• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 우리가 발견한 것이 아니다"에 대한 통합 검색 내용이 1,684개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[칼럼] 융합형 인재의 필요성
급성장을 해오던 우리나라의 주력산업에 빨간 불이 켜진 지도 꽤 된 듯하다. 과거의 급성장에는 여러 이유가 있었겠지만 중요한 두 가지 배경이 있었다. 첫째, 미국, 유럽, 일본 등과 같은 선진국 롤모델이 있었고, 둘째, 대규모 장치산업을 근간으로 하는 자동차, 조선, 반도체, 디스플레이 등과 같은 주력산업의 선전이 있었다. 그러나 이미 세계 정상권에 진입한 분야에서는 우리가 퍼스트 무버가 되었기 때문에 더 이상 따라 할 롤모델이 없다. 게다가 중국, 인도 등이 과거 우리가 했던 것처럼 우리를 롤 모델(role model) 삼아 맹추격하고 있다. 저가의 노동력뿐만 아니라 대규모 자본력까지 무장하여 이제는 거의 턱밑까지 와있다. 사실 역전을 허용한 분야도 있는 것 같다. 아무튼 말 그대로 샌드위치 신세가 되어 버렸다. 그렇지만 한국이 샌드위치가 아니라는 반론도 있다. 선진국을 따라 했지만 그들만큼의 원천기술력은 못 가졌고, 중국, 인도와 같은 거대 시장, 거대 자본도 없기 때문에 샌드위치라는 표현은 우리 스스로를 너무 과대포장 한 거라는 비난이다. 우리나라는 빠른 스피드와 높은 원가 경쟁력으로 승부하는 대규모 장치산업을 근간으로 주력산업 분야에서 괄목할 만한 성장을 이루었다. 그러나 이제는 이러한 산업 구조가 우리의 발목을 잡게 생겼다. 선진국처럼 소프트웨어가 강한 나라는 시장 환경이 바뀌면 마음만 고쳐먹으면 된다. 대규모의 선투자가 없었기 때문에 새로운 산업으로 쉽게 전향할 수도 있다. 그런데 우리나라는 소프트웨어 분야에 커다란 약점을 보이고 있기 때문에 선진국을 따라 하지도 못 하고, 개발도상국으로부터는 심각한 도전을 받게 된 것이다. 과연 지금도 전 세계를 누비고 있는 자랑스러운 우리의 주력산업에 어떠한 문제가 생긴 것일까? 자동차를 예로 들어 보자. 자동차의 전장화는 급속도로 진행되고 있고, 최근의 전기자동차와 자율주행자동차의 붐은 그 속도를 더욱 가속화시키고 있다. 전장화의 핵심은 소프트웨어이다. 독일, 일본 메이커들의 자동차는 제조원가 중 전장화 비율이 이미 50%를 넘어섰다. 2030년이면 자동차 원가의 80%가 전장 또는 소프트웨어일 거라는 전망도 있다. 즉, 무형의 만져지지도 않는 소프트웨어가 원가의 절반 이상인데 벤츠, 아우디, BMW의 시판가격은 동급 현대기아차의 거의 두 배에 달한다. 자동차 값에서의 차액이 소프트웨어에 기인한 것이므로 결국 소프트웨어가 제품의 이익을 좌우한다는 얘기가 된다. 우리가 소프트웨어 분야에 약한 것에는 어쩔 수 없는 측면이 있다. 소프트웨어를 만드는 프로그래밍 언어가 언어, 즉 영어로 만들어져 있기 때문이다. 언어의 속성상 어릴 때부터 프로그래밍 언어를 구사할 수 있는 영어권과 대학에 가서야 시작할 수 있는 우리와의 차이는 어찌 보면 당연하다. 특히, 언어적인 속성이 더욱 필요한 포털과 같은 소프트웨어 분야에서의 경쟁은 쉽지 않아 보인다. 그렇기 때문에 우리는 언어가 표면적으로 드러나지 않는 소프트웨어, 하드웨어와 밀접하게 붙어있는 소프트웨어, 우리의 주력산업인 자동차, 조선, 반도체, 디스플레이 등의 부가가치를 올릴 수 있는 소프트웨어 (임베디드SW)에 매진해야 한다. 더욱이 세계가 융합신산업을 향해서 나아가고 있는 지금 소프트웨어가 융합의 중심에 서 있다. 결론적으로 제품의 경쟁력은 소프트웨어를 통한 융합에 의해 좌우된다. 융합은 두 개 이상의 분야가 화학적으로 결합하는 것이다. 다시 자동차를 예로 들어 보자. 자동차 전문가가 쉽게 IT 또는 소프트웨어 전문가를 겸할 수 있을까? 반대로 IT 또는 소프트웨어 전문가가 쉽게 자동차 전문가가 될 수 있을까? 두 분야 모두에 정통한 사람도 있을 수는 있지만 일반적으로 융합은 전문가와 전문가의 만남을 통해서 이루어진다. 제품 성능 또는 회사 이익과 같은 공동의 목표를 얻기 위해서 상대를 존중하고 이해하며 협업을 할 때 좋은 결과를 얻게 된다. 마치 남녀가 만나서 결혼해서 아이 낳고 가정을 꾸리는 것과 비슷하다. 우리가 결혼하면서 소통도 않고 심지어는 상대를 무시하고 배척하겠다고 마음먹지는 않는다. 그래서는 결혼 생활이 유지되지 않기 때문이다. 마찬가지로 융합형 인재란 두 가지 모두에 정통한 인재를 뜻하는 게 아니라 나와 다른 분야와 함께 일 하려는 의지가 있고, 다른 분야에 대한 이해력이 있는 인재를 일컫는다. 다른 분야에 대한 열린 마음이 필요하고 경험해 보지 않은 분야라고 무턱대고 겁을 먹어서도 안 된다. 즉, 융합형 인재를 얻기 위해서는 어릴 때부터 다른 분야를 경험해보게 하는 것이 중요하다. 막상 경험해 보면 해볼 만하다는 자신감과 열린 마음도 자연스럽게 생기지 않을까? 처음부터 잘 하는 사람은 없다. 특히, 최근에는 AI가 중심이 되어 메타버스, 블록체인, 클라우드, 빅데이터 등 다양한 소프트웨어 기술 및 응용의 향연이 벌어지고 있다. 그리고 이러한 기술들의 융합을 통해 다양한 플랫폼이 선을 보이고 있고 여러 분야에서 플랫폼의 대형화/독점화 등이 일어나고 있다. 아차 하면 시장에서의 주도권을 잃고 나락으로 떨어질 수도 있다. 우리에게 진정으로 융합형 인재가 필요한 이유이다.   이규택 객원교수 서울대학교 글로벌R&D센터 부센터장  
작성일 : 2025-05-05
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅳ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21)   이번 호에서는 다양한 유형의 난류 모델과 사용 시기, 그리고 복잡한 형상을 위한 고충실도 난류 모델링에 있어 케이던스 밀레니엄 M1(Cadence Millennium M1) CFD 슈퍼컴퓨터가 어떻게 혁신을 가져오는지에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   자동차 산업은 거의 매일 새로운 혁신과 개발이 등장하며 끊임없이 발전하고 있다. 자동차 업계는 전기 구동 차량과 대량 생산이 증가하는 추세에 발맞춰 보다 지속 가능한 미래를 만들기 위해 노력하고 있다. 자동차 생산량은 꾸준히 늘고 있지만, 업계는 여러 디자인 또는 새로운 헤드라이트, 스플리터, 사이드 스커트 추가와 같은 아주 작은 디자인 변경에 대해서도 풍동 테스트 또는 프로토타입 테스트를 수용하면서 연비 기준을 충족해야 하는 과제에 직면해 있다. 그 결과, 항력 계수 등 관심 있는 유동장 정보와 성능 관련 수치를 예측하여 필요한 실험 횟수를 크게 줄일 수 있는 시뮬레이션 기반 접근 방식이 점점 더 인기를 얻고 있다.   그림 1   유체 흐름의 난류를 이해하고 전산 유체 역학(CFD) 시뮬레이션을 통해 동일한 난류를 재현하려면 다양한 난류 모델을 사용해야 한다. 자동차 애플리케이션과 리소스 가용성에 따라 적합한 난류 모델을 선택하면 설계 주기를 단축하는 데 도움이 될 수 있다.    난류의 모델링 기법 ‘난류’는 압력과 속도의 혼란스러운 변화를 특징으로 하는 불규칙한 흐름을 일컫는 용어이다. 우리는 일상 생활에서 난류를 경험하며 공기 역학, 연소, 혼합, 열 전달 등과 같은 다양한 엔지니어링 응용 분야에서 중요한 역할을 한다. 하지만 유체 역학을 지배하는 나비에-스토크스 방정식은 매우 비선형적인 편미분 방정식이며 난류에 대한 이론적 해법은 존재하지 않는다. 난류는 광범위한 공간적, 시간적 규모를 포함하기 때문에 모델링과 시뮬레이션이 어려울 수 있다. 일반적으로 큰 와류는 난기류에 의해 생성된 에너지의 대부분을 전달하고 작은 와류는 이 에너지를 열로 발산한다. 이 현상을 ‘에너지 캐스케이드’라고 한다. 몇 년에 걸쳐 다양한 난기류 모델링 접근법이 개발되었으며, 가장 일반적인 세 가지 접근법을 간략히 설명한다. Direct Numerical Simulation(DNS) : DNS에서는 모델이나 근사치 없이 미세한 그리드와 매우 작은 시간 단계를 사용하여 모든 규모에서 난기류를 해결한다. DNS의 계산 비용은 엄청나게 높지만 결과는 가장 정확하다. DNS 시뮬레이션은 난류장에 대한 포괄적인 정보를 제공하기 위한 ‘수치 실험’으로 사용된다. Large-Eddy Simulation(LES) : 이름에서 알 수 있듯이 이 난류 모델링 기법은 큰 소용돌이를 해결하고 보편적인 특성을 가진 작은 소용돌이를 모델링한다. LES 시뮬레이션은 최소 길이 스케일을 건너뛰어 계산 비용을 줄이면서도 시간에 따라 변화하는 난기류의 변동 요소를 자세히 보여준다. Reynolds-Averaged Navier-Stokes Model(RANS) : RANS 방정식은 나비에-스토크스 방정식의 시간 평균을 취하여 도출되었다. 난기류 효과는 미지의 레이놀즈 응력 항을 추가로 모델링하여 시뮬레이션한다. RANS 시뮬레이션은 평균 흐름을 해결하고 난류 변동을 평균화하므로 다른 두 가지 접근 방식보다 훨씬 비용 효율적이다.   올바른 선택 : DNS, LES 또는 RANS 올바른 난류 모델을 선택하는 것은 모든 시뮬레이션의 중요한 측면이며, 이는 주로 시뮬레이션의 목적, 흐름의 레이놀즈 수, 기하학적 구조 및 사용 가능한 계산 리소스에 따라 달라진다. 학술 연구의 경우 DNS 시뮬레이션은 난류의 근본적인 메커니즘과 구조를 이해하는 데 가장 적합한 결과를 제공한다. DNS는 레이놀즈 수가 낮은 경우에 적합하지만, 막대한 시간과 리소스가 필요하기 때문에 대부분의 산업 분야에서는 실용적인 선택이 아니다. 반면에 LES는 일반적으로 레이놀즈 수가 높은 복잡한 형상을 포함하는 산업용 사례를 처리하는 데 적합한 옵션이다. LES가 생성하는 고충실도 결과물은 경쟁이 치열한 자동차 시장에서 중요한 한 차원 높은 성능 개선이 가능한 설계를 가능하게 한다.   그림 2    RANS 시뮬레이션은 LES에 비해 근사치의 범위가 넓기 때문에 정확도가 떨어진다. 그러나 정확도와 계산 비용 간의 균형으로 인해 RANS는 계산 리소스와 시뮬레이션 시간이 제한된 업계 사용자에게 일반적인 설루션이다. 이 방법은 또한 짧은 시간 내에 여러 사례를 분석해야 할 때 널리 사용된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
비즈니스 프로세스 모델링을 배워보자
BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3)   지난 호에서는 BPMN(Business Process Modeling Notation)의 구성 요소를 살펴보고, 간단한 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 이번 호에서는 BPMN을 작성하기 위한 모델링 툴을 살펴보고, 이를 활용하여 비교적 간단한 비즈니스 프로세스 모델을 작성하는 방법을 소개하도록 하겠다.   ■ 연재순서 제1회 비즈니스 프로세스 모델링이 필요한 이유 제2회 BPMN은 무엇일까? 제3회 비즈니스 프로세스 모델링을 배워보자 제4회 간단한 제품 개발 프로세스를 디자인해보기 제5회 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   ■ 윤경렬 현대자동차 연구개발본부 책임연구원 ■ 가브리엘 데그라시 이탈리아 Esteco사의 프로젝트 매니저   우리는 지난 호에서 BPMN이 무엇인지에 대해 알아보았다. 우선 BPMN의 구성 요소를 살펴보았고 아주 간단한 BPMN 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 또한 BPMN을 활용하여 리프 스프링 개발 프로세스를 모델링하는 사례를 통해, 일반적인 WBS와 비교해 보았을 때 개발에 참여한 이해관계자들이 어떻게 협업을 해야 하는지 명확하게 파악할 수 있다는 것을 알게 되었다.   BPMN 웹사이트에서 모델러 확인 및 다운로드받기 BPMN을 작성하기 위한 모델링 툴을 알아보기에 앞서, 지난 호에서 소개한 바 있는 OMG 그룹에서 운영하고 있는 BPMN 웹사이트를 우선 찾아가 보도록 하겠다. OMG의 웹사이트(www.bpmn.org)에서는 기본적인 BPMN 개념 정의부터 새로운 BPMN 표준에 대한 연구까지 자세하게 소개하고 있으며, BPMN의 개념, 문서, 예제, 표준화 진행 등에 대한 내용이 자세하게 기술되어 있어서 BPMN을 이해하고 활용하는데 많은 도움을 받을 수 있다.   그림 1. OMG 그룹에서 운영하는 BPMN 웹사이트   우리는 여기서 세 가지 정도를 간단하게 살펴보고자 한다. 우선 ‘Examples’에는 BPMN을 보다 쉽게 이해할 수 있도록 다양한 분야의 예제를 템플릿 형태로 제공하고 있어, 사용자가 이를 활용하여 빠르게 BPMN을 적용해 볼 수 있도록 도움을 주고 있다. 다음은 ‘Implementers’로 현재 BPMN을 지원하고 활용하는 산업과 사례를 소개하고 있는데, 생각보다 다양하고 유명한 회사에서 어떻게 활용되고 있는지 확인할 수 있다.   그림 2. 다양한 예제를 보여주는 Examples   그림 3. 사례를 보여주는 Implementers   마지막으로 ‘BPMN MIWG’에서는 BPMN 표준을 준수하고 상호 모델을 교환하고 위한 목적으로 다양한 툴(소프트웨어)을 소개하고 비교 분석을 수행하고 있다. 우리가 여기서 관심 있게 살펴보려고 하는 것은 ‘View current test results on various tools’의 내용이다. 개인적 취향 및 선호도에 따라 모델링을 하기 위한 툴을 선택할 수 있지만, 대부분 표준을 잘 준수하고 있어서 표준 모델링의 경우 선택의 차이는 크지 않을 것으로 생각된다. 그래서 BPMN 모델을 작성하기 위해 우리는 상대적인 차이가 크지 않지만 인지도가 높은 ‘Camunda Modeler’를 선택하였다.   그림 4. 다양한 모델러에 대한 표준 및 상호 모델 교환 수준에 대한 정리     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심
실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   시뮬레이션은 어느새 산업에서 반드시 거쳐야 하는 단계로 자리잡았다. 이번 호에서는 자율주행 시뮬레이터 기술을 개발하는 모라이(MORAI)의 모라이 시뮬레이션 플랫폼(MORAI Simulation Platform)을 소개한다. ■ 자료 제공 : 유니티 코리아     모라이 시뮬레이션 플랫폼 모라이는 주로 ‘디지털 트윈’, ‘개발 도구’, ‘검증 도구’로 불리는 시뮬레이션 툴을 통해 자율주행 기술의 안전성과 신뢰성을 검증한다. 실제 도로에서 발생할 수 있는 다양한 돌발 상황을 가상화한 환경에서 테스트하고 개발함으로써, 실제 도로에서의 복잡하고 위험한 테스트를 대신할 수 있다. 이를 통해 개발자는 안전하고 효율적으로 자율주행 시스템을 검증하고 개선할 수 있다. 모라이에서 개발한 모라이 시뮬레이션 플랫폼은 자율주행, 자율 비행 등 자율 이동체를 테스트하고 개발할 수 있는 종합적인 미래 모빌리티 시뮬레이터이다. 이 솔루션은 자율주행 자동차, UAM(도심 항공 모빌리티), 무인 로봇, 무인 선박 등 다양한 차세대 모빌리티 산업에 적용되며, 자율주행 상용화를 가속화하는 핵심 가상 검증 플랫폼으로 주목받고 있다.   유니티를 도입하게 된 이유 유니티의 강력한 기능과 사용자 친화적인 인터페이스 덕분에, 짧은 시간 내에 모라이가 원하는 가상 환경 및 시뮬레이터를 개발할 수 있었다. 이는 특히 프로젝트의 초기 단계에서 도움이 되었다. 유니티를 통해 현실적이고 정교한 3D 시뮬레이션 환경을 구현함으로써, 자율주행 기술의 테스트와 검증 과정을 더욱 효율적이고 안전하게 수행할 수 있는 기능을 개발할 수 있었다. 이와 함께, 유니티의 커뮤니티와 풍부한 리소스는 문제 해결과 기술 향상에 도움이 되었다. 다양한 예제와 튜토리얼을 통해 개발자들이 빠르게 학습하고, 프로젝트에 필요한 기능을 구현할 수 있었다. 결과적으로, 유니티 도입 이후 모라이는 프로젝트의 개발 속도와 품질을 높였으며, 더 나은 자율주행 시뮬레이션 환경을 제공할 수 있게 되었다.   플랫폼 구성 요소 기본적으로 가상 환경을 렌더링하고 사용자 인터페이스를 제공하는 베이스 플랫폼(Base Platform)이 중심을 이룬다. 이 베이스 플랫폼 위에 다양한 모듈이 결합되어, 정밀하고 현실적인 시뮬레이션 환경을 구현한다. 첫 번째로 정밀 지도 도로 모듈이 있다. 이 모듈은 실제 도로와 동일한 환경을 가상으로 재현하며, 자율주행 차량이 운행할 수 있는 도로 네트워크를 제공한다. 이를 통해 현실적인 도로 상황에서의 테스트와 검증이 가능하다.  두 번째로 차량 동역학(Vehicle Dynamics) 모듈이 있다. 이 모듈은 차량의 물리적 특성과 동역학을 시뮬레이션하여, 다양한 운전 조건에서 차량의 반응을 정확하게 모델링한다. 이를 통해 차량의 주행 성능과 안전성을 평가할 수 있다. 세 번째로 센서 모델(Sensor Model) 모듈이 있다. 이 모듈은 자율주행 차량에 장착된 다양한 센서의 데이터를 시뮬레이션한다. 카메라, 라이다, 레이더 등의 센서가 실제 환경에서 어떻게 작동하는지를 가상으로 재현하여, 센서의 정확도와 신뢰성을 검증할 수 있다. 네 번째로 교통 모델(Traffic Model) 모듈이 있다. 이 모듈은 다양한 교통 상황을 시뮬레이션하여, 자율주행 차량이 실제 도로에서 마주할 수 있는 다양한 교통 상황을 가상으로 재현한다. 이를 통해 교통 혼잡, 돌발 상황, 보행자와의 상호작용 등을 테스트할 수 있다. 마지막으로 인터페이스(Interface) 모듈이 있다. 이 모듈은 외부 시스템과의 연동을 가능하게 하여, 다양한 테스트 시나리오와 데이터를 효율적으로 관리하고 분석할 수 있게 한다. 이를 통해 개발자가 자율주행 시스템을 더 효과적으로 개발하고 검증할 수 있다. 이 모든 구성 요소가 결합되어, 모라이 시뮬레이션 플랫폼은 자율주행 시스템의 개발, 테스트, 검증을 위한 강력한 도구로서의 역할을 수행한다.     가상환경과 현실의 차이를 최소화하기 위한 노력 모라이가 시뮬레이션 플랫폼을 구축하면서 가장 신경 썼던 부분은 현실과의 차이를 최소화하는 것이었다. 이를 위해 고충실도 시뮬레이션 환경을 제공하고, 실제 지도 데이터, 교통 데이터, 센서 데이터를 기반으로 가상과 실제 환경의 갭을 최소화하는 데 집중했다. 이를 위해 자율주행차가 실제 도로에서 맞닥뜨릴 수 있는 거의 모든 상황을 가상 환경에서 묘사할 수 있도록 다양한 요소 기술을 개발하고 있다. 이는 사람이 실제 도로에 나가지 않더라도 최대한 많은 테스트를 할 수 있도록 하기 위한 것이다. 예를 들어, 보행자 충돌 위험성 등 실제 도로에서 검증하기 어려운 시나리오를 수만 번 반복하여 테스트할 수 있다. 이를 통해 자율주행 개발 기업과 연구원들은 더욱 신뢰성과 안전성을 갖춘 검증을 할 수 있다. 또한, 가상과 실제 환경이 직접적으로 연계될 수 있도록 설계했다. 시뮬레이션이 실제 환경의 데이터와 상호작용할 수 있도록 하여, 개발자들이 현실적인 조건에서 자율주행 시스템을 테스트하고 개선할 수 있게 했다. 이와 같은 접근 방식은 실제 도로에서 발생할 수 있는 다양한 상황을 사전에 예측하고 대응하는 데 도움이 된다.   모라이 시뮬레이션 플랫폼에 대한 고객의 니즈 우선 고객사들은 현실적인 그래픽과 정밀한 도로 환경을 원했다. 자율주행 차량은 다양한 도로 상황과 환경에서 운행되므로, 시뮬레이터가 실제 도로와 유사한 환경을 재현해야 한다. 이를 통해 개발자는 도시, 고속도로, 교외 지역 등 다양한 도로 상황에서 자율주행 시스템의 성능을 테스트할 수 있다. 또한 다양한 교통 상황과 돌발 상황을 시뮬레이션할 수 있어야 했다. 교통 혼잡, 보행자와의 상호작용, 돌발적인 장애물 등 실제 도로에서 발생할 수 있는 모든 상황을 가상 환경에서 재현하여, 자율주행 시스템이 어떻게 대응하는지 평가할 수 있어야 한다. 아울러, 고객사들은 다양한 센서 데이터를 필요로 했다. 자율주행 차량은 카메라, 라이다, 레이더 등의 센서를 통해 주변 환경을 인식하기 때문에, 시뮬레이터는 이러한 센서의 데이터를 정확하게 생성하고, 실제 환경에서의 센서 성능을 재현할 수 있어야 한다.   개발 시 어려웠던 점과 해결 방법 자율주행 시뮬레이터를 개발하는 것은 다양한 기술을 통합해야 하기 때문에 많은 어려움이 따른다. 기본적으로 3D 엔진에 대한 이해도가 필요하며, 그 위에 올라가는 센서, 차량 동역학, 통신 등 각각의 모듈에 대한 깊은 이해와 적절한 통합 과정이 필요하다. 이 과정에서 각 개발자의 이해도와 전문 분야가 다르기 때문에, 이를 하나의 시뮬레이터로 통합하는 것이 가장 어려운 부분이었다. 다행히, 유니티는 이러한 다양한 요소들을 모두 통합할 수 있는 개발 환경을 제공했다. 각 모듈 개발자들이 개발할 때마다 바로 결과를 확인할 수 있었고, 다른 모듈에 대한 이해도를 높일 수 있었다. 이를 통해 각 모듈이 전체 시스템에 어떤 영향을 미치는지 파악할 수 있었고, 빠르게 개발을 진행할 수 있었다. 또한, SDV(Software Defined Vehicle : 소프트웨어 정의 차량)와 UAM 등의 복잡한 시뮬레이션 환경을 구축하는 데 있어서도 유니티의 유연한 개발 환경이 도움이 되었다. 유니티의 그래픽 엔진과 실시간 데이터 처리 능력을 활용하여 현실과 유사한 고충실도의 시뮬레이션 환경을 구현할 수 있었고, 이를 통해 다양한 테스트와 검증을 효율적으로 수행할 수 있었다.     모라이의 목표 모라이는 자율주행 시뮬레이션 시장에서 개발뿐만 아니라 검증과 인증까지 가능한 시뮬레이터를 제공하고자 한다. 앞서 설명한 대로 개발자들이 손쉽게 사용할 수 있는 가상 공간과 시뮬레이션 도구를 공급하여, 이 툴을 기반으로 빠르게 기술을 개발하고 정량적으로 시험 평가할 수 있도록 하는 것이 모라이의 목표이다. 또한, 모라이는 고객이 많은 노력을 들이지 않아도 바로 이해하고 현업에 적용할 수 있는 개발 도구를 제공하는 것을 중요하게 생각하고 있다. 이를 통해 고객은 복잡한 설정이나 학습 없이도 자율주행 기술을 개발하고 테스트할 수 있게 된다.  궁극적으로는 자율주행 자동차, UAM, 무인 로봇, 무인 선박 등 모든 무인 이동체의 기술 개발 및 통합 검증에 사용되는 도구가 되는 것이 모라이의 목표이다.  모라이의 공동설립자인 홍준 CTO는 “이 과정에서 유니티는 핵심 개발 도구로서 중요한 역할을 하고 있다. 유니티의 강력한 3D 엔진과 사용자 친화적인 인터페이스 덕분에 우리는 고품질의 시뮬레이션 환경을 빠르게 개발할 수 있다. 또한, 유니티의 지속적인 기술 지원과 업데이트는 우리가 최신 기술을 빠르게 도입하고, 고객의 요구에 맞는 기능을 신속하게 제공하는 데 큰 도움이 된다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
마이크로소프트, ‘2025 업무동향지표’ 통해 AI-인간 협업 시대 예고
마이크로소프트가 연례 보고서인 ‘2025 Work Trend Index(업무동향지표)’를 발표하면서, AI가 재편하는 업무 환경과 프론티어 기업의 등장을 조명하는 한편 AI 시대의 변화에 대응할 로드맵을 제시했다. AI는 단순한 기술을 넘어 사고하고 추론하며 복잡한 문제를 해결하는 동반자로 진화하고 있다. 이에 마이크로소프트는 ‘2025 업무동향지표’를 통해 AI가 조직 경영과 비즈니스에 미치는 영향에 대한 주요 트렌드를 공개했다. 이번 보고서는 한국을 포함한 31개국 3만 1000 명의 근로자 대상 설문조사 결과와 함께, 마이크로소프트 365에서 수집된 수 조 건의 생산성 신호, 링크드인의 노동·채용 트렌드, 그리고 AI 스타트업, 학계 전문가, 경제학자 등과의 협업을 통해 도출됐다.     이번 보고서는 ‘프론티어 기업(Frontier Firm)’이라는 새로운 기업 유형이 등장하고 있으며, 향후 2-5년 안에 대부분의 조직이 이 방향으로 전환을 시작할 것으로 전망했다. 프론티어 기업은 인간과 AI 에이전트가 함께 일하는 하이브리드 팀을 중심으로 유연하게 운영되며, 빠르게 성장하고 성과를 만들어내는 것이 특징이다. 기업 리더의 81%는 향후 12~18개월 내 자사 AI 전략에 AI 에이전트가 광범위하게 통합될 것으로 기대하고 있으며, 실제로 AI 도입 속도도 빠르게 가속화되고 있다. 전체 리더 중 24%는 자사에 이미 전사 차원의 AI 도입이 이뤄졌다고 응답했으며, 시험 운영(pilot) 단계에 머무르고 있다고 답한 리더는 12%에 불과했다. 프론티어 기업은 인간과 AI의 협업 수준에 따라 세 단계로 진화한다. 1단계에서는 AI가 반복적인 업무를 보조해 인간의 효율을 높인다. 2단계에서는 에이전트가 팀의 디지털 동료로 합류해, 사람의 지시에 따라 구체적인 업무를 수행한다. 마지막 3단계에서는 인간이 방향을 제시하면, 에이전트가 전체 업무 흐름을 주도해 업무를 실행하고 인간은 필요할 때만 개입한다. 또한, 보고서는 AI의 급속한 발전으로, 인간의 시간·에너지·비용에 의존하던 지능이 이제는 언제든지 사용할 수 있는 ‘언제든지 사용할 수 있는 지능(Intelligence on tap)’으로 변화하고 있다고 분석했다. 합리적 사고, 계획, 행동이 가능한 AI와 에이전트의 등장으로 인해 이제 기업은 필요에 따라 팀과 개인의 역량을 확장할 수 있다. 실제로 글로벌 리더의 82%(한국 77%)는 2025년을 전략과 운영상의 주요 사항들을 재고해야 할 전환점으로 보고 있으며, 82%의 리더(한국 77%)는 향후 12~18개월 내에 디지털 노동력을 활용해 인력의 역량을 확대할 수 있을 것으로 기대하고 있다. 이 같은 변화의 배경에는 비즈니스 수요와 인간의 역량 간의 간극, 즉 역량 격차(Capacity Gap)가 있다. 리더의 53%(한국 65%)는 지금보다 더 높은 생산성이 필요하다고 답했지만, 리더를 포함한 근로자 80%(한국 81%)는 업무에 집중할 시간이나 에너지가 부족하다고 느꼈다. 마이크로소프트 365 사용자 행동 데이터에 따르면, 직원들은 회의, 이메일, 알림 등으로 하루 평균 275번 업무 방해를 받고 있으며, 10건의 회의 중 6건은 별다른 예고 없이 갑작스럽게 열리는 것으로 나타났다. 이 가운데, 일부 기업은 AI를 기반으로 조직 경영 전략을 새롭게 설계하고 있으며, 마이크로소프트는 이들을 ‘프론티어 기업’으로 정의했다. 31개국 3만 1000명 가운데 프론티어 기업에 근무하는 844명의 직원 71%는 자사가 빠르게 성장하고 있다고 답했으며, 이는 글로벌 평균(37%)의 약 두 배에 해당한다. 또 이들 중 55%(글로벌 20%)는 더 많은 업무를 감당할 여력이 있다고 응답했으며, 93%(글로벌 77%)는 향후 커리어 전망에 자신감을 보였다.     산업과 직무의 진화에 따른 다면적인 변화도 예고됐다. 리더의 45%(한국 44%)는 향후 12~18개월 안에 디지털 노동력을 통해 팀 역량을 확대하는 것을 최우선 과제로 꼽았다. 한편 링크드인에 따르면 유망 스타트업의 고용 증가율은 전년 대비 20.6%로, 빅테크(10.6%)의 약 두 배에 육박했다. 이어서, 보고서는 전통적인 조직 구조를 보완할 새로운 모델로 워크 차트(Work Chart)를 제시했다. 기존 조직이 재무, 마케팅, 엔지니어링 등 기능 중심으로 팀을 구성해왔다면, 워크 차트는 부서가 아닌 달성해야 할 목표를 기준으로 팀을 유연하게 구성하는 방식이다. 이 과정에서 AI 에이전트는 팀원으로서 분석, 지원, 제안 등 다양한 역할을 수행하며 인간의 역량을 확장한다. AI 에이전트의 역할이 모든 업무 영역에서 동일한 속도로 발전하지는 않을 것으로 예상됐다. 향후 일부 업무는 에이전트가 대부분을 수행하고, 인간은 고위험·고정밀 업무를 감독하는 방식으로 역할이 조정될 것으로 내다봤다. 판단, 공감, 사고력이 요구되는 업무는 인간의 개입이 필요하다는 분석이다. 인간과 에이전트 간 역할 분담을 측정할 수 있는 운영 지표인 인간-에이전트 비율(Human-agent ratio)의 필요성도 제시했다. 하이브리드 팀의 생산성을 극대화하기 위해서는 에이전트의 수뿐만 아니라, 이들을 효과적으로 조율하고 관리할 수 있는 인간의 수 역시 함께 고려해야 한다는 설명이다.  실제로 리더의 46%(한국 48%)는 자사에서 에이전트를 활용해 업무 절차나 프로세스를 완전히 자동화하고 있다고 답했다. AI 투자와 관련해서는, 향후 12~18개월 내 고객 서비스, 마케팅, 제품 개발 분야에서 확대가 빠르게 이뤄질 것으로 예상하는 리더가 많았다. AI에 대한 인식 차이도 주목된다. 직원의 52%(한국 52%)는 AI를 명령형 도구로 여기고 단순 지시 수행에 활용하고 있었고, 46%(한국 45%)는 조력자로 받아들여 아이디어를 구상하거나 창의적 사고를 확장하는 데 사용하는 것으로 나타났다. 이에 따라, 마이크로소프트는 조직이 향후 디지털 노동력 관리를 전담하는 지능 자원(intelligence resources) 부서나, 인간과 디지털 노동력의 균형을 조율하는 자원 최고 책임자(Chief Resources Officer)와 같은 새로운 리더십 역할 도입도 검토할 수 있다고 제언했다. 이러한 흐름 속에서, AI는 인간을 대체하기보다 협업을 통해 가치를 높이는 도구로 인식되고 있다. AI를 활용한 개인의 성과는 AI 없이 팀을 구성한 경우보다 높게 나타났으며, 직원들이 AI를 선호하는 이유로 ▲24시간 이용 가능성(42%)(한국 27%) ▲일정한 속도와 품질(30%)(한국 33%) ▲무제한 아이디어 제공(28%)(한국 25%)이 꼽혔다. 보고서는 AI 에이전트의 활용이 본격화되며, 에이전트 보스(Agent Boss) 시대가 도래할 것으로 전망했다. 이는 모든 근로자가 에이전트를 만들고 위임하고 관리하며, 에이전트 기반 스타트업의 CEO와 같은 사고방식을 갖춰야 한다는 의미다. 28%의 관리자는 인간과 AI로 구성된 하이브리드 팀을 이끌 담당자를 채용할 계획이며, 32%는 에이전트 설계·개발·최적화를 위해 12~18개월 내 AI 에이전트 전문가를 채용할 의향이 있다고 밝혔다. AI 전략 수립과 실행에서 리더의 역할도 더욱 강조되고 있다. 에이전트에 대한 친숙도, 사용 빈도, 신뢰 수준, 시간 절감 효과, 관리 역할, 사고 파트너로서 활용, 경력 기여 가능성 등 7가지 항목으로 에이전트 보스 마인드셋을 조사한 결과, 모든 지표에서 리더가 직원보다 높은 수치를 기록했다. 특히 리더들은 향후 5년 이내에 팀의 업무 범위에 ▲ AI를 활용한 비즈니스 프로세스 재설계(38%)(한국 35%) ▲복잡한 업무 자동화를 위한 멀티 에이전트 시스템 구축(42%)(한국 39%) ▲에이전트 훈련(41%)(한국 34%) ▲에이전트 관리(36%)(한국 38%) 등이 포함될 것으로 내다봤다. 에이전트에 익숙하다고 답한 리더는 67%(한국 70%)였지만 직원은 40%(한국 32%)에 그쳤고, 리더의 약 3분의 1이 AI를 통해 하루 1시간 이상을 절약한다고 응답했으나, 직원은 이보다 낮았다. AI가 커리어에 도움이 될 것이라고 본 비율도 리더는 79%, 직원은 67%로 조사됐다. 또한 51%의 관리자(한국 39%)는 향후 5년 안에, 직원의 AI 교육과 역량 강화가 자신의 업무 범위에 포함될 것으로 내다봤다. AI의 확산과 함께 조직 전반의 직무 변화가 가속화될 것으로도 전망했다. 실제로 현재 링크드인을 통해 채용된 직원 중 10% 이상은 2000년에는 존재하지 않았던 직무를 맡고 있으며, 링크드인은 2030년까지 대부분의 직무에서 요구되는 기술의 70%가 바뀔 것으로 예상했다. 한편, 83%의 리더는 AI가 신입 직원들이 더 빠르게 전략적이고 복잡한 업무에 적응하도록 도와줄 것이라고 내다봤다. 보고서는 직원들이 AI 기술을 학습하고 실무 경험을 쌓을 기회를 확보해야 하며, 기업은 이를 위한 교육과 도구를 적극 제공해야 한다고 제언했다. 직원의 52%, 리더의 57%는 자신이 속한 산업의 직업 안정성이 보장되지 않는다고 여기고 있으며, 81%의 직원이 지난 1년간 이직하지 않은 것으로 나타났다. 링크드인은 2025년 가장 주목받는 역량으로 AI 리터러시를 꼽았으며, AI 역량과 더불어 갈등 해결, 적응력, 프로세스 자동화, 혁신적 사고 등 기계가 대체할 수 없는 인간의 강점 또한 더욱 중요해질 것으로 전망했다. 마이크로소프트는 AI 시대에 유연하게 대응하기 위해 지금이 기업의 결정적 행동 시점이라고 강조하며 세 가지 실행 로드맵을 제시했다. 마이크로소프트는 ▲AI 에이전트를 디지털 직원으로 채용해 명확한 역할을 정의하고, 온보딩·책임 배분·성과 측정 등 실제 팀원처럼 관리할 것을 권고했으며 ▲고객 응대나 고위험 판단 등 인간의 개입이 필요한 영역과 자동화가 가능한 업무를 구분해, 인간과 AI의 협업 구조를 정립해야 한다고 제안하면서 ▲AI 도입을 기술 과제가 아닌 조직 혁신 과제로 보고, 시범 운영에 그치지 않고 전사적으로 빠르게 확산할 필요가 있다고 강조했다. 마이크로소프트의 자레드 스파타로(Jared Spataro) AI 기업 부문 부사장은 “AI는 조직의 경영 전략은 물론, 우리가 인식하는 지식 노동의 개념을 바꾸고 있다”며, “2025년은 프론티어 기업이 탄생한 해로, 앞으로 몇 년 안에는 AI를 통해 대부분의 산업과 조직에서 직원의 역할 경계가 새롭게 정의될 것”이라고 말했다.
작성일 : 2025-04-28
IBM 엑스포스 보고서, “정보 탈취형 악성코드 이메일 작년 대비 84% 증가”
IBM이 발표한 ‘2025 엑스포스 위협 인텔리전스 인덱스 보고서(2025 X-Force Threat Intelligence Index)’에 따르면, 사이버 공격자들이 더 교묘한 수법을 사용하며 기업에 대한 랜섬웨어 공격은 감소한 반면, 눈에 띄지 않는(lower-profile) 자격 증명 도용은 급증했다. IBM 엑스포스는 사이버 공격자들이 신원 탈취 공격을 확대하는 수단으로 인포스틸러 악성코드를 포함한 이메일을 주로 활용하고 있으며, 2024년 이러한 유형의 이메일이 전년 대비 84% 증가했다고 밝혔다. 2025 보고서는 IBM 엑스포스에서 관찰한 신규 및 기존 트렌드와 공격 패턴을 추적하고 침해 사고 대응, 다크 웹 및 기타 위협 인텔리전스 소스에서 얻은 정보를 바탕으로 작성했다. 2023년은 생성형 인공지능(Gen AI)의 본격적인 확산이 시작된 한 해였다. 예견되었던 대로, 사이버 공격자들은 AI를 활용해 웹사이트를 제작하거나, 딥페이크 기술을 피싱 공격에 접목시키기 시작했다. IBM 엑스포스는 공격자들이 생성형 AI를 활용해 피싱 이메일을 작성하거나 악성 코드를 제작하는 사례를 포착하기도 했다. IBM 엑스포스는 과거 보고서에서 하나의 AI 설루션 시장 점유율 50%에 가까워지거나 시장이 소수의 3개 이하 설루션으로 재편되면, 공격자 입장에서는 특정 AI 모델이나 설루션을 노리기가 더 쉬워지고 그만큼 공격할 유인도 커진다고 밝혔다. 아직 그 시점에 도달하지는 않았지만, 도입 속도는 빠르게 증가하고 있다. 실제로, 2024년 기준 최소 하나 이상의 비즈니스에 AI를 도입한 기업의 비율은 72%로, 전년 대비 55% 이상 증가한 것으로 나타났다. 2024년에는 AI를 겨냥한 대규모 공격이 발생하지는 않았다. 보안 전문가들은 사이버 공격자들이 악용하기 전에 취약점을 선제적으로 식별하고 보완하기 위한 대응에 속도를 내고 있다. IBM 엑스포스가 AI 에이전트 구축 프레임워크에서 원격 코드 실행 취약점을 발견한 사례처럼, 이와 같은 문제는 앞으로 더욱 빈번해질 것으로 보인다. 2025년 AI 도입이 확대될 것으로 예상됨에 따라, 공격자들이 AI를 겨냥한 특화된 공격 도구를 개발할 유인도 커지고 있다. 이에 따라 기업들은 데이터, 모델, 활용 방식, 인프라 등 AI 전반에 걸친 보안을 초기 단계부터 강화하는 것이 필수이다.     지난해 가장 많은 공격은 주요 기반시설 조직을 대상으로 감행됐다. IBM 엑스포스가 대응한 2024년 전체 공격 중 70%가 주요 인프라 조직에서 발생했으며, 이 중 4분의 1 이상이 취약점 악용으로 인한 공격이었다. 주요 인프라 조직들은 기존 기술에 대한 의존과 느린 보안 패치 적용으로 인해 여전히 보안 위협에 직면해 있는 것이다. 다크웹 포럼에서 자주 언급된 공통 취약점 및 노출(CVEs)을 분석한 결과, 상위 10개 중 4개가 국가 차원의 지원을 받는 공격자를 포함한 정교한 위협 그룹과 연관된 것으로 나타났다. 해당 취약점들의 악용 코드는 여러 포럼에서 공개적으로 유통되고 있었으며, 이는 전력망, 의료 시스템, 산업 설비 등을 노린 공격의 확산으로 이어지고 있다. 이처럼 금전적 목적의 공격자와 국가 차원의 위협 세력이 정보를 공유하는 흐름은, 패치 관리 전략 수립과 위협 사전 탐지를 위한 다크웹 감시의 중요성을 더욱 부각시키고 있다. 또 다른 주목할 만한 공격은 인포스틸러(infostealer, 정보 탈취형 악성코드)를 활용한 공격이다. 2024년에 인포스틸러를 활용한 이메일은 전년 대비 84% 증가했으며, 2025년 초기 데이터에 따르면 이는 더욱 급증하는데, 주간 발생 건수가 2023년 대비 180% 이상 증가한 것으로 예상된다. 자격 증명 피싱과 인포스틸러를 통해 신원 공격은 저렴하고, 확장 가능하며, 수익성이 좋아졌다. 인포스틸러는 데이터를 빠르게 유출할 수 있어 타깃 지점에 머무는 시간을 줄이고, 포렌식 흔적을 거의 남기지 않는다. 2024년에 다크웹에서 800만 개 이상의 광고가 상위 5개의 인포스틸러만을 위한 것이었으며, 각 광고에는 수백 개의 자격 증명이 포함될 수 있다. 또, 사이버 공격자들은 다크웹에서 다중인증(MFA)을 우회하기 위해 중간자 공격(AITM) 피싱 키트와 맞춤형 AITM 공격 서비스를 판매하고 있다. 손상된 자격 증명과 다중인증 우회 방법이 만연하다는 것은 수요 또한 높다는 것을 의미하며 이러한 추세는 멈출 기미가 보이지 않는다. 지역으로 살펴보면, 2024년 한 해 동안 IBM 엑스포스가 전 세계적으로 대응한 사이버 공격 중 약 34%가 아시아태평양에서 발생하며 아태 지역이 세계에서 가장 많은 사이버 공격을 경험한 것으로 나타났다. 데이터 도용(12%), 인증정보 탈취(10%), 갈취(extortion, 10%) 등이 순위가 높은 공격 대상이었다. 일본은 전체 조사 대상 인시던트의 66%를 차지했으며, 한국, 필리핀, 인도네시아, 태국이 각각 5%의 비율을 차지했다. 분야별로는 제조업이 공격 대상의 26%를 차지하며 4년 연속 사이버 공격이 가장 많이 발생한 산업으로 집계됐다. 특히 랜섬웨어 피해 사례가 가장 많았으며, 시스템 중단에 대한 허용 범위가 극히 낮은 산업 특성상 암호화 공격에 대한 범죄자의 수익성이 여전히 높은 것으로 분석된다. 한국IBM 컨설팅 사이버보안서비스 사업총괄 이재웅 상무는 “사이버 공격은 이제 더욱 조용하고 치밀해지고 있다. 공격자들은 파괴적인 행위 없이 자격 증명을 탈취해 기업 시스템에 접근하며, 인포스틸러와 같은 악성코드를 통해 빠르게 데이터를 유출하고 흔적을 남기지 않는다”고 말하며, “이러한 저위험·고수익 공격이 확산되는 지금, 기업은 단순 방어를 넘어, 인증 시스템 강화와 위협 사전 탐지 체계를 통해 공격 표적이 되지 않도록 대비해야 한다”고 강조했다.
작성일 : 2025-04-24
정적 이미지와 동적 이미지
시점 – 사물이나 현상을 바라보는 눈 (4)   지난 호에서는 ‘관찰의 시점과 관점’이라는 주제로 사물을 바라볼 때 바라보는 위치, 방향, 각도에 따라서 우리 눈에 비치는 사물의 모습이 어떻게 달라지는지를 시점(視點)과 시각(視角)의 차이로 설명해 보았다. 보이는 것 자체는 아무런 의미나 의도가 없지만 보는 이의 관점(觀點)의 차이에서 다양한 해석이 나타날 뿐임을 이야기하였다. 이번 호에서는 ‘정적 이미지와 동적 이미지’의 차이를 살펴볼 예정이다. 정적 이미지와 동적 이미지에서 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보도록 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   정적 이미지와 동적 이미지 시간이 지나더라도 변화하지 않는다면 정물이다. 시간의 흐름에 따라서 모양이 변화하는 것은 정물이 아니다. 촬영된 이미지는 모두 촬영된 순간의 촬영 조건에서 기록된 정적 이미지이다. 시간에 따라서 변화하는 어떤 사물의 이미지를 촬영하면 언제 어떤 모습을 하고 있을 때 촬영했는지가 중요하다. 빠르게 변화하는 사물을 변화에 비해서 느린 속도로 촬영하게 되면 변화 전과 변화 후의 모습이 중첩되어 보인다. 사물이 변화하더라도 그 변화 속도가 촬영 시간 내에서 거의 변화가 없다면 정물처럼 촬영될 것이다. 촬영 대상의 성질을 고려해서 촬영 조건을 선택해야 한다. 여기에서 말하는 변화는 사물 자체의 변화에 한정되지 않는다. 사물과 촬영 기기의 상대적인 위치, 각도, 조명 조건, 촬영 조건의 변화를 포함한다.   그림 1. 고드름이 생기는 속도는 늦고 녹는 속도는 빠르게 느껴진다.   변화의 속도가 느린 것 지난 겨울은 유난히 눈도 많이 내렸고 강추위도 여러 번 찾아왔다. 눈 내린 지붕에서 햇볕으로 녹은 눈이 물방울이 되어 처마로 떨어지며 차가운 공기로 얼음이 되어 고드름이 형성된다. 고드름 또한 기온이 올라가면 조금씩 녹으면서 고드름 끝에서 물방울이 떨어진다.(그림 1) 고드름의 형성과 소멸 과정은 비교적 천천히 진행된다. 물론 기온이 많이 올라가면 눈이 녹더라도 고드름은 형성되지 않는다. 이미 고드름이 만들어진 경우에도 기온이 올라가면 고드름이 녹는 속도도 빨라져, 고드름 끝에서 떨어지는 물방울의 숫자도 속도도 늘어난다. 그 결과 눈과 고드름은 사라진다. 물이 고체–액체–기체로 변화하면서 물의 순환이 이루어지는 것이다. 고드름은 겨울철에나 볼 수 있는 현상이지만 불과 몇 달 만에 반복되는 과정이다. 이것에 비해서 석회암 동굴에서 볼 수 있는 종유석, 석순, 석주는 석회암이 지하수에 녹아 조금씩 동굴에 스며들어 동굴 천장에서 떨어지면서 생겨나는 매우 속도가 느린 반응이다. 종유석은 동굴의 천장부터 아래 방향으로 자라는 것이고, 석순은 위에서 떨어지는 물방울에 포함된 석회 성분이 석출되어 동굴 바닥에서 위로 자라는 것이다. 종유석과 석순은 서로 마주 보고 자란다. 종유석과 석순이 서로 닿게 되면 석주가 만들어진다.(그림 2)   그림 2. 석회암 동굴에서 오랜 시간에 걸쳐 생성되는 종유석, 석순, 석주   종유석, 석순, 석주는 지하수에 녹아있던 석회 성분이 고체 상태로 석출되면서 수백 년, 수천 년 이상의 오랜 기간에 걸쳐 형성되는 것이다. 이렇게 서서히 일어나는 변화라면 거의 정적 이미지라고 보아도 무방하다. 오늘 촬영하거나 내일 촬영하거나 그 모양이 크게 변화하지 않기 때문이다. 다만 고드름 끝에 달린 물방울처럼 종유석 끝에 달린 석회 성분을 포함한 당장이라도 떨어질 듯한 지하수 방울을 촬영하는 경우라면 다른 이야기가 될 수도 있다.   변화의 속도가 빠른 것 이번에는 변화의 속도가 고드름이나 종유석보다 조금 빠른 것을 살펴보자. 잔잔한 수면에 작은 물방울이 떨어지는 경우를 관찰해보자. 물방울이 떨어지는 속도는 눈 깜짝할 사이에 일어나는 일이어서, 어떤 현상이 생기는지 육안으로는 자세하게 관찰할 수 없다. 고속으로 사진을 촬영할 수 있는 장비의 힘을 빌어야 비로소 어떤 현상이 일어났는지를 알 수 있다. 작은 물방울이 잔잔한 수면에 떨어진 후에 나타나는 물방울과 수면의 변화를 시계열로 정리하면 <그림 3>과 같다.    그림 3. 고속 촬영으로 포착한 ‘물방울과 수면의 힘겨루기’     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
[칼럼] AI의 거대한 파도, 엔비디아가 만드는 미래
트렌드에서 얻은 것 No. 22    AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” – 젠슨 황   AI의 거대한 파도, 엔비디아가 만드는 미래 엔비디아는 2024년과 2025년 GTC(GPU Technology Conference)에서 AI 기술을 통해 산업 전반에 걸친 변화를 이끌어가고 있다. 젠슨 황은 기조연설에서 기술 혁신이 사회적, 경제적 구조를 재편하는 ‘변화의 파도’라고 강조하며, 엔비디아가 그 중심에서 미래를 설계하고 있음을 확신시켰다.  엔비디아는 두 해 동안 AI 혁신을 가속화하며 다양한 제품과 플랫폼을 선보였다. 2024년에는 GB200 AI 플랫폼과 블랙웰(Blackwell) DGX B200 GPU를 통해 성능 향상에 초점을 맞췄다면, 2025년에는 블랙웰 울트라(Blackwell Ultra) 기반의 NVL72 등 차세대 하드웨어와 지속 가능성을 강조하며 더 큰 비전을 제시했다.   표 1. 2024년과 2025년 엔비디아의 주요 발표 비교   인공지능 혁명의 변곡점에서 인류는 늘 기술의 발전과 함께 새로운 시대를 맞이해 왔다. 산업혁명이 증기기관과 전기를 통해 생산 방식을 혁신했던 것처럼, 디지털 혁명은 인터넷과 스마트폰을 통해 세상을 연결했다. 그리고 지금, 우리는 또 하나의 거대한 변곡점에 서 있다. 바로 AI 혁명이다. 2025년 3월, 엔비디아의 GTC에서 젠슨 황 CEO는 기조연설을 통해 AI가 변화의 중요한 시점에 도달했음을 선언했다. 그는 AI가 단순한 도구를 넘어 ‘스스로 사고하고 결정하는 존재’로 발전하고 있으며, 이 거대한 변화가 기업, 산업, 그리고 인간의 삶 전반에 걸쳐 영향을 미칠 것이라고 강조했다. 이번 GTC 2025에서 가장 주목받은 키워드는 에이전틱 AI(agentic AI)와 추론 AI(reasoning AI)였다. 기존의 AI가 데이터를 분석하고 패턴을 찾는 데 주력했다면, 이제 AI는 자율적으로 목표를 설정하고 스스로 문제를 해결하는 방향으로 나아가고 있다. 이러한 변화는 단순한 업그레이드가 아니라, AI 산업 전반의 패러다임을 뒤흔드는 파도와 같다. 이러한 흐름 속에서 엔비디아는 블랙웰 GPU라는 차세대 칩을 공개하며, 인공지능 모델의 효율성을 비약적으로 향상시키는 새로운 하드웨어 시대를 열었다. 또한 옴니버스 클라우드 API(Omniverse Cloud API), AI 팩토리(AI Factories) 등의 개념을 통해 AI가 단순한 연구 도구가 아니라, 실제 산업을 자동화하고 혁신하는 핵심 인프라로 자리 잡아가고 있음을 보여주었다. 그렇다면 우리는 이러한 변화의 바람 속에서 어떤 선택을 해야 할까? AI 혁명의 파도를 넘는 기업과 뒤처지는 기업의 차이는 무엇일까? 엔비디아의 발표를 중심으로 AI 산업이 어디로 흘러가고 있는지, 그리고 그 변화 속에서 우리는 무엇을 준비해야 하는지를 하나씩 짚어보자. “AI가 단순한 연구 프로젝트에서 벗어나, 본격적인 산업 혁신의 중심으로 자리 잡는 것” – 젠슨 황   블랙웰, AI의 새로운 엔진 기술 혁신의 역사는 더 빠르고 더 강력하며 더 효율적인 도구를 만들려는 인간의 끝 없는 도전과 함께 발전해 왔다. AI 산업도 예외가 아니다. 과거에는 단순한 이미지 분석과 음성 인식이 AI의 주요 활용 분야였다면, 이제는 스스로 학습하고 결정을 내리며 복잡한 문제를 해결하는 AI가 요구되고 있다. 하지만 이런 고도화된 AI 모델을 운용하려면 엄청난 연산 능력이 필요하며, 이를 뒷받침할 강력한 하드웨어가 필수이다. GTC 2025에서 젠슨 황이 가장 먼저 소개한 것은 블랙웰 GPU였다. 그는 “AI의 미래를 가속하는 가장 강력한 엔진”이라며, 블랙웰이 기존 호퍼(Hopper) 아키텍처를 넘어선 새로운 시대의 핵심 기술이라고 강조했다. 그렇다면 블랙웰 GPU는 무엇이 다를까? 블랙웰 GPU는 기존 호퍼 아키텍처 대비 연산 성능이 2배 이상 향상되었으며, 특히 대규모 AI 모델을 실행할 때의 전력 효율이 4배 증가했다. 이는 곧 더 적은 에너지로 더 강력한 AI 모델을 훈련하고 실행할 수 있다는 의미다. 젠슨 황은 연설에서 “블랙웰은 단순한 속도 개선이 아니라, AI 연구자들이 더 크고 복잡한 모델을 현실적으로 활용할 수 있도록 지원하는 플랫폼”이라고 설명했다. 이제 AI 연구자는 엄청난 비용을 감수하지 않고도 보다 정교한 생성형 AI, 실시간 데이터 처리, 고도화된 시뮬레이션 등을 구현할 수 있게 되었다. 엔비디아는 블랙웰 GPU와 함께 옴니버스 클라우드 API를 발표했다. 이는 단순한 클라우드 컴퓨팅 설루션이 아니라, AI 모델 개발 및 실행을 위한 강력한 협업 플랫폼이다. 옴니버스 클라우드 API는 데이터센터, AI 연구소, 기업의 IT 인프라를 하나의 거대한 AI 네트워크로 연결하여, 개발자들이 실시간으로 협업하고 AI 모델을 학습할 수 있도록 지원한다. 이는 특히 자율주행, 산업 자동화, 로보틱스 같은 분야에서 AI의 혁신 속도를 극적으로 끌어올릴 것으로 기대된다. 젠슨 황은 “AI 개발은 더 이상 한 기업이나 연구소만의 일이 아니다. 옴니버스 클라우드 API를 통해 전 세계의 AI 개발자가 하나로 연결될 것”이라며, AI 연구의 새로운 생태계를 제시했다. 또 한 가지 주목할 점은 AI 팩토리(인공지능 공장) 개념이다. 젠슨 황은 AI를 ‘새로운 산업 혁명의 동력’으로 표현하며, AI 팩토리가 데이터를 가공하고 AI 모델을 대량으로 생산하는 핵심 인프라가 될 것이라고 설명했다. 이 개념을 이해하려면 기존 제조업과 비교해보면 쉽다. 과거에는 자동차나 전자제품을 생산하는 공장이 경제의 중심이었지만, 미래에는 AI를 학습하고, 최적화하고, 배포하는 ‘AI 공장’이 가장 중요한 인프라가 될 것이다. 젠슨 황은 AI 팩토리가 AI 기반 자율주행, 로봇, 데이터 분석, 금융 모델링 등 다양한 산업에서 필수 역할을 하게 될 것이라고 강조했다. 블랙웰 GPU, 옴니버스 클라우드 API, AI 팩토리는 단순한 기술 발전이 아니다. 이들은 AI가 단순한 연구 프로젝트에서 벗어나 본격적인 산업 혁신의 중심으로 자리 잡는 것을 의미한다. 과거에도 GPU의 성능 향상이 AI 산업에 변화를 가져온 적이 있다. 2012년 알렉스넷(AlexNet)이 GPU 가속을 이용해 딥러닝의 가능성을 처음 보여줬고, 2017년 트랜스포머(transformer) 모델이 등장하며 자연어 처리 AI가 급격히 발전했다. 그리고 2025년에는 블랙웰이 AI의 자율성과 창의성을 한 단계 끌어올리는 전환점이 될 것이다. 젠슨 황이 기조연설에서 블랙웰을 소개하며 한 말이 특히 인상적이었다. “AI는 이제 단순한 도구가 아니라 스스로 사고하고 결정하는 존재로 나아가고 있다.” 이 말은 곧, 우리가 맞이할 AI의 미래가 이전과는 전혀 다른 차원이라는 것을 시사한다. 그리고 그 변화를 가속하는 엔진이 바로 블랙웰이다. “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다.” – 젠슨 황   엔비디아가 던진 화두, 에이전틱 AI와 추론 AI AI 기술의 발전은 단순히 연산 능력을 향상시키는 것에 그치지 않는다. 더 중요한 것은 AI의 ‘사고 방식’이 바뀌고 있다는 점이다. 지금까지의 AI는 데이터를 학습하고 패턴을 인식하는 역할을 해왔다. 하지만 이제 AI는 스스로 목표를 설정하고, 상황에 맞게 판단하며, 능동적으로 문제를 해결하는 방향으로 진화하고 있다. GTC 2025에서 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 바로 이러한 변화의 핵심 개념이다. 그는 이 두 가지 개념이 AI를 단순한 도구에서 ‘자율적 지능’으로 변화시키는 결정적 요소라고 설명했다. 그렇다면 에이전틱 AI와 추론 AI는 무엇이며, 어떤 변화를 가져올까? 에이전틱 AI의 핵심은 AI가 인간의 지시 없이도 능동적으로 목표를 설정하고, 실행할 수 있도록 만드는 것이다. 기존의 AI는 주어진 데이터와 명령에 따라 최적의 결과를 도출하는 ‘수동적’ 존재였다. 하지만 에이전틱 AI는 스스로 목표를 설정하고, 문제를 해결하는 ‘능동적’ 존재로 변하고 있다. 젠슨 황은 에이전틱 AI를 활용하면 인간이 직접 개입하지 않아도 AI가 알아서 문제를 해결하는 시대가 열린다고 강조했다. 추론 AI는 한 단계 더 나아가, AI가 단순한 패턴 인식을 넘어 논리적 사고를 수행할 수 있도록 만드는 기술이다. 기존 AI 모델은 데이터를 학습하고 특정 패턴을 기반으로 예측을 수행했지만, 그 과정에서 왜 이런 결론이 나왔는지 설명하지 못하는 경우가 많았다. 그러나 추론 AI는 AI가 논리적인 판단을 수행하고, 의사결정의 과정을 설명할 수 있도록 하는 것을 목표로 한다. 젠슨 황은 “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다”며, 추론 AI가 향후 AI 발전의 핵심이 될 것이라고 강조했다. 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 개별적인 개념이 아니라, 서로 결합될 때 가장 강력한 시너지를 발휘한다. 에이전틱 AI는 AI가 스스로 목표를 설정하고, 문제를 해결할 수 있도록 한다. 추론 AI는 AI가 단순한 계산이 아니라, 논리적 사고를 통해 최적의 결정을 내릴 수 있도록 한다. 이 두 가지가 결합되면, AI는 단순한 보조 도구를 넘어서 ‘진정한 지능(Artificial General Intelligence : AGI)’에 가까워질 것이다. 이러한 AI의 발전은 산업 전반에 걸쳐 거대한 변화의 파도를 일으킬 것이며, 기업들은 단순한 AI 도입을 넘어서 AI를 기업 전략의 중심으로 삼아야 하는 시점에 이르렀다. “AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다.” – 젠슨 황   AI 팩토리, AI 혁명을 생산하는 공장 이제 AI는 단순한 소프트웨어가 아니라 하나의 ‘산업’으로 성장하고 있다. GTC 2025에서 젠슨 황이 강조한 개념 중 하나가 바로 AI 팩토리(인공지능 공장)이다. 그는 AI 팩토리를 가리켜 ‘미래 산업의 심장’이라고 표현했다. 그렇다면 AI 팩토리란 무엇이며, 왜 중요할까? 이 개념이 가져올 변화는 무엇일까? 기존의 데이터센터는 단순한 컴퓨팅 인프라였다. 하지만 AI 팩토리는 데이터를 학습하고, AI 모델을 훈련하며, 새로운 AI 설루션을 ‘생산’하는 역할을 한다. 즉, AI가 AI를 만들어내는 공장이다. 젠슨 황은 AI 팩토리를 자동차 산업에 비유하며 설명했다. “과거에는 사람이 손으로 자동차를 조립했지만, 지금은 로봇이 자동차를 생산한다. AI도 마찬가지다. 미래에는 사람이 AI를 개발하는 것이 아니라, AI 팩토리에서 AI가 스스로 AI를 만들어내게 될 것이다.” 즉, AI 팩토리는 단순한 데이터 센터가 아니라 AI 혁명을 대량 생산하는 공장이 된다. 젠슨 황은 GTC 2025에서 "AI 팩토리를 구동하는 핵심 연산 장치는 블랙웰 GPU가 될 것"이라고 강조했다. AI 팩토리에서 생산되는 것은 반도체나 기계가 아니라 AI 자체다. 이 공장에서 에이전틱 AI, 추론 AI, 자율주행 AI, 생성형 AI 등이 대량으로 생산된다. 즉, AI 팩토리는 단순한 데이터 센터를 넘어 새로운 AI 산업의 허브가 된다. AI 팩토리가 등장하면 기업과 산업이 근본적으로 변화한다. 특히, 데이터를 기반으로 하는 모든 산업이 AI 팩토리를 도입할 가능56 · 성이 높다. 결국 AI 팩토리는 단순한 연구소가 아니라, 실제 AI 모델을 ‘대량 생산’하여 산업에 공급하는 핵심 인프라가 된다. 젠슨 황은 AI 팩토리의 등장이 단순한 기술 발전이 아니라 경제 패러다임의 변화라고 강조했다. 이제 기업은 단순히 AI를 도입하는 것을 넘어, AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다. “AI를 도입하지 않는 기업은 도태될 것이다.” – 젠슨 황   AI의 도입, AI가 기업을 재설계한다 AI 혁명은 더 이상 선택이 아니다. GTC 2025에서 젠슨 황이 강조한 메시지는 명확했다. "AI를 도입하지 않는 기업은 도태될 것이다." 이제 AI는 기업 운영의 한 요소가 아니라 기업의 핵심 전략, 구조, 성장 엔진 자체로 변화하고 있다. 기업은 어떻게 AI를 도입하고 있으며, AI 도입이 비즈니스에 미치는 영향은 무엇일까? 과거 AI 도입은 단순한 자동화 도구 활용이었다. 그러나 이제 AI 도입(AI adoption)은 기업의 핵심 역량을 AI 중심으로 전환하는 과정이다. AI 도입은 이제 단순한 기술의 도입이 아니라, 기업의 전략과 문화 자체를 AI 중심으로 변화시키는 과정이다. AI 도입이 빠르게 진행될 수록, 기업들은 직접 AI를 개발하는 것이 아니라 필요한 AI 서비스를 구독하는 방식으로 활용하는 시대가 열리고 있다. AI 도입이 가속화되면서 기업들은 완전히 새로운 방식으로 운영되고 있다. 특히, 의사결정 구조, 업무 방식, 조직 문화가 AI 중심으로 변화하고 있다. 이제 AI는 단순한 도구가 아니다. AI 도입이 진행될 수록, 기업의 핵심 전략과 비즈니스 모델 자체가 AI 중심으로 변화하고 있다. 결국, AI 도입을 성공적으로 수행하는 기업만이 미래 시장에서 생존하고 성장할 수 있을 것이다.    표 2. 기존 기업 vs. AI 중심 기업의 차이점   AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” – 젠슨 황   네트워킹, AI 시대의 연결과 협업 AI가 기업의 핵심 전략이 되고 산업 전체가 AI 기반으로 재편되는 과정에서, 네트워킹(networking)의 중요성이 더욱 강조되고 있다. 과거 기업은 독립적으로 성장하는 전략을 취했지만, 이제 AI 시대에서는 기업 간 협력, 데이터 공유, AI 연구 협업이 필수이다. GTC 2025에서 젠슨 황은 이렇게 말했다. “AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” 그렇다면 AI 시대의 네트워킹은 어떻게 이루어지고 있으며, 어떤 기업이 AI 협업을 통해 새로운 가치를 창출하고 있을까? AI 네트워킹의 의미는 ‘AI는 연결을 필요로 한다’로 해석된다. AI 혁명이 가속화될 수록 기업들은 서로 연결될 필요가 있다.  즉, AI 네트워킹이란 기업들이 AI를 더 빠르고, 더 효율적으로, 더 윤리적으로 활용하기 위해 서로 협력하는 과정을 의미한다. AI 네트워킹을 실현하는 방식은 다양하지만, 현재 가장 중요한 세 가지 협력 모델을 살펴보자. AI 팜(AI farms)을 통해 개별 기업이 AI 인프라를 구축하는 부담을 줄이고, 더 빠르게 AI를 도입할 수 있다. AI 얼라이언스(AI alliance)를 통해 기업들은 경쟁이 아닌 협력을 기반으로 AI 혁신을 가속화하고 있다. 즉, AI 데이터 공유는 이제 개인정보 보호를 유지하면서도 기업들이 협력할 수 있는 새로운 방식으로 발전하고 있다. AI 네트워킹이 활성화됨에 따라, 기업들은 완전히 새로운 방식으로 연결되고 협력하고 있다. AI 시대에는 한 산업 내에서 경쟁하는 것이 아니라, 다양한 산업과 연결되는 것이 핵심 전략이 된다. 결과적으로, AI 네트워킹을 활용하는 기업들은 새로운 기회를 창출하고, 더 빠르게 AI 중심으로 전환하고 있다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다.” – 젠슨 황   AI 시대의 미래, 우리는 어디로 가는가 AI 혁명은 이제 단순한 기술 발전을 넘어 산업, 사회, 인간의 삶 자체를 근본적으로 변화시키고 있다. GTC 2025에서 젠슨 황은 말했다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다. ”그렇다면 AI의 미래는 어디로 향하고 있으며, 우리는 AI와 함께 어떤 세상을 만들어가야 할까? 에이전틱 AI와 추론 AI의 발전이다. 즉, AI가 단순한 ‘도구’가 아니라, 인간과 협력하는 ‘실제적인 파트너’가 되는 시대가 다가오고 있다. 기존의 AI는 패턴을 학습하는 방식이었다. 그러나 추론 AI는 스스로 논리적으로 사고하고 추론하는 능력을 갖춘다. 즉, AI가 더 이상 단순한 자동화 도구가 아니라, 지능적인 사고를 할 수 있는 존재로 변화하고 있다. AI가 점점 더 지능적으로 발전하면서, 우리는 ‘AI와의 관계를 어떻게 설정할 것인가’라는 근본적인 질문을 마주하게 되었다. 이제 AI는 단순한 도구를 넘어, 인간과 협력하여 새로운 가치를 창출하는 존재로 변화하고 있다. AI가 고도화될 수록 우리는 AI의 윤리적 문제와 사회적 책임에 대한 고민을 깊게 해야 한다. 결과적으로, 각국이 AI 규제와 발전 전략을 다르게 설정하면서 AI 패권 경쟁이 더욱 치열해지고 있다. AI는 단순한 기술이 아니라, 인류가 새로운 방식으로 사고하고 일하고 살아가는 방식을 바꾸는 거대한 전환점이 되고 있다. “AI는 이제 단순한 도구가 아니라, 스스로 사고하고 결정하는 존재로 나아가고 있다.” – 젠슨 황   변화의 바람을 넘어, AI와 함께 새로운 항해를 시작하다 AI 혁명은 거대한 바람이 아니라, 이제는 우리가 타고 항해해야 할 파도다. 과거에는 변화가 두려운 것이었다. 그러나, AI와 함께라면 우리는 변화 속에서도 새로운 기회를 창출할 수 있다. 엔비디아 GTC 2025에서 젠슨 황이 던진 질문을 기억하자. “AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” 이제 우리는 AI와 함께 새로운 항해를 시작할 준비를 해야 한다.   그림 1. 엔비디아 기업 성장 맵(GTC 2024, 2025, Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02