. 디지털화된 제작 방식에 모션 캡처나 리얼타임 엔진을 활용한 가상 프로덕션 등 새로운 기술이 적용되고 있다. 대표적인 예로 영화 ‘아바타’의 혁신을 말할 수 있다. ‘아바타’는 디지털 기술과 혁신된 모션 캡처 방식을 활용하여 영화 제작 방식을 혁신적으로 변화시켰다. 특히, 3D 촬영 기술과 모션 캡처 기술을 통해 캐릭터와 환경을 사실감 있게 재현하며 영화의 몰입감을 극대화했다. 이러한 시각적 혁신은 3D 영화의 새로운 가능성을 열었고, 3D 영화의 인기를 끌어올리는 데 큰 역할을 했다. 또한, 디지털 환경 디자인과 가상 세트를 활용하여 판도라라는 상상의 세계를 창조했으며, 이는 다른 영화가 디지털 가상 세트를 활용하는 데 영향을 미쳤다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, openai, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[포커스] DN솔루션즈, 금속 3D 프린터 'DLX 시리즈'로 제조 혁신 선도한다
지난 4월 2일부터 5일까지 부산 벡스코와 경남 창원 DN솔루션즈 본사에서 열린 '제15회 DN솔루션즈 국제공작기계 전시회(DIMF 2025)'는 국내외 제조 업계의 이목을 집중시켰다. DN솔루션즈는 이번 전시회를 통해 첨단 공작기계와 자동화 설루션, 그리고 적층제조(Additive Manufacturing : AM)의 새로운 기술을 선보이며, 제조 혁신의 새로운 방향을 제시했다. ■ 박경수 기자   ▲ DIMF 2025가 열린 지난 4월 2일 부산 BEXCO 전시장   금속 적층제조의 미래, 새로운 DLX 시리즈 공개 DIMF는 DN솔루션즈가 1997년부터 격년으로 개최하는 자체 전시회로, 올해로 15회를 맞아 ‘공작기계 가공 공정 전반을 위한 오토메이션 플랫폼’을 주제로 열렸다. 총 50여 종의 첨단 공작기계와 자동화 설루션이 전시되어 관심을 모았는데, 국내외 고객 1000여 명을 포함한 5000여 명의 관람객이 다녀갔다. 이번 전시회의 하이라이트는 DN솔루션즈가 고성능 산업용 ‘금속 3D 프린터’로 알려진 LPBF(Laser Powder Bed Fusion) 방식의 금속 적층 장비 ‘DLX 시리즈(DLX 325, DLX 450)’를 최초로 공개한 것이다. 이 기술은 금속 적층제조 방식 중 발전된 기술이자 활용도가 높은 공법으로, 현재 금속 적층 시장의 약 80%를 차지하고 있다. DLX 450은 알루미늄 합금, 인코넬, 타이타늄 등 분말 소재를 활용해 최대 450×450×450mm 크기의 정밀 부품 제작이 가능하다. DLX 시리즈는 3D 프린팅 장비와 함께 적층제조 전반의 과정을 지원하는 맞춤형 소프트웨어를 함께 제공한다. DN솔루션즈 김원종 대표는 “DN솔루션즈는 지금까지 반세기 동안 전 세계에 총 29만대의 공작기계를 판매했다”며, “우리는 이 같은 고객의 신뢰를 바탕으로, 전통적인 공작기계를 넘어 오토메이션 플랫폼이나 금속 적층 장비처럼 수요 산업의 전반을 혁신할 수 있는 설루션을 제시하고자 한다”고 밝혔다.   ▲ DN솔루션즈 김원종 대표가 적층제조로 제작된 부품을 설명하고 있다.   글로벌 시장 공략을 위한 전략적 투자 이들 소프트웨어는 ▲적층제조를 적용할 수 있는 부품을 찾아내고 ▲부품당 비용을 계산하며 ▲적층 시 필요한 최적 서포트를 설계하고 ▲신규 소재 공정을 개발하는 등의 기능을 통해 고객의 생산성과 효율성을 극대화하는 데 초점을 맞췄다. 또한 DN솔루션즈는 적층제조 방식으로 제작된 복합가공기용 ‘밀링 스핀들 캡’ 부품도 전시해 관심을 모았다. 이 샘플은 적층제조 특화 설계를 통해 기존 방식 대비 약 20%의 성능 개선 효과를 보였다. 한편 DN솔루션즈는 금속 적층제조 분야의 글로벌 시장 공략을 위해 독일에 ‘적층제조 솔루션 센터(ASC)’를 새롭게 설립했다. 이 센터는 최적 부품 선정, 맞춤형 설계(DfAM), 공정 개발 및 생산·서비스까지 전 주기를 아우르는 시스템을 구축하여 유럽 시장을 적극 공략한다는 계획이다. 또한 인도의 금속 적층제조 장비·설루션 전문 기업인 인텍(INTECH Additive Solutions)과 전략적 투자 및 파트너십 계약을 체결하며, 아시아 시장에서도 입지 강화에 나섰다. DN솔루션즈 김원종 대표는 “인텍과의 투자 협력을 통해 금속 절삭뿐만 아니라 금속 적층제조까지 포함해 장비, 공정 기술, 소프트웨어 전반의 설루션을 제공할 수 있게 되었다”며, “자동차, 항공우주, 의료기술, 전기전자 등 시장에서 복잡한 형상과 내부 구조, 소재 효율성을 요구하는 분야나, 반도체 산업 공급 업체를 포함한 다양한 제조업 고객의 성공을 지원할 수 있을 것으로 기대한다”고 말했다.   ▲ 제15회 DN솔루션즈 국제 공작기계 전시회(DIMF 2025) 현장 모습   파트너십을 통한 성장과 전문성 강화 이번 파트너십으로 DN솔루션즈의 금속 절삭 가공 분야의 전문성과 인텍의 금속 적층제조를 위한 360도 종합 솔루션의 결합이 가능해졌다. 특히 DN솔루션즈는 금속 적층 분야에서 가장 활용도가 높고 발전된 기술인 레이저 파우더 베드 퓨전(LPBF) 기술을 추가하며 제품 포트폴리오를 확대할 수 있게 되었다. LPBF 기술은 금속 적층제조 시장의 약 80%를 차지하며, 금속 분말을 얇게 도포한 후 레이저를 이용하여 금속 분말을 선택적으로 응용 및 융합하여 적층하는 방식으로 작동한다. 적층을 위한 플랫폼이 아래로 이동하면서 추가 금속 분말이 도포되고 다시 용융(Melting) 및 융합(Fusion)하는 과정을 반복적으로 수행하여 점진적으로 최종 형상이 만들어지게 된다. DN솔루션즈 김원종 대표는 “금속 적층 방식은 가공 후 조립 과정을 단축하고, 절삭으로 구현이 불가능한 형상을 만들 수 있어 무한한 혁신 가능성이 있다”며, “2030년까지 금속 적층제조와 절삭 가공의 시너지를 극대화하겠다”고 밝혔다.   인터뷰 : DN솔루션즈 적층제조 부문 부사장 비노 순타라쿠마란 박사     이번에 발표한 내용을 조금 더 자세히 설명한다면 적층제조, 자동화, 소프트웨어 세 가지를 하드웨어적으로 통합하여 고객 산업 제조를 가능하게 한다. 소프트웨어는 이를 연결하고, 서비스는 고객 여정 전반을 지원하는 것이 우리의 미션이다. 단순한 장비 공급을 넘어 통합 제조 플랫폼으로 진화하며, 고객의 제조 프로세스를 처음부터 끝까지 지원한다는 전략이다.   적층제조 기술이 절삭가공과 어떻게 시너지를 내고 있는지 시장에서는 고품질과 표준화를 기대한다. 우리는 절삭가공과 적층제조를 연결하는 프로세스 체인을 가능하게 하는 장비를 개발하고 있다. 기존 강점인 절삭가공 기술과의 하이브리드 제조 체인 구축을 통해 생산성과 품질을 동시에 향상시키는 전략을 추진 중이다.   DLX 시리즈의 소프트웨어는 어떤 기능을 제공하는지 현재 알고리즘 기반 소프트웨어를 운영하고 있고, 향후 프린팅에 적합한 데이터 판단 기능이 포함된 AI 기반의 소프트웨어로 진화해 나갈 계획이다.   후처리 공정이 어렵다고 이야기했는데, 어떤 점이 특히 어려운지 후처리는 전문 지식이 없이는 어렵다. 그래서 우리는 이를 쉽게 알려주고, 자동화할 수 있는 소프트웨어를 함께 제공한다. 적층제조 확산의 걸림돌인 후공정 난이도를 극복하기 위한 소프트웨어 자동화 설루션 개발이 핵심 전략이다.   내부적으로 레퍼런스 사례가 있다면 NX2000 장비를 도입해 내부 설계자가 기존 부품을 통합해 효율성을 20% 이상 향상시켰다. 이처럼 적층제조 도입이 성능 향상과 부품 최적화로 이어지는 검증된 성과가 있으며, 실질적 레퍼런스를 통해 시장 신뢰도를 확보해 나가고 있다.   글로벌 시장 진출 전략은 무엇인지 우리는 유럽, 미국, 한국에 팀을 운영 중이며 글로벌 확장 준비를 마쳤다. 가격 경쟁력과 다양한 애플리케이션 적응력을 갖추고 있다.   한국 제조업이 적층제조 시장에서 어떤 가능성을 가지고 있는지 한국은 반도체, 자동차 등 제조 강국이다. 적층제조는 이노베이션을 위한 핵심 기술이기 때문에, 곧 시장이 열릴 것이라 확신한다. 제조 인프라가 강한 한국은 적층제조 확산의 최적지이며, DN솔루션즈는 국내 산업에 이를 선도하는 포지셔닝을 유지해 나갈 계획이다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[온에어] 디지털 공급망 관리로 산업 건설 프로젝트의 비효율 해소
캐드앤그래픽스 CNG TV 지식방송 지상 중계   지난 3월 27일 CNG TV는 ‘Digital Supply Chain 새로운 패러다임 : 산업 건설 프로젝트의 비효율을 넘어 스마트한 미래로’를 주제로 웨비나를 개최했다. 이번 웨비나는 디지털 공급망 관리의 새로운 패러다임을 제시하고, 산업 건설 프로젝트의 비효율성을 극복하여 스마트한 미래로 나아가는 방안을 모색하는 자리로 마련되었다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자    ▲ 캐드앤그래픽스 박경수 부장, 헥사곤 ALI 남궁진 영업이사   산업 건설 프로젝트와 공급망의 특징 산업 건설 프로젝트는 다른 산업과 달리 수요와 공급의 균형을 맞추기 어려우며, 데이터 사일로(silo) 현상과 구매·조달 중심의 공급망 관리로 인해 많은 어려움을 겪고 있다. 이러한 문제를 해결하기 위해 기업들은 엔드 투 엔드 공급망 관리, 데이터 연결, 자동화, AI 기반 예측, 디지털 트윈 등 다양한 전략과 기술을 도입해야 할 과제를 안고 있다. 따라서 성공적인 디지털 공급망 체계를 구축하려면 현업 중심의 애자일(agile) 방법론 적용, 비즈니스 가치 평가를 통한 우선순위 결정, 검증된 시스템과 최신 기술의 활용이 중요하며, 정량적인 효과 측정을 통해 투자 대비 가치를 입증할 수 있어야 한다. 헥사곤 ALI의 남궁진 영업이사는 산업 건설 프로젝트와 다른 산업 간 공급망의 차이에 대해 “다른 산업은 수요 예측과 공급 계획이 유기적으로 연결되어 있는 반면, 산업 프로젝트는 디자인, 구매, 물류, 시공 단계가 독립적으로 운영되며, 패스트트랙 스케줄링 기법이 사용된다”고 설명하며, 이로 인해 수요와 공급의 균형을 맞추기 어려운 상황이 발생한다고 덧붙였다. 산업 프로젝트에서 자재 관리는 전통적인 에너지·화학 플랜트와 인프라스트럭처 프로젝트로 나뉘며, 내부적으로는 수작업 기반의 프로세스와 사일로 조직 구조가 문제로 지적된다. 외부 요인으로는 서브컨트랙터와 영세 기업의 참여가 어려운 점이 있다. 남궁진 영업이사는 디지털 공급망 구축 전략과 관련하여 “엔드 투 엔드 공급망 관리가 중요하며, 디자인 단계부터 시공 단계까지 모든 과정을 포괄하는 계획이 필요하다”고 강조하며, “데이터 연결과 관리가 여전히 큰 도전 과제로 남아 있다”고 말했다.   디지털 전환을 위한 자동화 과제 자동화는 프로세스 및 현장에서 이루어질 수 있으며, IoT 센서를 통해 자재의 위치와 상태를 자동으로 추적하는 기술이 발전하고 있다. 또한 AI 기반의 예측 기법이 자재 관리와 공급망 최적화에 활용되고 있으며, 디지털 공급망 설루션의 효과는 자재 관리 효율성 증대와 비용 절감 측면에서 정량적으로 평가할 수 있다. 즉, ROI 평가를 통해 투자 대비 효과를 측정할 수 있다. 이번 웨비나에서는 디지털 전환의 글로벌 사례로 유럽의 한 EPC(설계·조달·시공) 기업이 엔드 투 엔드 공급망 관리를 통해 디지털 혁신을 이룬 사례가 소개되었다. 이 기업은 메가 프로젝트에서 자재 통합 관리 플랫폼을 구축하여 리스크를 줄이고 효율성을 향상시킨 것으로 알려졌다. 남궁진 영업이사는 디지털 공급망 관리의 미래에 대해 “공급망 관리는 디자인 단계부터 시공 단계까지 통합적으로 관리되어야 하며, 디지털 하이테크와 인적 역량을 결합하여 성공적인 공급망 관리가 이루어져야 한다”고 강조했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02