• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 오픈AI"에 대한 통합 검색 내용이 88개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
아마존, “한국 클라우드 인프라에 7조 원 추가 투자 계획”
아마존웹서비스(AWS)는 2025년부터 2031년까지 한국 내 AI 및 클라우드 컴퓨팅 기술 지원을 위한 데이터센터 인프라 확충에 7조 원(약 50억 달러)을 추가 투자할 계획이라고 발표했다. AWS는 현재까지 한국 클라우드 인프라에 5조 6000억 원(40억 달러) 이상을 투자해왔으며, 2031년까지 아마존의 국내 총 투자 규모는 12조 6000억 원(90억 달러)을 넘어설 전망이다. AWS의 확장된 인프라는 국내 기업이 머신러닝과 분석부터 복잡한 업무를 자율적으로 처리할 수 있는 새로운 AI 에이전트(AI agent)에 이르기까지 AI의 모든 기능을 폭넓게 활용할 수 있도록 지원한다. AWS는 AI 도입 여정의 어느 단계에 있든 기업이 안정적이고 확장 가능한 기반 위에서 혁신을 이어갈 수 있도록 지원하고 있다고 소개했다. AWS의 하이메 발레스(Jaime Vallés) 아시아·태평양·일본(APJ) 총괄 부사장은 “7조 원 규모의 이번 신규 투자는 모든 규모의 한국 기업의 디지털 전환을 지원하고 한국이 글로벌 AI 강국으로 도약하는 데 기여하고자 하는 우리의 장기적 약속을 더욱 공고히 하는 것”이라며, “AWS는 세계적 수준의 데이터센터 인프라를 확장함으로써 한국의 기술적 미래에 투자하고 있다. 한국 기업이 가장 발전된 컴퓨팅 성능과 특화된 AI 도구를 활용해 빠르게 혁신하고, 생성형 AI가 제공하는 막대한 기회를 활용할 수 있도록 지원하게 되어 기쁘다”라고 말했다. 김정관 산업통상자원부 장관은 “AWS의 대규모 AI 인프라 투자는 한국이 글로벌 AI 강국으로 도약하는 데 크게 기여할 것”이라며, “생산성 정체와 글로벌 보호무역 확산 등 우리 산업이 직면한 위기를 극복하기 위해서는 AI 전환(AX)이 유일한 해법이며, AWS가 구축할 AI 인프라는 산업 전반의 AX를 가속화한다는 점에서 더욱 의미가 크다. 정부는 국내외 기업들이 AI 인프라 확충과 AX 확산을 위한 적극적인 투자와 비즈니스 활동을 전개할 수 있도록 적극 지원하겠다”고 말했다. 이번 신규 투자는 AWS가 한국의 국가 AI 기반 강화를 위해 SK그룹과 협력하에 추진 중인 ‘울산 AI 존’에 대한 투자를 포함한다. 2027년 운영을 시작할 예정인 이 AI 특화 시설은 SK그룹이 건설을 담당하고, AWS는 자사의 AI 및 클라우드 역량을 한국 고객에게 제공할 계획이다. 한편, AWS는 빠르게 성장하는 스타트업부터 대기업, 주요 정부 기관에 이르기까지 수천 개의 한국 고객들이 자사의 기술을 활용해 AI 여정을 가속화하고 비용을 절감하며 민첩성을 높이고 혁신을 추진하고 있다고 전했다. AWS는 고성능 컴퓨팅 인프라와 특화된 AI 하드웨어에 대한 전략적 투자를 확대해, 향후 생성형 AI와 에이전틱 AI(agentic AI) 혁신을 위한 기술적 기반을 구축하고 있다. 여기에는 트레이니움(Trainium)과 인퍼런시아(Inferentia) 칩과 같은 특수 목적 하드웨어를 갖춘 고도의 보안 인프라부터, 아마존 베드록(Amazon Bedrock)을 통해 앤트로픽, 오픈AI 등이 제공하는 100개 이상의 AI 모델에 접근하고, AI 에이전트를 통해 경쟁력을 강화하는 것까지 포함된다. AWS는 한국의 조직들이 안전하고 대규모로 AI 혁신을 가속화할 수 있도록 필요한 도구와 서비스를 제공하고 있다고 소개했다. AWS코리아 함기호 대표는 “다년에 걸친 이번 투자 계획은 한국의 디지털 전환 여정을 지원하고자 하는 AWS의 확고한 의지를 보여준다”며, “확장된 클라우드 인프라는 모든 규모의 국내 기업이 글로벌 시장에서 경쟁력을 확보하고, 데이터 주권을 유지하면서 첨단 AI 기술을 활용할 수 있도록 지원할 것이다. 이번 투자를 통해 한국 경제에 기여하고, 대규모 AI 혁신을 가능하게 하며, 사회 전반에 실질적인 혜택을 제공하게 되어 기쁘다”고 말했다.
작성일 : 2025-10-29
어도비, ‘파이어플라이’로 AI 창작 혁신 가속화
어도비(Adobe)가 AI 기반 창작 환경의 새로운 지평을 여는 올인원 크리에이티브 AI 스튜디오 ‘어도비 파이어플라이(Adobe Firefly)’의 대규모 업데이트를 발표했다. 이번 업데이트는 영상, 오디오, 이미지, 디자인 등 전 영역에서 아이디어 구상부터 최종 제작까지 전 과정을 지원하는 통합형 AI 창작 생태계를 구축하는 데 초점을 맞췄다. 파이어플라이는 최고의 AI 모델과 크리에이티브 툴을 단일 플랫폼·단일 가격으로 제공하는 ‘올인원 AI 크리에이티브 스튜디오’로, 복잡한 제작 과정을 단순화하고 창작 효율을 극대화하는 것이 특징이다.  이번 업데이트의 핵심 중 하나는 영상과 오디오 제작 도구의 강화다. 사운드트랙 생성(Generate Soundtrack) 기능은 상업적으로 안전한 라이선스 기반의 오리지널 AI 음악을 자동으로 영상에 동기화해 제작할 수 있도록 지원한다. 음성 생성(Generate Speech) 기능은 텍스트를 자연스러운 음성으로 변환하며, 일레븐랩스(ElevenLabs)와 협력해 다양한 언어와 감정 조절을 구현했다. 파이어플라이 비디오 에디터(Firefly Video Editor)는 웹 기반 멀티트랙 타임라인 편집기로, 영상 클립 생성, 편집, 사운드 및 자막 추가를 직관적으로 수행할 수 있다. 이미지 제작과 편집 분야에서는 더욱 정교하고 사실적인 결과물을 제공한다. 파이어플라이 이미지 모델 5(Image Model 5)는 4MP 해상도의 초고해상도 이미지 생성이 가능하며, 세밀한 질감과 디테일을 구현한다. 프롬프트로 편집(Prompt to Edit) 기능은 사용자가 일상 언어로 편집 내용을 설명하면 AI가 자동으로 수정하는 대화형 편집 기능을 지원한다. 어도비는 파이어플라이의 AI 생태계를 확장하며 크리에이터 맞춤형 모델(Custom Models)을 비공개 베타로 선보였다. 사용자는 자신이 보유한 이미지를 학습시켜 고유한 스타일의 에셋을 생성할 수 있다. 또한 구글, 루마 AI, 오픈AI, 일레븐랩스 등 주요 AI 기업의 모델과 협업해 파이어플라이 내에서 다양한 AI 엔진을 직접 활용할 수 있도록 했다. 이번 업데이트에서는 ‘프로젝트 문라이트(Project Moonlight)’도 함께 공개됐다. 이는 어도비의 앱과 크리에이터 소셜 채널 전반에서 작동하는 에이전틱 AI 기반 대화형 크리에이티브 어시스턴트로, 아이디어 발상부터 콘텐츠 인사이트 제공, 제작 가속화까지 전 과정을 지원한다. 어도비의 CTO 일라이 그린필드(Ely Greenfield)는 “파이어플라이는 아이디어 구상부터 최종 작품 완성까지 크리에이티브의 모든 여정을 지원하는 단일 공간”이라며 “최고의 AI 모델과 크리에이티브 툴을 결합해 창작자들이 더욱 빠르고 유연하게 작업할 수 있는 환경을 구축했다”고 밝혔다. 이번 업데이트를 통해 어도비는 AI 중심의 크리에이티브 워크플로우 혁신을 가속화하며, 글로벌 크리에이터 생태계 전반에 새로운 생산성과 영감을 제공할 것으로 기대된다.
작성일 : 2025-10-29
AWS, 포괄적 AI 에이전트 플랫폼 ‘아마존 베드록 에이전트코어’ 출시
아마존웹서비스(AWS)가 포괄적인 에이전틱 플랫폼인 ‘아마존 베드록 에이전트코어(Amazon Bedrock AgentCore)’를 출시한다고 발표했다. AWS는 “미션 크리티컬 시스템 구축 경험을 바탕으로 개발된 아마존 베드록 에이전트코어는 안전하고 신뢰할 수 있으며 확장 가능한 종합 에이전트 플랫폼으로, 에이전트의 비결정적 특성에 최적화된 프로덕션 환경을 제공한다”고 소개했다. 에이전트코어는 기업이 AI 에이전트를 파일럿에서 프로덕션까지 신속하게 전환하고 개발자가 에이전트를 구축, 배포, 운영하는 데 필요한 완전한 기반을 제공한다. 개발자는 복잡한 워크플로를 처리할 수 있도록 에이전트에 도구, 메모리, 데이터를 손쉽게 연결할 수 있으며, 몇 줄의 코드로 안전하고 확장 가능한 런타임 환경에 배포할 수 있다. 또한 엔터프라이즈급 접근 제어 및 관리 기능을 통해 안정적으로 운영할 수 있다. 이 모든 기능은 인프라를 관리 없이 원하는 모델이나 프레임워크를 자유롭게 선택해 쉽게 시작할 수 있다. 에이전트코어는 구축부터 배포, 운영까지 에이전트 개발 수명주기 전반에 걸쳐 완전 관리형 서비스를 제공하는 에이전틱 플랫폼이다. 기업은 원하는 모델이나 프레임워크를 자유롭게 조합해 사용할 수 있으며 엔터프라이즈급 인프라 및 도구에 대한 액세스와 함께 높은 유연성을 제공한다. 에이전트코어는 통합 또는 개별 사용이 가능한 컴포저블(composable) 서비스를 제공한다. 기업은 크루AI, 구글 ADK, 랭그래프, 라마인덱스, 오픈AI 에이전트 SDK, 스트랜드 에이전트 등 선호하는 프레임워크와 아마존 베드록에서 제공되는 모델 또는 오픈AI, 제미나이 등 아마존 베드록 외부 모델을 사용하여 필요한 에이전트코어 서비스를 선택할 수 있다.     에이전트코어 코드 인터프리터(AgentCore Code Interpreter)는 격리된 환경에서 에이전트가 코드를 안전하게 생성하고 실행할 수 있게 하며, 에이전트코어 브라우저(AgentCore Browser)는 대규모 웹 애플리케이션 상호작용을 지원한다. 에이전트코어 게이트웨이(AgentCore Gateway)는 기존 API와 AWS 람다(AWS Lambda) 함수를 에이전트 호환 도구로 전환하고 기존 모델 컨텍스트 프로토콜(Model Context Protocol : MCP) 서버에 연결하며, 지라, 아사나, 젠데스크 등 서드파티 비즈니스 도구 및 서비스와의 원활한 통합을 제공한다. 에이전트코어 아이덴티티(AgentCore Identity)를 통해 에이전트는 오스(OAuth) 표준을 사용한 적절한 인증 및 권한 부여로 이러한 도구에 안전하게 액세스하고 운영할 수 있다. AI 에이전트는 컨텍스트를 유지하고 상호작용을 통해 학습할 수 있어야 한다. 에이전트코어 메모리(AgentCore Memory)는 개발자가 복잡한 메모리 인프라를 관리하지 않고도 정교하고 컨텍스트를 인식하는 경험을 만들 수 있도록 지원하며, 에이전트가 사용자 선호도, 과거 상호작용, 관련 컨텍스트에 대한 상세한 이해를 구축하고 유지할 수 있게 한다. 아마존 클라우드워치(Amazon CloudWatch) 기반의 에이전트코어 옵저버빌리티(AgentCore Observability)는 실시간 대시보드와 상세한 감사 추적을 통해 포괄적인 모니터링을 제공한다. 기업은 모든 에이전트 작업을 추적하고 문제를 신속하게 디버깅하며 성능을 지속적으로 최적화할 수 있다. 오픈텔레메트리(OpenTelemetry : OTEL) 호환성을 통해 다이나트레이스, 데이터독, 아리제 피닉스, 랭스미스, 랭퓨즈 등 기존 모니터링 도구와 통합된다. 에이전트 워크로드는 기존 애플리케이션과 달리 실행 시간이 불규칙하다. 에이전트코어 런타임(AgentCore Runtime)은 이러한 변동성(variability)에 대응해 필요에 따라 제로에서 수천 개의 세션으로 자동 확장되며 장시간 실행 작업을 위한 업계 최고 수준의 8시간 런타임을 제공한다. 에이전트코어는 에이전트가 안전하게 작동할 수 있도록 모든 서비스에 보안을 내장했다. 가상 프라이빗 클라우드(VPC) 환경과 AWS 프라이빗링크(AWS PrivateLink)를 지원하여 네트워크 트래픽을 비공개로 안전하게 유지한다. 에이전트코어 런타임은 마이크로VM 기술을 통해 매우 높은 수준의 보안을 제공하여 각 에이전트 세션에 고유한 격리된 컴퓨팅 환경을 제공함으로써 데이터 유출을 방지하고 모든 상호작용의 무결성을 유지한다. 에이전트코어는 키로(Kiro), 커서AI(Cursor A)I와 같은 통합 개발 환경(IDE)과 호환되는 MCP 서버를 통해 프로덕션급 에이전트 구축을 지원한다. AWS는 “시작까지 단 몇 분밖에 걸리지 않지만 이는 단순한 도구가 아니라 강력한 보안을 유지하면서 제로에서 수천 개의 세션으로 즉시 확장할 수 있는 완전한 기능의 프로덕션급 설루션”이라고 소개했다. 아마존 디바이스 운영 및 공급망(Amazon Devices Operations & Supply Chain) 팀은 에이전트코어를 사용하여 에이전틱 제조 접근 방식을 개발하고 있다. AI 에이전트들은 제품 사양을 사용하여 함께 작업하며 수동 프로세스를 자동화하며 협업한다. 한 에이전트는 제품 요구사항을 읽고 품질 관리를 위한 상세한 테스트 절차를 만들고, 다른 에이전트는 제조 라인의 로봇에 필요한 비전 시스템을 훈련시킨다. 그 결과 기존에 며칠이 걸리던 객체 감지 모델 미세 조정이 1시간 이내에 높은 정밀도로 단축됐다. 에이전트코어는 뭄바이, 싱가포르, 시드니, 도쿄, 더블린, 프랑크푸르트, 미국 동부(버지니아 북부), 미국 동부(오하이오), 미국 서부(오리건) 등 9개 AWS 리전에서 정식 출시됐다. 기업은 에이전트코어에서 작동하도록 설계된 AWS 마켓플레이스(AWS Marketplace)의 사전 구축된 에이전트 및 도구를 통해 가치 실현 시간을 가속화할 수 있다.
작성일 : 2025-10-17
세일즈포스, “오픈AI·앤트로픽 파트너십 통해 에이전트포스 360 강화”
세일즈포스는 오픈AI 및 앤트로픽과의 전략적 파트너십을 기반으로 에이전트포스 360과 챗지피티(ChatGPT), 클로드 등 플랫폼과의 통합을 지원하는 한편, 차세대 업무 환경 구축과 커머스 경험 혁신을 지원하기 위한 역량을 지속 강화해 나갈 것이라는 비전을 밝혔다. 이번 세일즈포스와 오픈AI의 파트너십을 기반으로 세일즈포스의 고객은 이제 챗지피티에서도 ‘에이전트포스 360’ 앱을 직접 활용하여 자연어로 기록 조회, 고객 대화 분석, 태블로 데이터 시각화 등의 작업을 수행할 수 있다. 또한 GPT-5를 포함한 오픈AI의 최신 모델을 기반으로 세일즈포스 플랫폼 내에서도 AI 에이전트와 프롬프트를 생성할 수 있게 된다. 오픈AI와 세일즈포스는 앞으로도 챗지피티와 슬랙 등 양사의 대표 플랫폼을 통해 업무 생산성 제고를 위한 에이전틱 AI 기반의 협업 환경 구축을 지원할 계획이다. 나아가 세일즈포스는 ‘에이전트포스 커머스(Agentforce Commerce)’를 챗지피티의 ‘즉시결제(Instant Checkout)’ 및 ‘에이전틱 커머스 프로토콜(Agentic Commerce Protocol)’과 통합한다고 밝혔다. 이를 통해 커머스 기업은 주문, 결제, 고객 관계 등 핵심 프로세스에 대한 통제권을 유지하면서도 새로운 유통 채널을 기반으로 수억 명의 잠재 고객에게 제품을 판매할 수 있는 역량을 확보할 수 있다.     슬랙과 클로드의 통합 기능도 공개됐다. 세일즈포스는 앤트로픽과의 전략적 협업을 통해 클로드(Claude) 모델을 에이전트포스 360 내 선호 AI 모델로 통합하며, 클로드 모델을 세일즈포스의 트러스트 레이어(Trust Layer) 내에 완전히 통합한 최초의 LLM 제공업체라고 소개했다. 세일즈포스는 이번 파트너십을 기반으로 금융·헬스케어·사이버보안 등 규제가 엄격하고 민감한 데이터를 다루는 산업에서도 데이터를 안전하게 보호 및 활용할 수 있는 ‘엔터프라이즈 AI’를 제공하겠다는 의지를 밝혔다. 이에 따라 슬랙의 사용자는 이제 클로드와의 양방향 통합을 통해 문서 분석, 데이터 기반 의사결정, 문서 권한 관리와 같은 업무를 슬랙 내에서 신속하게 수행할 수 있다. 특히 ‘에이전트포스 금융 서비스(Agentforce Financial Services)’와 연계해 산업 내 규제를 준수하면서도 금융 상품 분석, 보험 청구 처리, 고객 포트폴리오 요약 등의 핵심 업무를 자동화하는 것이 가능하다. 대표적으로 ‘크라우드스트라이크(CrowdStrike)’와 ‘RBC 자산 관리(RBC Wealth Management)’와 같은 기업들은 이미 에이전트포스에서 클로드를 활용하여 AI 기반의 새로운 고객 경험을 제공하고 있다. 한편, 세일즈포스는 차세대 AI 기업 대상의 투자를 확대하며, 중장기적인 AI 생태계 지원 의지를 밝혔다. 세일즈포스의 자체 글로벌 투자 기업인 ‘세일즈포스 벤처스(Salesforce Ventures)’는 지난해 드림포스에서 출범한 10억 달러 규모의 AI 펀드 중 75% 이상을 차세대 엔터프라이즈 AI 기업에 투입했다. 현재까지 총 2200억 달러 규모로 성장한 35개 기업에 투자하며 엔터프라이즈 AI 분야의 선도 벤처 캐피털로 자리매김한 세일즈포스 벤처스는 기존 포트폴리오 기업에 대한 투자를 25% 이상 확대할 계획이라고 전했다. 세일즈포스 벤처스의 AI 펀드 포트폴리오에는 앤트로픽, 코히어, 일레븐랩스, 투게더 AI, 런웨이 등의 혁신 기업과, 팔 AI, 월드 랩스, 라이터 등의 스타트업이 포함됐다.  세일즈포스 코리아의 박세진 대표는 “세일즈포스는 오픈AI 및 앤트로픽과 같은 글로벌 파트너와의 긴밀한 협력을 통해 기업들이 AI를 기반으로 한 차세대 업무 환경에서 혁신적인 고객 경험을 제공할 수 있는 ‘에이전틱 엔터프라이즈’로의 전환을 지원하고 있다”면서, “에이전트포스 360은 직원과 고객 모두에게 보다 효율적이고 개인화된 경험을 제공하기 위한 핵심 플랫폼으로 자리매김할 것이며, AI 에이전트가 지닌 무한한 잠재력을 기반으로 국내 기업들과 함께 만들어 나갈 새로운 혁신 여정이 매우 기대된다”고 전했다.
작성일 : 2025-10-16
오라클, 대규모 클라우드 AI 클러스터 ‘OCI 제타스케일10’ 공개
오라클이 클라우드 환경 내의 대규모 AI 슈퍼컴퓨터인 ‘오라클 클라우드 인프라스트럭처(OCI) 제타스케일10(Zettascale10)’을 발표했다. OCI 제타스케일10은 여러 데이터센터에 걸쳐 수십만 개의 엔비디아 GPU를 연결하여 멀티 기가와트급 클러스터를 형성하며, 최대 16 제타플롭스(zettaFLOPS)에 이르는 성능을 제공한다. OCI 제타스케일10은 스타게이트의 일환으로 미국 텍사스주 애빌린에서 오픈AI(OpenAI)와 협력하여 구축한 대표 슈퍼클러스터를 구성하는 기반 패브릭이다. 차세대 오라클 액셀러론 RoCE(Oracle Acceleron RoCE) 네트워킹 아키텍처를 기반으로 구축된 OCI 제타스케일10은 엔비디아 AI 인프라로 구동된다. 오라클은 강화된 확장성, 클러스터 전반에 걸친 초저지연 GPU-GPU 통신, 가격 대비 높은 성능, 향상된 클러스터 활용도, 대규모 AI 워크로드에 필요한 안정성을 제공한다는 점을 내세운다. OCI 제타스케일10은 2024년 9월 출시된 첫 번째 제타스케일 클라우드 컴퓨팅 클러스터의 차세대 모델이다. OCI 제타스케일10 클러스터는 대규모 기가와트급 데이터센터 캠퍼스에 배치되며, 2킬로미터 반경 내에서 밀도를 높여 대규모 AI 학습 워크로드에 최적화된 GPU-GPU 지연 성능을 제공한다. 이 아키텍처는 오픈AI와 협력하여 애빌린 소재 스타게이트 사이트에 구축 중에 있다. OCI는 고객에게 OCI 제타스케일10의 멀티기가와트 규모 배포를 제공할 계획이다. 초기에는 최대 80만 개의 엔비디아GPU를 탑재한 OCI 제타스케일10 클러스터 배포를 목표로 한다. 이는 예측 가능한 성능과 강력한 비용 효율을 제공하며, 오라클 액셀러론의 초저지연 RoCEv2 네트워킹으로 높은 GPU-GPU 대역폭을 구현한다. OCI는 현재 OCI 제타스케일10 주문을 접수 중이라고 전했다. 이 제품은 2026년 하반기 출시 예정으로, 최대 80만 개의 엔비디아 AI 인프라 GPU 플랫폼을 기반으로 제공될 예정이다. 오라클의 마헤쉬 티아가라얀 OCI 총괄 부사장은 “OCI 제타스케일10을 통해 우리는 OCI의 혁신적인 오라클 액셀러론 RoCE 네트워크 아키텍처를 차세대 엔비디아 AI 인프라와 결합해 전례 없는 규모에서 멀티기가와트급 AI 용량을 제공한다. 고객은 성능 단위당 전력 소비를 줄이면서 높은 안정성을 달성해 가장 큰 규모의 AI 모델을 실제 운영 환경에 구축, 훈련 및 배포할 수 있다. 또한 강력한 데이터 및 AI 주권 제어 기능을 통해 오라클의 분산형 클라우드 전반에서 자유롭게 운영할 수 있다”고 말했다. 오픈AI의 피터 호셸레(Peter Hoeschele) 인프라 및 산업 컴퓨팅 부문 부사장은 “OCI 제타스케일10 네트워크 및 클러스터 패브릭은 오라클과 함께 구축한 슈퍼클러스터인 텍사스주 애빌린에 위치한 대표 스타게이트 사이트에서 최초로 개발 및 배포되었다. 고도로 확장 가능한 맞춤형 RoCE 설계는 기가와트 규모에서 패브릭 전체 성능을 극대화하면서도 대부분의 전력을 컴퓨팅에 집중시켜 준다. 오라클과 협력하여 애빌린 사이트를 비롯한 스타게이트 프로젝트 전반을 전개해 나갈 수 있어 매우 기쁘게 생각한다”고 말했다.
작성일 : 2025-10-16
유아이패스-오픈AI, 엔터프라이즈 에이전틱 자동화 위해 협력
에이전틱 자동화 기술 기업인 유아이패스가 오픈AI와 협력해 ‘챗GPT 커넥터’를 선보인다고 발표했다. 이 커넥터는 오픈AI의 최첨단 모델을 유아이패스의 엔터프라이즈 오케스트레이션 기반의 워크플로와 통합해, 기업들이 에이전틱 AI를 통해 가치를 더 빠르게 실현하고 투자 대비 효과(ROI)를 높일 수 있도록 지원한다. 유아이패스의 에이전틱 자동화 역량과 오픈AI의 모델·API는 AI 에이전트 개발과 배포 과정을 간소화해 사용자가 복잡한 인프라에 구애받지 않고 비즈니스 목표에 집중할 수 있게 하며, 프로세스 관리자가 AI 에이전트에 대한 신뢰를 높일 수 있도록 한다.   오픈AI 모델은 이미 유아이패스 에이전트를 구동하고 있으며, 최근에는 유아이패스 에이전트 빌더(Agent Builder)에 최신 GPT-5 업데이트가 탑재됐다. 유아이패스와 오픈AI는 에이전틱 자동화에서 컴퓨터 활용 모델을 위한 벤치마크를 마련 중이다. 이 벤치마크를 통해 다양한 AI 모델의 컴퓨터 시스템 상호작용 성능을 보다 쉽게 평가하고 비교할 수 있다. 또한 에이전트 기능을 세밀하게 검증할 수 있으며, 실제 엔터프라이즈 환경을 위해 유연하고 확장 가능한 프레임워크를 제공하며, 에이전트가 발전함에 따라 새 시나리오까지 확장할 수 있다.   유아이패스 마에스트로(UiPath Maestro)는 업무 프로세스에서 유아이패스와 오픈AI 및 다양한 타사 AI 에이전트를 통합 관리해 기업용 대형 액션 모델(LAM)의 적용 범위를 넓힌다. 프로세스 관리자는 마에스트로의 단일 화면에서 업무 프로세스를 구축·관리·최적화할 수 있으며, 업무에 가장 적합한 에이전트를 활용해 에이전틱 자동화를 가속화할 수 있다.   또한 유아이패스는 MCP(모델 컨텍스트 프로토콜) 통합을 통해 챗GPT 사용자에게 자동화 기능을 제공한다. 사용자는 챗GPT 엔터프라이즈 내에서 무인 자동화, API 워크플로, 자율 에이전트, 마에스트로 워크플로를 직접 확인할 수 있다. 더 많은 조직이 챗GPT를 도입함에 따라, 유아이패스는 엔터프라이즈급 에이전틱 자동화와 오케스트레이션을 결합해 AI 자동화를 가속화할 수 있다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “유아이패스 플랫폼은 에이전틱 전환의 전 과정에서 중요하고 반복적인 프로세스를 식별하고, AI 에이전트를 구축하며, 워크플로를 관리할 때까지 지원해 기업이 성과와 ROI를 창출할 수 있도록 돕는다”면서, “챗GPT의 확산과 업계를 선도하는 모델이 유아이패스 플랫폼의 강력한 기능과 결합해 기업 고객에게 최적의 해법으로 자리 잡고 있다”고 말했다.   오픈AI의 지안카를로 리오네티(Giancarlo Lionetti) 최고상업책임자(CCO)는 “오픈AI는 기업용 컴퓨터 활용 에이전트를 빠르게 발전시키고 있으며, 성능 평가는 진행 상황을 가늠하고 더 높은 기준을 마련하는 핵심 수단”이라며, “유아이패스와의 협력을 통해 기업 환경에 맞는 성능 평가를 제공하고, 업계 전반의 수준을 끌어올릴 수 있다”고 말했다.
작성일 : 2025-10-02
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
엔비디아, 오픈AI와 10GW 규모 시스템 구축 위해 협력
엔비디아가 오픈AI(OpenAI)와 전략적 파트너십을 체결했다고 밝혔다. 양사는 이번 파트너십의 일환으로 오픈AI의 차세대 AI 인프라 구축을 위해 최소 10GW(기가와트) 규모의 엔비디아 시스템을 도입한다는 의향서를 발표했다. 이번 협력으로 오픈AI는 차세대 모델을 훈련하고, 운영하며, 슈퍼인텔리전스 배포를 위한 기반을 마련하게 된다. 엔비디아는 데이터센터와 전력 용량 확보를 포함한 이번 구축을 지원하기 위해, 신규 시스템이 도입됨에 따라 오픈AI에 최대 1000억 달러를 투자할 계획이다. 첫 번째 단계는 엔비디아 베라 루빈(Vera Rubin) 플랫폼을 통해 2026년 하반기 가동을 목표로 하고 있다. 엔비디아와 오픈AI는 향후 몇 주 안에 이번 전략적 파트너십의 새로운 단계에 대한 세부 사항을 확정할 예정이다. 오픈AI는 “현재 주간 활성 사용자 수가 7억 명을 넘어섰으며, 글로벌 기업, 중소기업, 개발자 전반에서 강력한 활용도를 보이고 있다. 이번 파트너십은 오픈AI가 인류 전체에 이익이 되는 범용 인공지능(AGI) 구축이라는 사명을 추진하는 데 기여할 것”이라고 소개했다. 오픈AI는 AI 팩토리 성장 계획을 위해 전략적 컴퓨팅, 네트워킹 파트너로서 엔비디아와 협력할 예정이다. 양사는 오픈AI의 모델과 인프라 소프트웨어와 엔비디아의 하드웨어와 소프트웨어에 대한 로드맵을 공동 최적화해 나갈 것이다. 이번 파트너십은 오픈AI와 엔비디아가 이미 마이크로소프트, 오라클, 소프트뱅크, 스타게이트 등 파트너사를 비롯한 여러 협력사와 추진 중인 작업을 보완한다. 이를 통해 양사는 세계 최고 수준의 AI 인프라 구축을 위해 한층 더 속도를 낼 계획이다. 엔비디아의 젠슨 황(Jensen Huang) CEO는 “엔비디아와 오픈AI는 지난 10년간 최초의 DGX 슈퍼컴퓨터부터 챗GPT(ChatGPT)의 혁신에 이르기까지 서로를 함께 견인해왔다. 이번 투자와 인프라 파트너십은 차세대 인텔리전스 시대를 이끌 10GW 규모의 인프라 구축이라는 다음 도약을 의미한다”고 말했다. 오픈AI의 샘 알트만(Sam Altman) CEO는 “모든 것은 컴퓨팅에서 시작된다. 컴퓨팅 인프라가 미래 경제의 기반이 될 것이며, 우리는 엔비디아와 함께 구축 중인 인프라를 활용해 새로운 AI 혁신을 창출하고, 이를 사람과 기업이 대규모로 활용할 수 있도록 할 것”이라고 말했다.
작성일 : 2025-09-25
바이브 코딩 지원 멀티 에이전트 코덱스의 사용법
BIM 칼럼니스트 강태욱의 이슈 & 토크   요즘 바이브 코딩(vibe coding)이 열풍이다. 이번 호에서는 오픈AI(OpenAI)가 개발한 바이브 코딩을 지원하는 멀티 에이전트 코덱스(Codex)의 사용법을 간략히 소개한다. 얼마 전 챗GPT(ChatGPT) 프로 버전에 무료로 오픈된 코덱스와 오픈소스 코덱스 버전(CLI)의 사용법을 모두 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. Codex | OpenAI   2025년 4월 중순에 OpenAI o3, o4, Codex가 공개되었다. 멀티 AI 에이전트 기능을 충실히 구현한 영상 데모가 업로드되었고, 특히 자동화 코딩을 지원하는 코덱스가 로컬 컴퓨터에서 실행 가능한 형태로 공개된 점이 인상적이었다.   그림 2. 오픈AI o3, o4, 코덱스 공개 영상   코덱스는 단순한 코드 생성에 그치지 않고 버그 수정, 테스트 실행, 코드 리뷰 제안 등 복잡한 개발 업무를 자동화한다. 각 작업은 사용자의 코드 저장소가 사전 로드된 격리된 클라우드 샌드박스 환경에서 독립적으로 실행되며, 작업의 복잡도에 따라 1분에서 30분 이내에 결과를 제공한다. 또한, 코덱스는 작업 수행 과정에서 생성된 터미널 로그와 테스트 출력 등의 증거를 제공하여, 사용자가 변경 사항을 추적하고 검토할 수 있도록 지원한다.코덱스 코드 및 도구는 깃허브(GitHub)에 공개되었다. Codex Lightweight coding agent that runs : https://github.com/openai/codex 6월 초에는 챗GPT 프로 사용자에게 코덱스 기능이 공개되었다. 코덱스는 챗GPT의 사이드바를 통해 접근할 수 있으며, 사용자는 자연어로 코딩 작업을 지시하거나 기존 코드에 대한 질문을 할 수 있다. 또한 코덱스는 사용자의 개발 환경과 유사하게 구성할 수 있어, 실제 개발 환경과의 통합이 용이하다. 보안 측면에서도 코덱스는 격리된 환경에서 실행되며, 인터넷 접근은 기본적으로 비활성화되어 있다. 필요한 경우 특정 도메인에 대한 접근을 허용할 수 있으며, 이를 통해 외부 리소스를 사용하는 테스트나 패키지 설치 등이 가능하다. 코덱스는 현재 챗GPT 프로/팀/엔터프라이즈 사용자에게 제공되며, 플러스 및 에듀 사용자에게도 점차 확대되고 있다. 또한, 코덱스 CLI(Codex CLI)를 통해 터미널 환경에서도 코덱스의 기능을 활용할 수 있어, 다양한 개발 환경에서의 활용이 가능하다.(openai.com)   챗GPT에서 코덱스 사용법 코덱스를 활용한 전체 사용 과정은 단순한 코드 자동 생성 수준을 넘어, 실제 소프트웨어 개발의 전 과정을 자연어 기반으로 자동화하는 방식으로 개발되어 있다. 코덱스는 현재 깃허브를 기본 연결해 사용하도록 되어 있어, 다음과 같이 필자의 깃허브 프로젝트를 연결해 실습을 진행했음을 밝힌다. https://github.com/mac999/AI_agent_simple_function_ call.git 참고로, 필자는 필자의 깃허브 저장소를 이용하였지만, 독자는 각자 깃허브에 로그인한 후 본인의 프로젝트 개발을 진행할 저장소를 선택해야 한다. 아울러, 바이브 코딩 결과물이 제대로 동작하려면 반드시 챗GPT 등을 이용해 미리 PRD(Product Requirement Document)에 요구사항을 명확히 작성한 후, 이를 바이브 코딩 도구에 입력해 프로젝트와 코드를 생성하도록 하는 것이 좋다.   그림 3. 식사 레스토랑 평가용 앱 개발을 위한 PRD 문서 예시(How to vibe code : 11 vibe coding best practices, https://zapier.com)   프로젝트 시작 : 코드 저장소 구성 및 환경 연결 챗GPT 프로의 왼쪽 메뉴에서 <그림 4>와 같이 코덱스를 실행하면, 연결할 깃허브 계정 및 저장소를 요청한다. 코덱스에서 <그림 4>와 같이 본인의 깃허브 계정을 연결한다.   그림 4     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03