• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 머신러닝"에 대한 통합 검색 내용이 809개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
카스퍼스키, 중견기업용 보안 설루션 ‘넥스트 XDR 옵티멈’ 공개
카스퍼스키는 자사의 플래그십 제품군인 카스퍼스키 넥스트(Kaspersky Next)를 강화하기 위해, 중소 및 중견기업을 위한 설루션 카스퍼스키 넥스트 XDR 옵티멈(Kaspersky Next XDR Optimum)과 카스퍼스키 넥스트 MXDR 옵티멈(Kaspersky Next MXDR Optimum)을 새롭게 출시했다. 이번 신제품은 강화된 보호, 자동화된 대응, 손쉬운 배포, 그리고 관리형 보안을 제공하여, 기업이 기존 자원을 과도하게 소모하지 않고도 현대적 위협을 효과적으로 차단하고 리스크를 최소화할 수 있도록 지원한다. 사이버 위협이 점점 더 복잡해지고 비용 부담이 커짐에 따라, 중견기업은 합법적인 도구를 악용하거나 탐지를 회피하는 고도화된 공격에 직면하고 있다. 동시에, 제한된 예산과 숙련된 보안 인력 부족은 첨단 보안 대책의 구축과 운영을 어렵게 만든다. 카스퍼스키는 이러한 기업들이 과도한 비용 부담 없이 효과적으로 자신을 보호할 수 있도록, 사용하기 쉽고 강력한 설루션인 카스퍼스키 넥스트 XDR 옵티멈과 카스퍼스키 넥스트 MXDR 옵티멈을 출시했다. 카스퍼스키 넥스트 XDR 옵티멈은 모든 규모의 기업을 위한 카스퍼스키의 플래그십 제품군 카스퍼스키 넥스트에 새롭게 추가된 설루션이다. 이 제품은 IT 인프라가 구축되어 있으며, 중간 수준의 보안 예산을 가지고 소규모 보안 조직이 관리하는 중소·중견기업에 특히 적합하다. 이 설루션은 카스퍼스키의 AI 기반 보안 전문성을 바탕으로 한 종합적이고 관리 가능한 보안을 제공한다. 강화된 엔드포인트 보안과 자동 위협 대응은 물론, 합리적인 비용으로 사용하기 쉬운 탐지·대응 툴을 제공하여 회피형 공격을 효과적으로 식별, 분석, 무력화할 수 있다. 또한 클라우드 및 온프레미스 환경 모두에 유연하게 배포할 수 있다. 이 제품은 엔드포인트 보호를 위한 머신러닝 기반의 안티랜섬웨어 및 안티멀웨어 도구를 통해, 알려진 위협과 알려지지 않은 위협 모두로부터 감염을 차단하여 업무 중단을 예방한다. 엔드포인트 내외부 위협 움직임에 대한 통합 가시성을 확보하고, 자동화 및 가이드 기반 대응을 통해 공격에 신속히 대처할 수 있으며, 고급 조사 도구를 통한 활동 추적도 지원한다. 또한, 클라우드 샌드백스(Cloud Sandbox)와 통합되어 악성 파일을 신속하게 분석하고, 샘플 업로드 및 평판 조회를 수초 내에 수행하여 향후 IoC 스캔을 강화할 수 있다. IT팀 및 직원들에게 핵심 보안 지식을 제공하여 조직 전반에 보안 인식 문화를 확산하는 한편, 사용자 행위 기반의 시스템 하드닝을 통해 공격 표면을 줄이고, 중앙집중식 취약점 관리, 패치 및 암호화 관리로 시간을 절약한다. 조직에서 사용 중인 클라우드 서비스를 모니터링하여 무단 접근을 차단하고, 마이크로소프트 365(Microsoft 365) 앱 내 민감 데이터 저장 현황을 파악하여 데이터와 직원을 보호하는 것도 가능하다. 기존에 카스퍼스키 넥스트 EDR 옵티멈(Kaspersky Next EDR Optimum)을 사용 중인 기업은 카스퍼스키 넥스트 XDR 옵티멈으로 원활하게 업그레이드할 수 있으며, 데이터 손실 없이 기존 인터페이스를 그대로 유지한 채 더 진화된 XDR급 기능을 활용할 수 있다.     카스퍼스키 넥스트 MXDR 옵티멈은 광범위한 보호를 원하지만 내부 보안 역량 구축 부담은 피하고자 하는 기업을 위한 제품이다. 24/7 관리형 보안 설루션으로, 카스퍼스키 넥스트 XDR 옵티멈의 핵심 기능을 기반으로 한 강력한 위협 탐지 및 대응을 제공한다. 기업의 내부 팀은 IoC 스캔과 클라우드 샌드박스 등 기본 툴로 초기 위협 분석을 수행하고, 카스퍼스키팀은 실시간 데이터 내 고급 위협 탐지, AI 기반 알림 분석, 신속한 대응 또는 상세한 복구 가이드를 제공한다. 이 협업 접근법을 통해 기업은 빠른 사고 해결과 전반적인 보안 체계 강화를 동시에 달성할 수 있다. 카스퍼스키의 일리야 마르켈로프 통합 플랫폼 제품 라인 총괄은 “카스퍼스키 넥스트 XDR 옵티멈과 카스퍼스키 넥스트 MXDR 옵티멈은 수많은 독립 기관의 평가로 입증된 높은 수준의 엔드포인트 보호를 기반으로, 추가적인 시스템 컴포넌트 도입 없이도 기존 인프라에 원활히 통합될 수 있다. 최소한의 시간과 자원으로 회피형 공격에 대한 방어 능력을 크게 강화할 수 있으며, 고객은 카스퍼스키 전문가의 모니터링 및 대응 서비스(MXDR)를 선택하거나, 독립적으로 XDR 설루션을 운영하는 방식 중 원하는 방법을 선택해 고품질 보호를 보장받을 수 있다”고 밝혔다. 카스퍼스키 이효은 한국지사장은 “한국 기업들은 점점 더 은밀한 표적 공격에 직면하고 있으며, 하이브리드 근무 환경과 클라우드 전환은 방어 부담을 가중시키고 있다. 이번에 발표한 카스퍼스키 넥스트 XDR 옵티멈과 카스퍼스키 넥스트 MXDR 옵티멈은 한국의 중소·중견기업을 위해 설계된 설루션으로, AI 기반 자동 방어 및 유연한 배포 기능을 제공하여 하이브리드 클라우드 환경에 최적화되어 있다. 파일리스 공격등 신종 위협에도 대응할 수 있으며, 운영 단순화와 로컬 팀 협업을 통해 취약점 관리와 위협 추적을 강화하여 비즈니스 연속성을 보장하고, 한국의 사이버 보안 전략에 부합하는 방어 체계를 마련할 수 있다”고 말했다.
작성일 : 2025-09-15
헥사곤, ‘헥사곤 라이브 이노베이션 서밋 코리아 2025’에서 정밀 측정·디지털 트윈 혁신 전략 제시
헥사곤 매뉴팩처링 인텔리전스는 9월 3일 서울 양재동 aT센터에서 ‘헥사곤 라이브 이노베이션 서밋 코리아 2025(Hexagon Live Innovation Summit Korea 2025)’를 개최했다고 전했다. 이번 서밋에서 헥사곤은 ▲정밀 측정 하드웨어와 소프트웨어 ▲지오매직 리버스 엔지니어링 및 품질 검사 설루션 ▲CAD/CAM 소프트웨어 ▲라이카 지오시스템즈의 3D 스캐닝 기술을 폭넓게 선보이고, 헥사곤 포트폴리오 기반의 실제 적용 사례를 통해 디지털 혁신과 정밀 측정의 미래를 조명했다. 행사 기조연설은 헥사곤 매뉴팩처링 인텔리전스의 림분춘 아세안·태평양·인도 지역 사장이 맡아 정밀 측정과 스마트 디지털 트윈이 제조업 혁신을 견인하는 핵심 동력임을 강조했다. 그는 포레스터와 함께 발간한 ‘2025 첨단 제조 산업 보고서’를 인용하며, 디지털 트윈이 기업의 민첩성과 품질 혁신을 가능하게 하는 가장 중요한 투자 영역으로 부상하고 있음을 지적했다. 이어 헥사곤이 현실과 가상을 연결하는 정밀 측정 기술과 데이터 기반 설루션을 통해 이러한 산업적 전환을 지원하며, 제조업이 자율성과 경쟁력을 갖춘 미래로 나아가도록 기여하고 있음을 강조했다.     이어서 라이카지오시스템즈 칸 파힘(Khan Faheem) 아시아 사장이 현실 공간 데이터를 활용한 비즈니스 인사이트와 스마트 제조의 접목 가능성을 소개했으며, 헥사곤 매뉴팩처링 인텔리전스의 홍석관 사장은 헥사곤 데이터 기반의 스마트 제조 전략을 발표했다. 또한 헥사곤 매뉴팩처링 인텔리전스의 권의중 본부장은 측정 기술과 품질 혁신의 새로운 패러다임을 제시했으며, 문장희 팀장은 라이카 앱솔루트 트래커 ATS800(Leica Absolute Tracker ATS800)을 활용한 대형 정밀 측정의 업계 표준을 소개하며 제조 현장의 적용 가능성을 공유했다. 또한, 이번 행사에는 한국생산기술원과 DN솔루션즈를 비롯한 주요 고객사와 산업 관계자들이 함께 참여해 헥사곤 설루션의 실제 적용 사례와 협업 성과를 공유했다. 한국생산기술원 김성현 수석연구원은 레이저 트래커 연동 실시간 피드백 제어를 활용한 고정밀 로봇 가공 기술을 소개하며 연구 성과를 공유했다. 또한 DN솔루션즈 박성철 상무는 헥사곤 설루션을 기반으로 한 제조 공정 혁신 사례를 발표해 현장의 생산성 향상과 품질 경쟁력 확보 방안을 제시했다. 주요 관계자의 발표뿐만 아니라 헥사곤의 측정 설루션 시연, 산업별 적용 사례 발표, 전시 및 네트워킹도 함께 진행됐다. 전시에서는 각 분야의 설루션이 소개되었으며 특히, 라이카 앱솔루트 트래커 ATS800과 더불어 초고속 디지털 3차원 측정기(CMM) 마에스트로(MAESTRO), 앱솔루트 암(Absolute Arm), 스마트 스캔 VR800(SmartScan VR800) 등 정밀 측정 하드웨어를 선보였다. 또한 AI 및 머신러닝 기반 제조 공정 최적화 기술인 프로플랜AI(ProplanAI), 3D 스캔 데이터의 CAD 변환을 지원하는 지오매직 디자인X(Geomagic Design X), 휴대형 3D 스캐닝을 지원하는 라이카 BLK2GO 등 CAD/CAM 및 지오매직 소프트웨어, 라이카 지오시스템즈(Leica Geosystems)의 대표 설루션을 소개하며 리얼리티 캡처와 디지털 트윈을 통한 데이터 기반 품질 관리와 공정 혁신의 실질적 적용 방안을 제시했다. 올해 5월 새롭게 출시된 ATS800은 최대 40미터 거리에서도 리플렉터 없이 고정밀 측정이 가능해 대형 구조물의 품질 검사를 자동화할 수 있는 차세대 레이저 트래커로, 항공우주와 풍력 등 대규모 제조 현장에서 활용도가 높다. 같은 달 공개된 마에스트로는 속도, 정밀도, 연결성을 강화한 차세대 CMM으로, 직관적인 인터페이스와 클라우드 기반 소프트웨어를 통해 품질 검사 프로세스를 간소화하고 생산성을 높일 수 있는 설루션이다. 홍석관 사장은 “이번 행사를 통해 헥사곤의 최신 측정 설루션과 다양한 산업별 적용 사례를 국내 고객과 직접 공유할 수 있어 뜻깊다”면서, “앞으로도 헥사곤은 정밀 측정과 디지털 트윈을 기반으로 자동차, 항공우주, 전자 등 다양한 제조 산업에서 고객이 품질과 생산성을 높이고 디지털 혁신을 가속화할 수 있도록 적극 지원해 나갈 것”이라고 말했다.
작성일 : 2025-09-04
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
인텔-AWS, 제온 6 프로세서 기반 EC2 인스턴스 출시
인텔은 클라우드 환경에서 동급 인텔 프로세서 중 가장 높은 성능과 가장 빠른 메모리 대역폭을 제공하는 P-코어를 탑재한 인텔 제온 6 프로세서(Intel Xeon 6 processors with P-cores) 기반의 신규 EC2(Amazon Elastic Compute Cloud) R8i 및 R8I-플렉스 인스턴스를 아마존웹서비스(AWS)에서 출시한다고 밝혔다. 이번 새로운 인스턴스는 인텔과 AWS 간 수년간 협력을 바탕으로, 확장성, 비용 효율성 및 고성능 클라우드 인프라를 추구하는 고객에게 최신 실리콘 혁신과 밀접하게 통합된 소프트웨어 최적화를 제공한다. 기업의 실시간 데이터 처리, 인공지능(AI), 컴플라이언스 집약적인 워크로드 활용이 점점 늘어남에 따라, 유연한 고성능 클라우드 인프라에 대한 필요도가 더 높아졌다. 인텔은 제온 6 프로세서가 전문적인 가속기에 대한 의존도를 최소화하면서 유연한 다목적 컴퓨팅 플랫폼을 제공하며, 다양한 활용 사례에 대한 배포 및 관리를 간소화해준다고 설명했다.     새로운 제온 6 기반 인스턴스의 주요 특징은 ▲고집적도 컴퓨팅 ▲ 클라우드 상에서 가장 빠른 DDR5 지원 ▲ 내장형 AI 가속 ▲인텔 QAT(QuickAssist Technology) 등이다. 제온 6는 재설계된 코어 아키텍처와 향상된 파이프라인, 더 많은 코어 수를 통해 성능과 스레드 확장성을 향상시켰다. 이를 통해 AWS는 최대 96xlarge와 같은 대규모 인스턴스 크기를 제공해 고객이 워크로드에 필요한 컴퓨팅 자원을 더욱 높은 집적도로 활용할 수 있도록 지원한다. 신규 인스턴스는 DDR5 메모리 속도 최대 7200 MT/s를 지원하며 분석, 머신러닝(ML), 인메모리 데이터베이스에 적합한 고대역폭 메모리 및 낮은 지연 시간을 제공한다. 또한, 인텔 AMX(Intel Advanced Matrix Extensions)를 통합해 AI 추론 및 머신러닝 성능을 최대 2배 향상시키며, 외부 가속기 사용 필요성을 줄이고 배포를 간편하게 한다. 이외에도 하드웨어 가속화된 암호화 및 압축을 지원하여 CPU 리소스를 절감하고, 금융, 의료, 공공 애플리케이션 등 보안에 민감하거나 규제 대상인 워크로드 성능을 향상시킨다. 인텔은 프로세서 마이크로아키텍처와 펌웨어 튜닝부터 하이퍼바이저 튜닝, 가상화, 소프트웨어 프레임워크에 이르기까지 스택(stack)의 모든 계층을 아우르는 최적화를 진행했다. 고객들은 이러한 통합을 통해 AWS의 글로벌 인프라 전역에서 제온 6의 성능을 최대한 활용할 수 있다. 인텔은 이번 협력으로 AWS 및 더 광범위한 클라우드 생태계에서 핵심 기술 제공 기업으로서의 입지를 강화할 수 있을 것으로 기대하고 있다. 개발자, 데이터 사이언티스트, IT 리더들이 보다 빠르고 효율적으로 혁신하고, 규모를 확장하며, 서비스를 배포할 수 있도록 지원하겠다는 것이다. AWS의 니샨트 메타(Nishant Mehta) EC2 제품 관리 부사장은 “고객들은 가장 요구도가 높은 워크로드 속도에 맞춘 인프라가 필요하다”면서, “인텔과의 협력을 통해 새로운 아마존 EC2 R8i 및 R8i-플렉스 인스턴스는 전 세대 대비 메모리 대역폭은 2.5배 더 향상되었고 가격 대비 성능은 15% 더 우수하다. 이는 고객이 성능을 극대화하면서 비용을 절감할 수 있도록 지원하는 혁신”이라고 말했다. 인텔의 로낙 싱할(Ronak Singhal) 선임 펠로우는 “인텔 제온 6 프로세서로 구동되는 8세대 EC2 인스턴스 출시는 AWS와의 협업에서 중요한 이정표”라며, “인텔과 AWS는 AI 가속화, 메모리 성능 향상, 쉬운 배포를 통해 고객이 인사이트를 빠르게 얻고 강력한 투자수익률(ROI)을 달성할 수 있도록 지원하는 인프라를 함께 구축했다”고 밝혔다.
작성일 : 2025-08-22
심데이터, “전 세계 시뮬레이션 및 해석 시장 8.8% 성장”
PLM 전략 경영 컨설팅 및 리서치 기업인 심데이터(CIMdata)는 ‘심데이터 시뮬레이션 및 해석(S&A) 시장 분석 보고서’를 발표한다고 밝혔다. ‘심데이터 2025 PLM 시장 분석 보고서 시리즈’의 일부로 수행된 S&A 시장 분석을 확장한 이 보고서는 전 세계 S&A 시장을 다양한 차원에서 상세히 설명한다. 또한 심데이터의 S&A 시장 세분화에 대한 업데이트, S&A 산업의 동향에 대한 논의, 상위 S&A 설루션 공급업체에 대한 최신 정보를 포함한다. 심데이터 보고서에 따르면, 2024년 전 세계 시뮬레이션 및 해석 시장 매출은 2023년의 100억 달러(약 13조 9000억 원)에서 8.8% 증가한 109억 달러(약 15조 1510억 원) 규모로 나타났다.  심데이터는 PLM 시장 전체가 강력한 성장을 지속할 것으로 보았는데, 이 중 S&A 부문은 2025년에 10.7% 성장하여 매출 규모가 120억 달러(약 16조 6800억 원)를 약간 넘을 것으로 전망했다.     또한, 이번 보고서에서는 2024년 업계를 근본적으로 재편한 세 가지 핵심 동향으로 ▲EDA(전자 설계 자동화)와 S&A의 통합 ▲인공지능(AI)/머신러닝(ML) 통합의 부상 ▲ 디지털 트윈의 성숙 등을 꼽았다. 전자 및 반도체 시스템은 더 이상 특정 산업 영역이나 응용 분야에 국한되지 않고, 모든 신제품 및 프로세스 개발의 중심 부분이 되고 있다. 이러한 핵심적인 산업 수요에 따라, EDA 설루션 공급업체들은 ‘실리콘에서 시스템까지’ 아우르는 소프트웨어 스택 비전을 실현하기 위해 빠르게 움직이고 있다. 물리 기반 시뮬레이션 기술은 이들 제품의 핵심적인 부분으로 자리 잡고 있다. AI와 머신러닝 기능은 오랫동안 시뮬레이션 워크플로에 내장되어 주로 배경적인 역할을 수행해 왔다. 그러나 GPU 컴퓨팅 발전과 생성형 AI가 불러일으킨 큰 관심에 힘입어, 신생 스타트업과 기존 설루션 공급업체 모두 시뮬레이션 워크플로를 재창조하고 있다. 여기에는 과거의 시뮬레이션 및 테스트 데이터를 사용한 모델 개발(핵심 머신러닝), 훈련 시간 및 데이터 요구사항을 줄이기 위한 물리 정보 AI 훈련 방법 사용, 기하학적 딥러닝을 기본 구성 요소로 활용하는 것 등이 포함된다. 많은 기업이 ‘파운데이션 모델’을 개발하려 시도하고 있으며, 이를 통해 완전히 훈련된 모델을 사용한 추론으로 시뮬레이션의 패러다임을 전환하고 있다. 디지털 트윈 기술은 개념적 아이디어에서 여러 산업에 걸친 실질적인 구현 단계로 발전했다. 시뮬레이션 및 해석은 디지털 트윈의 기본 요소로서, 예측 통찰력에 필요한 물리 기반 모델링을 제공한다. 기업은 예측 유지보수 및 가상 시운전과 같은 응용 분야에 디지털 트윈을 활용하여 제품 운영과 설계 간의 폐순환(closed-loop) 시스템을 구축하고 있다.
작성일 : 2025-08-20
델, “한국을 비롯해 아태지역 AI 도입 활발... 전문 인력·데이터는 과제”
델 테크놀로지스가 아시아 태평양 지역 기업의 인공지능(AI) 도입 동향을 분석한 보고서의 내용을 소개했다. 이번 보고서에서는 아태지역에서 AI 도입이 빠르게 확산하고 있지만, 전문 인력 부족과 데이터 관련 문제는 여전한 과제라고 분석했다. 델 테크놀로지스와 엔비디아의 후원으로 진행된 IDC 인포브리프 ‘AI 구현을 위한 전략적 계획 수립’ 보고서는 2023년 8월부터 2024년 8월까지 아태지역의 여러 산업에 걸쳐 최대 919명의 응답자를 대상으로 한 IDC의 여러 데이터 소스 및 설문조사를 기반으로 작성됐다. 이 조사는 AI, 생성형 AI 및 ML 도입 동향, 과제 및 구현에 대한 전략적 접근 방식을 평가했다. 보고서에 따르면 아태지역에서 AI, 생성형 AI, 머신러닝 기술의 채택이 빠르게 확산되며 비즈니스 혁신을 이끌고 있다. AI를 위한 서버 시장은 2025년까지 239억 달러(약 32조 5000억 원) 규모에 이를 전망이다. 생성형 AI에 대한 투자도 늘고 있다. 올해 아태지역 기업의 84%는 생성형 AI에 100만 달러에서 200만 달러(약 13억 원~27억원)를 투자할 계획이다. 아태지역 기업들은 AI 예산의 38%를 생성형 AI에 할당하는 것으로 나타났는데, 이는 전 세계 기업의 33%에 비해 높은 수치이다.  특히 한국은 AI 도입에 더욱 적극적인 것으로 나타났다. 국내 기업 32%가 이미 AI를 직무에 도입했거나 경쟁우위의 핵심으로 인식하고 있었다. 이는 아태지역 평균인 24%를 웃도는 수치다. 반면 자사의 AI 역량이 초기 단계에 머물러 있다고 답한 비율은 26%로, 아태지역 평균(31%)보다 낮았다. 보고서는 아태지역의 빠른 AI 성장세에도 불구하고 인재 부족, 데이터 준비 현황, 복잡한 시스템 구성 등의 문제가 남아있다고 짚었다. 숙련된 AI 인재 부족은 시장 경쟁을 심화시키고 비용 상승을 유발하고 있다. AI 숙련도 격차는 디지털 전환 속도를 늦추고, 제품 개발을 더디게 하는 한편 품질 결과에 영향을 미칠 수 있다. 이 외에도 증가하는 IT 비용, 정부 규제, 데이터 보안 문제 등이 AI 도입을 가로막는 주요 원인으로 꼽혔다. 이러한 문제를 해결하기 위해 많은 기업이 외부 전문가와 협력하고 있었다. 아태지역 응답자의 60%는 외부 개발자에 의존해 AI 애플리케이션을 개발하고 있다. 자체 개발하는 경우는 30%에 그쳤고, 약 10%는 상용 AI 설루션을 사용하고 있는 것으로 나타났다. 여러 어려움에도 불구하고, 응답 기업들은 생성형 AI가 운영 효율 향상, 고객 만족도 개선, 새로운 비즈니스 모델 창출을 이끌 수 있기 때문에 투자할 가치가 있다고 판단했다.  아태지역 기업들은 영향력이 높고 도입 효과를 측정하기 용이한 사용 사례들를 우선적으로 도입하며 단계적 접근 방식을 취하고 있다. 또한, AI가 산업 전반에 빠르게 스며들고 있는 것으로 나타났다. 금융, 제조, 에너지, 헬스케어, 소매 등 다양한 분야에서 AI를 활용한 혁신이 진행 중이다. 특히 제조산업에서는 공급망 최적화와 예측 유지보수, 품질 관리 등에 AI를 사용하고 있다. AI 기반의 수요 예측 및 실시간 생산 모니터링은 다운타임을 줄이고, 낭비를 최소화하며, 운영 정밀도를 높일 수 있도록 돕는다. 보고서에 따르면 제조업체 응답자의 52%는 생성형 AI가 18개월 내에 이 부분을 혁신할 것이라고 답했다. 자동화된 생산, 예측 리드 스코어링 및 디지털 트윈 모델을 가속화하여 스마트 제조와 민첩하고 고정밀 생산 라인을 발전시킬 것이라는 전망이다. 한국 델 테크놀로지스의 김경진 총괄사장은 “한국을 포함한 아태지역은 AI 도입과 혁신을 선도할 엄청난 잠재력을 보유하고 있다. 이제 기업들은 개념 검증(POC)을 넘어 측정 가능한 투자 수익률(ROI) 달성에 집중해야 할 때”라고 말했다. 그리고 “일관된 ROI를 달성하는 과정은 복잡하며, 전략, 사용 사례 개발, 데이터 준비, 거버넌스, 최적화, AI 구현 확장 등 모든 단계에서 포괄적인 지원이 필요하다. 델 테크놀로지스와 같은 전문 파트너의 지원을 통해 기업들은 도입 장애물을 극복하고 AI 성과를 달성하는 길을 가속화할 수 있다”고 덧붙였다.  
작성일 : 2025-08-19
엔텍시스템, AI 기반 모터 진단 솔루션으로 산업 예지보전 선도
전력 계측 및 AI 기반 모터 진단 솔루션 전문기업, 엔텍시스템   산업 현장에서 고장이나 생산이 중단될 수 있는 상황을 미리 예측해, 장비 가동 중지 등의 사태를 막는 예지보전의 중요성이 높아지고 있다. AI 기반 산업 진단 기술 전문기업 엔텍시스템(www.nteksys.com)은 전력 계측과 모터 진단 분야에서 20년 이상 축적된 기술력으로 산업 설비의 안전성과 효율성을 높이는 데 앞장서고 있다.   엔텍시스템 김영식 부사장   산업 현장의 숨은 위험 신호, AI가 먼저 알아챈다 2002년 설립된 엔텍시스템은 전력 계측 및 AI 기반 모터 진단 솔루션을 전문으로 제공하는 기술 기업이다. 전기 신호 분석과 머신러닝 기술을 융합해 설비의 이상을 조기에 탐지하고, 운영 최적화를 유도하는 ‘AI 예지정비’ 분야에서 독자적 위치를 구축해왔다. 주요 제품으로는 ▲멀티채널 미터(GEMS 3500 시리즈) ▲AI 모터 진단 시스템(GEMS 5500 시리즈) ▲전기실 온라인 진단 시스템(EMS) 등이 있다. 이 중 멀티채널 미터는 수배전반의 인입 및 분기 회로를 동시에 고정밀 측정하여 에너지 효율과 전력 품질 감시에 활용되고, AI 모터 진단 솔루션은 전기 신호를 분석해 이상 징후를 조기에 탐지하고 머신러닝 기반 예지보전으로 설비 안정성 및 운영 효율을 향상시킨다. 또 전기실 온라인 진단 시스템은 실시간 전력 감시와 변압기 진단을 가능케 하여 원격 모니터링과 이상 감지에 강점을 보이고 있다. 삼성전자·LG전자·포스코 등 100여 개 이상의 기업과 150여 개 공장에 솔루션을 공급해 온 엔텍시스템은  2024년에는 미국 메릴랜드 법인을 설립하며 본격적인 글로벌 시장 공략에도 나섰다. 이와 함께 CE, UL, FCC 등 국제 인증을 확보하여 글로벌 경쟁력을 강화하고 있다. 산업AI EXPO에서 혁신적인 AI 진단시스템과 산업현장 적용 사례 소개 이 회사는 9월 3일부터 5일까지 코엑스 마곡에서 열리는 2025 산업AI EXPO에 참가해 대표 제품인 ‘SV500’ 모터 진단 시스템과 클라우드 기반 SaaS 서비스를 선보이며, 산업계의 스마트 유지보수 전환을 본격화할 계획이다. 엔텍시스템이 산업AI EXPO 2025 참가를 결정한 배경에는 “AI 기술의 실효성과 방향성을 업계에 선도적으로 제시하고자 하는 의지”가 있다. “국내 산업 AI 생태계 확산을 위한 첫 이정표로서, AI 기술의 방향성과 산업 현장 적용 사례를 업계에 선도적으로 알릴 수 있는 중요한 기회라고 판단해 산업AI EXPO에 참가하게 되었다”는 엔텍시스템 관계자는 “이번 전시를 통해 이미 여러 산업 현장에서 적용 사례를 갖춘 솔루션인 SV500의 기술 신뢰성과 실제 효과를 널리 알리고 싶다”고 전했다. 엔텍시스템이 주력으로 전시할 SV500은 24비트 해상도와 8kHz 샘플링의 전류·전압 실시간 파형 분석을 기반으로 인버터와 모터 전기 신호를 정밀 분석한다. 또 디지털 트윈 기술을 활용한 이상 탐지와 토크·고조파 분석, 웹기반 대시보드 시각화로 현장 상태를 실시간 확인할 수 있다. 이와 함께 이 회사의 전시부스에서는 클라우드 기반 실시간 모터 진단 SaaS 서비스도 선보일 예정이다. 이 서비스는 모터 이상 탐지 및 진단, 시공간 제약 없이 진단 현황 확인, 원격 실시간 모니터링 기능을 제공하여 현장 유지보수 업무의 효율성을 극대화한다. “산업AI EXPO는 산업계와 AI 기술이 실질적으로 만나는 통합 플랫폼으로서 의미가 크다”는 김영식 부사장은 “제조, 에너지, 인프라 분야에서 디지털 전환이 가속되는 가운데, 기업 간 AI 적용 경험과 니즈를 공유하고 협력할 수 있는 소통의 장이 될 것”이라고 덧붙였다. 특히 엔텍시스템은 이번 EXPO 참가를 통해 ‘스마트 유지보수의 새로운 기준’을 제시하며, 다양한 산업 고객 및 파트너와 실질적인 비즈니스 협업을 확대하는 계기로 삼을 계획이다. 이를 위해 전시 기간 내 SV500 실물 데모를 운영하여 방문객들이 센서 설치와 웹 대시보드를 직접 체험하도록 할 예정이다. 맞춤형 AI 유지보수 솔루션으로 산업계 표준 제시 엔텍시스템의 향후 목표는 명확하다. 산업 현장에서 발생할 수 있는 다양한 모터 고장 패턴을 AI가 정확히 예측할 수 있도록 머신러닝 및 딥러닝 알고리즘을 고도화하고, 고객 맞춤형 유지보수 기능을 강화해 신뢰도 높은 예지보전 시스템을 완성하겠다는 것이다. 특히 사용자 맞춤 알람 임계값 설정 기능, 모바일 최적화 UI·UX 개선, 클라우드 기반 플랫폼 강화 등을 통해 산업 전반에 AI 유지보수 솔루션을 표준화해 나갈 계획이다. 더불어, 일본, 베트남, 중동 등지로의 해외 진출도 확대하며 글로벌 SaaS 플랫폼 기업으로의 도약을 준비 중이다.  
작성일 : 2025-08-09
데이터 분석에 로코드 설루션이 필요한 이유
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (1)   이번 호부터 로코드(low code) 설루션을 활용하여 데이터 분석을 활용하는 방법에 대해 설명하고자 한다. 앞으로 4회에 걸쳐 데이터 분석을 위한 로코드 분석 설루션이 어떤 장점을 가지고 있으며 어떻게 활용될 수 있는지 살펴보고, 간단한 데이터 분석 예제를 따라해 보면서 활용하는 방법을 배워보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 제3회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제4회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   머신러닝 및 딥러닝 기술의 급격한 발전에 힘입어 최근 몇 년사이에 데이터 분석 시장은 폭발적으로 성장해 왔다. 데이터의 분석을 통해서 패턴을 찾고 이를 통해 행동을 예측할 수 있는 사례는 많은 이들의 관심을 불러 일으켰고, 파이썬(Python) 언어와 관련 라이브러리의 사용법을 배우는 강좌도 덩달아 큰 인기를 누리게 되었다. 이는 지식의 저변 확대와 관련 산업의 활성화라는 측면에서 상당히 좋은 방향이지만, 실제 현장에서는 상대적으로 쉽다고 알려져 있는 파이썬 언어도 교육 강좌를 수강한 이후 막상 본인의 업무에 적용하려고 하면 적지 않은 어려움에 직면하게 된다. 이유는 파이썬 언어의 사용이 어려워서라기보다는 CDS(Citizen Data Scientist : 시민 데이터 과학자)에게는 익숙하지 않기 때문이다. 특히 프로그래밍 언어를 이용한 코딩은 텍스트에 기반한 정보이기 때문에 직관적이지 않고 시행착오를 반복해야 어느 정도 활용 레벨에 올라갈 수 있다. 최근 이러한 문제를 해결하기 위해 로코드 분석 설루션(low code analysis solution)이 대안으로 시도되고 있으며 유의미한 결과를 보여주고 있다.   일반적인 데이터 분석 과정 데이터 분석은 보통 요청을 접수하는 것부터 시작되며, 이 단계에서는 무엇을 분석해야 하는지, 분석의 목적은 무엇인지 명확히 파악하는 것이 중요하다. 분석 대상과 기대하는 결과가 정해지면 그에 필요한 관련 데이터를 확보하게 된다. 이 때 데이터는 내부 시스템, 데이터베이스, 외부 파일 등 다양한 경로를 통해 수집될 수 있다. 다음은 확보한 데이터를 개괄적으로 파악하는 과정인데, 이 때 주요 칼럼과 데이터의 값을 확인하고 누락된 값 또는 이상치가 있는지 등을 점검하게 된다. 데이터의 품질을 빠르게 진단하는 이 단계는 이후 분석의 방향에 큰 영향을 미치게 되기 때문에 아주 중요하다. 이렇게 데이터의 상태를 파악하고 난 뒤에는 분석 전략을 수립하게 되는데, 여기서는 어떤 방식으로 데이터를 다루는 것이 좋을지, 어떤 분석 기법을 적용하는 게 좋을지를 구체적으로 준비하게 된다. 세 번째 단계로는 그 동안 수립한 분석 계획에 따라 본격적인 데이터 정제 작업을 시작하게 된다. 구체적으로는 전처리, 필터링, 파생 변수 생성 등의 작업을 포함하여 분석에 적합한 형태로 데이터를 정돈하는 단계로 볼 수 있다. 다음은 실제 분석을 수행하고 필요한 시각화를 통해 인사이트를 도출하는 것으로 통계 분석, 머신러닝 모델링, 상관관계 파악 등 다양한 방법이 이 부분에 포함된다. 마지막으로 분석 결과는 보고서 형태로 문서화하거나 대시보드로 시각화하여 공유되며, 이는 분석 요청자 또는 조직 내 이해관계자가 쉽게 결과를 활용하여 의사결정을 수행하도록 지원할 수 있다. 요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   파이썬 코딩과 로코드 기반 분석의 비교 이제부터 본격적으로 데이터 분석을 진행하기 위해, 우리는 데이터 분석에 대한 요청을 받은 CDS라고 가정을 해 보자. 우리는 유관부서로부터 전력 판매량(Electric Power Sales) 예측에 대한 분석을 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황이다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 다행스럽게도 소스 데이터는 엑셀 형태로 정리되어 입수한 상태이다. 우선 ‘발전소 데이터’를 살펴 보면 일자별로 특정 발전소에서 일일 발전량이 자세하게 표시되어 있다. 결국 첫 번째 데이터는 Electricity_sales로, 발전소 명칭, 측정 일자(년, 월, 일), 시간대별 전력 판매량으로 구성되어 있는데 이는 머신러닝에서 예측하게 될 Y값(종속변수)이 포함된 핵심 데이터 영역이다.   그림 1. 발전소 데이터   다음은 ‘기상 정보 데이터’로 일자별로 특정 지역의 날씨 정보가 정리되어 있다. 발전소 위치에 따른 기상 정보로 일시, 평균기온, 강수량, 풍속, 습도, 일사량 등의 정보가 담겨 있다.    그림 2. 기상 정보 데이터   마지막으로 ‘날짜 및 요일 데이터’는 일자별로 요일을 숫자로 매핑한 데이터이다. 날짜 데이터에 매핑 가능한 공휴일 정보가 담겨 있는 데이터 영역이다.   그림 3. 날짜 및 요일 데이터   결국 요청 받은 데이터 분석을 완료하기 위해서는 입수한 데이터에 전처리를 수행하고 이를 기반으로 다중 회귀 분석을 수행하여 머신러닝 예측 모델을 구성해야 한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
오라클, 포스코에 자율운영 데이터베이스 구축
오라클은 포스코가 전사 데이터 관리 간소화, 인사이트 확보 및 운영 비용 절감을 위해 오라클 자율운영 데이터베이스(Oracle Autonomous Database : ADB)를 도입 및 구축했다고 밝혔다. 포스코는 오라클 자율운영 데이터 웨어하우스(Oracle Autonomous Data Warehouse : ADW)를 도입해 대용량 데이터를 저장·관리하는 데이터 레이크 내의 구조화된 데이터를 효과적으로 분석할 수 있는 환경을 구축했다. ADW는 분석 워크로드에 최적화된 자율운영 데이터베이스 설루션이다. 또한 ADB와 ADW 환경을 통합함으로써 전사 데이터를 일원화하여 관리하는 글로벌 수준의 데이터 관리 체계를 마련했다. 오라클은 “포스코가 일관된 데이터 거버넌스 체계를 도입하여 분석 업무를 이전보다 2.4배 빠르게 수행할 수 있게 되었으며, 첨단 분석과 자동화를 기반으로 스마트 제조 혁신을 더욱 가속화할 수 있게 됐다”고 평가했다. ADW는 내장형 머신러닝 기반의 자동 조정과 확장, 패치, 암호화 기능을 제공하여 수동으로 데이터베이스를 관리해야 하는 번거로움을 줄인다. 포스코는 이와 같은 자율운영 관리를 활용하여 분산 저장/운영되던 분석계 데이터베이스를 최소한의 수동 개입만으로 효율적으로 운영하며, 안전한 고가용성 데이터 웨어하우스를 안정적으로 구축했다. 또한, 유지보수 부담이 적은 인프라 환경을 기반으로 고급 분석업무를 더욱 빠르고 효율적으로 수행하고 비용 효율적인 방식으로 운영을 확장하며, 전사적 의사결정 역량 또한 강화할 수 있게 됐다. 포스코는 경쟁력 있는 IT 비용 구조 확보와 급변하는 글로벌 비즈니스 환경에 따른 대응력 강화를 목표로 클라우드 기반의 디지털 전환을 추진해 왔다. 또한 통합 데이터 분석 시스템을 정립하여 다양한 소스에서 수집되는 데이터의 전사적 활용을 극대화하고자 했다. 이에 맞춰 포스코는 오라클 ADB 기반의 안정적인 고성능, 고효율 데이터 레이크와 데이터 웨어하우스를 구축하여 데이터 혁신의 기반을 마련했다.     포스코 DX전략실의 한석희 리더는 “포스코는 인텔리전트 팩토리 전략의 일환으로, 단순 자동화를 넘어 데이터 기반의 의사결정을 구현하는 지능형 제조 시스템을 구축하고 있다. 이러한 혁신을 통해 주문부터 생산, 영업 및 마케팅에 이르는 전 프로세스에서 효율성과 제품 품질, 운영 안전성을 모두 향상시킬 수 있을 것으로 기대한다”면서, “오라클의 검증된 AI 기반 클라우드 및 데이터 관리 설루션을 활용함으로써 혁신을 가속화하고 글로벌 경쟁력을 한층 강화할 수 있을 것으로 기대한다”고 밝혔다. 한국오라클 김성하 사장은 “역동하는 국제 시장 환경에서 철강 산업이 유연하게 대응하고자 하는 가운데, 포스코는 데이터 기반의 제조 혁신으로 미래 경쟁력을 강화하고 있다”면서, “글로벌 철강 산업을 선도하는 포스코와의 협력은 ADB의 뛰어난 성능과 확장성 및 안정성을 입증하는 중요한 사례다. 오라클은 앞으로도 더 많은 제조업 선도 기업이 IT 혁신을 통해 비즈니스 성과를 극대화할 수 있도록 지속적으로 지원할 것”이라고 전했다.
작성일 : 2025-07-31
오라클, AWS 클라우드에서 자율운영 DB 실행하는 ‘데이터베이스앳AWS’ 출시
오라클과 아마존웹서비스(AWS)가 오라클 데이터베이스앳AWS(Oracle Database@AWS)의 공식 출시(GA)를 발표했다. 이제 AWS 클라우드 환경에서 OCI(오라클 클라우드 인프라스트럭처) 전용 인프라의 오라클 엑사데이터 데이터베이스 서비스(Oracle Exadata Database Service) 및 오라클 자율운영 데이터베이스(Oracle Autonomous Database)를 실행할 수 있다. 오라클 데이터베이스앳AWS는 AWS의 미국 동부 및 서부 리전에서 이용 가능하며, 대한민국 서울을 포함한 전 세계 20여 개 AWS 리전에서 추가로 출시될 예정이다. 기업 고객은 오라클 데이터베이스 워크로드를 AWS 환경에서 OCI 상에서 실행되는 오라클 데이터베이스앳AWS로 손쉽게 마이그레이션할 수 있으며, 오라클 리얼 애플리케이션 클러스터(RAC) 및 AI 벡터 기능이 내장된 최신 오라클 데이터베이스 23ai의 이점도 누릴 수 있다. 오라클 데이터베이스앳AWS에는 제로 ETL(추출, 변환 및 로드) 기능이 포함되어 있어 엔터프라이즈 오라클 데이터베이스 서비스와 AWS 애널리틱스(AWS Analytics) 서비스 간 데이터 통합이 간편해지고, 이로써 복잡한 데이터 파이프라인을 구축하고 관리할 필요가 없어진다. 이는 오라클 데이터베이스 서비스와 AWS 서비스 간 데이터 흐름을 원활하게 하며, 기업은 자사의 데이터를 AWS 분석, 머신러닝 및 생성형 AI 서비스와 결합해 애플리케이션을 추가로 개선할 수 있다. 이번 출시로 클라우드 내 데이터베이스 실행에 있어 기업 고객들의 선택지는 더욱 넓어졌으며, 기존의 AWS 내 오라클 데이터베이스 실행 옵션이 보완됐다. AWS의 G2 크리슈나무티(G2 Krishnamoorthy) 데이터베이스 서비스 부사장은 “기업은 애플리케이션 재설계 없이도 자사의 오라클 데이터베이스 워크로드를 오라클 데이터베이스앳AWS로 원활히 마이그레이션할 수 있다. 동시에 AWS의 글로벌 인프라가 제공하는 보안성과 복원 탄력성, 확장성도 누릴 수 있다”면서, “보안에 가장 민감한 세계 최대 규모 기업 조직의 상당수가 이미 AWS에서 오라클 워크로드를 실행하고 있다. 오라클 데이터베이스앳AWS는 기업이 AWS의 첨단 분석 및 생성형 AI 기능을 바탕으로 보다 손쉽게 데이터로부터 더 큰 가치를 창출하도록 돕는다”고 말했다. 카란 바타 OCI 수석 부사장은 “기업들은 지난 수십 년간 자사의 가장 가치 있는 데이터를 오라클 데이터베이스에 저장해 왔다”면서, “오라클 데이터베이스앳AWS는 AWS 환경의 OCI에서 오라클 데이터베이스 워크로드를 실행할 수 있게 해 준다. 덕분에 오라클 데이터베이스 23ai의 이점을 온전히 활용하여 애플리케이션 개발을 간소화하고, AI 및 네이티브 벡터 임베딩을 바탕으로 미션 크리티컬 워크로드를 실행할 수 있다. AWS의 고급 생성형 AI 및 분석 서비스와 결합된 오라클 데이터베이스앳AWS는 진정 주목할 만한 설루션”이라고 설명했다. 오라클 데이터베이스앳AWS는 OCI와 AWS 전반에 걸쳐 일관된 사용자 경험을 제공하며, 양사의 통합된 지원으로 데이터베이스 관리와 구매, 배포를 간소화할 수 있다. 이는 기업 고객이 신뢰하는 기업용 애플리케이션에 최적화된 참조 아키텍처 및 랜딩 존을 기반으로 설계되었다.  이 서비스를 활용하면 오라클 제로 다운타임 마이그레이션(Oracle Zero Downtime Migration)을 비롯한 마이그레이션 도구와의 호환성을 바탕으로 기존 오라클 데이터베이스의 클라우드 마이그레이션을 간소화 및 가속화할 수 있다. 그리고 오라클 RAC를 통한 워크로드의 고도의 복원력 및 확장성 상승, 여러 AWS 가용 영역(AWS Availability Zones)과 아마존 S3(Amazon S3)을 통한 백업 및 재해 복구가 가능하다. 또한, AWS 마켓플레이스(AWS Marketplace)를 활용한 간소화된 구매 경험을 누릴 수 있다. 기존 AWS 약정 및 BYOL(Bring Your Own License) 등 오라클 라이선스 혜택과 오라클 서포트 리워드(OSR) 등 할인 프로그램을 오라클 데이터베이스앳AWS와 함께 사용할 수 있다. 아마존 EC2(Amazon EC2), 아마존EKS(Amazon EKS), 아마존 ECS(Amazon ECS)와 AI 벡터 검색(AI Vector Search) 등 오라클 데이터베이스 기능을 결합하면 확장 가능한 새로운 마이크로서비스 기반 애플리케이션을 구축할 수 있고, 이를 통해 애플리케이션 인텔리전스를 개선하면서 신기능을 신속하게 시장에 출시할 수 있다. 오라클 데이터베이스앳AWS는 내장형 오라클 AI 벡터 검색을 지원하는 오라클 데이터베이스 23ai를 제공한다. 사용자는 특정 단어와 픽셀, 데이터 값이 아닌 개념적 콘텐츠를 기반으로 문서, 이미지, 관계형 데이터를 손쉽게 검색할 수 있다. AWS 관리 콘솔(AWS Management Console), AWS 명령줄 인터페이스(AWS Command Line Interface), API 등 익숙한 도구 및 손쉬운 워크로드 관리를 위한 모니터링 기능이 제공되며, 고급 분석, 머신러닝, 생성형 AI 서비스를 활용한 데이터 준비가 가능하다. 이외에도 AWS IAM(AWS Identity and Access Management), AWS 클라우드 포메이션(AWS CloudFormation), 아마존 클라우드워치(Amazon CloudWatch), 아마존 VPC 라티스(Amazon VPC Lattice), 아마존 이벤트브리지(Amazon EventBridge) 등 AWS 서비스와의 통합이 제공된다. 한편으로 오라클 E-비즈니스 스위트(Oracle E-Business Suite), 피플소프트(PeopleSoft), JD 에드워즈 엔터프라이즈원(JD Edwards EnterpriseOne), 오라클 EPM(Oracle Enterprise Performance Management), 오라클 리테일 애플리케이션(Oracle Retail Applications) 등 오라클 애플리케이션도 지원된다. 오라클 데이터베이스앳AWS는 현재 AWS 미국 동부(버지니아주 북부) 및 서부(오리건주) 리전에서 이용 가능하며, AWS의 클라우드 인프라를 활용하고 있다. 오라클 데이터베이스앳AWS 설루션은 대한민국의 서울을 포함해 캐나다(중부), 프랑크푸르트, 하이데라바드, 아일랜드, 런던, 멜버른, 밀라노, 뭄바이, 오사카, 파리, 상파울루, 싱가포르, 스페인, 스톡홀름, 시드니, 도쿄, 미국 동부(오하이오주), 미국 서부(캘리포니아주), 취리히를 포함해 20여 곳의 추가 AWS 리전에서도 출시를 앞두고 있다.
작성일 : 2025-07-10