• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 기계"에 대한 통합 검색 내용이 4,211개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
한국산업지능화협회, ‘SMATOF 2025’ 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회가 공동 주관하는 경남 대표 스마트팩토리 & 자동화산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일 개막했다. 협회는 올해 처음으로 ‘산업 AI 특별관’을 구성해, 산업 AI 기술과 플랫폼을 선도하는 기업들의 혁신 사례와 설루션을 선보였다. 이번 특별관에는 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 주요 기업들이 참여해 산업 AI 기반의 제조 혁신 사례를 공유했다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 주요 제조 관련 기관을 통해 약 70여 개사의 바이어가 방한했다. 행사 기간 동안 ▲1:1 수출상담회 ▲스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램 등을 통해 우리 기업들과의 글로벌 네트워킹과 협력 기회를 마련했다.     한편, 10월 30일 개최된 ‘2025 제조 AX 혁신 콘퍼런스’는 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래 모빌리티 분야를 중심으로, DX·AX 선도기업의 실제 기술 적용 사례와 성공 전략이 공유된다. 기조 세션에서는 ▲AWS가 ‘제조AX 추진 전략, 데이터에서 더 많은 가치를!’이라는 주제로, 최적의 제조 AX 성과를 달성할 수 있는 방안과 실제 사례를 소개했다. ▲유비씨는 ‘From DX to AX : 앞서가는 기업들이 선택한 무인화·자율화 디지털 트윈 전략’을 주제로, DX 단계를 넘어 자율화(AX) 시대를 여는 핵심 전략과 2차전지, 조선, 물류 등 실제 산업 사례를 소개했다. ▲B&R 인더스트리얼 오토메이션은 ‘AI와 자동화의 융합 : 제조 혁신을 가속하는 트랜스포메이션 전략’을 주제로, AI와 클라우드 협업을 통해 엔지니어링 환경을 혁신하는 방법을 제시했다. 이 밖에도 일반 세션에서는 온로봇 코리아, 넘프, 온스트림, 서버키트가 참여해 스마트 공장 설루션, 로컬 LLM 적용 사례, 공정 최적화 및 예지보전 등 제조 AI 적용 전략과 실무적 인사이트를 공유했다. 한국산업지능화협회 김태희 혁신기획센터장은 ‘이번 행사를 계기로 지역과 기업 간의 협력 네트워크를 강화하고, 산업 현장의 디지털 전환(DX) 및 인공지능 전환(AX)을 지속적으로 지원해 나가겠다’고 밝혔다.  한편, SMATOF는 내년부터 격년제가 아닌 매년 개최되며, 2026년에는 10월 14일~16일 창원컨벤션센터(CECO)에서 열릴 예정이다.
작성일 : 2025-10-30
한국산업지능화협회, SMATOF 2025 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회는 스마트 공장 및 자동화 산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일~31일 3일간 창원컨벤션센터(CECO)에서 개최된다고 전했다. 이번 행사는 경상남도와 창원특례시가 주최하고 한국산업지능화협회, 경남관광재단, 경남로봇산업협회, FA저널, 인더스트리 뉴스가 공동 주관한다. 창원시는 창원국가산단에 혁신 가치를 더해 미래 산업의 새로운 성장동력을 창출하기 위해 다양한 중장기 비전을 추진하고 있다. 이를 위해 ▲‘창원산업혁신파크’ 조성을 통한 산업 구조의 대전환 ▲제조업에 첨단 기술을 접목하는 디지털·인공지능 전환(DX·AX) 준비 ▲산업 공간에 문화적 요소를 융합한 ‘창원문화선도산단’ 조성 등을 단계적으로 구체화하며 산업 생태계 혁신에 속도를 내고 있다. 이에 발맞추어 올해로 9회차를 맞이한 SMATOF 2025는 ‘창원산단의 재도약, 제조업의 디지털 혁신을 DRIVE하다’를 주제로 개최되며, 디지털 전환(digitalization), 산업혁명(revolution), 혁신(innovation), 비전(vision), 전시회(exhibition) 다섯 가지 키워드로 구성하여 스마트 제조업의 미래상을 제시할 예정이다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 제조 분야 주요 협회를 통해 약 70여 개사의 바이어가 방한한다. 주최 측은 바이어와 참가기업 간 1:1 수출상담회를 운영하고, 스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램을 진행해 우리 기업들의 해외 시장 진출과 글로벌 네트워킹을 지원할 예정이다.     한편, 한국산업지능화협회는 제조업 전반에 걸친 AX 확산을 위해 올해 처음 ‘산업AI 특별관’을 선보인다고 전했다. 이 특별관에는 산업 AI 기술과 플랫폼을 공급하는 대표 기업들이 참여하며, 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 기업들이 산업 AI 혁신 사례와 설루션을 선보인다. 10월 30일에 개최되는 ‘2025 제조 AX 혁신 콘퍼런스’는 창원컨벤션센터 1층에 새로 오픈한 ‘더그레이드’에서 열릴 예정이다. 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래모빌리티 분야에 산업 AI 도입과 디지털·인공지능 전환을 지원할 수 있는 기업들이 참여해, 핵심 전략과 실증 사례를 공유한다. 기조 세션에서는 아마존웹서비스(AWS)가 참여해 ‘제조 AX 추진 전략, 데이터에서 더 많은 가치를’이라는 주제로 산업 AI 우수 비즈니스 모델 사례를 발표할 예정이다. 한국산업지능화협회의 이길선 전무이사는 “창원은 국내 제조산업의 중심지로, 디지털·인공지능 대전환을 통해 글로벌 산업 수도로 도약을 준비하고 있다”면서, “이번 행사를 통해 경남 지역 제조 기반의 수요기업과 산업 AI 설루션 공급기업 간 협력 네트워크를 강화하고, 선도 기업의 비즈니스 모델과 혁신 사례를 공유함으로써 지역 산업 전반의 디지털·AI 전환 확산을 적극 지원하겠다”고 밝혔다.
작성일 : 2025-10-23
가트너, 2026년부터 주목해야 할 10대 AI 전망 발표
가트너가 2026년부터 주목해야 할 최우선 AI 전략 전망 10가지를 발표했다. 이 전망은 ▲AI 시대의 인재 ▲AI 주권 ▲인시디어스 AI(Insidious AI) 등 세 가지 핵심 트렌드로 분류된다. 가트너는 2027년까지 생성형 AI와 AI 에이전트의 사용이 지난 30년간 생산성 도구 시장에 발생한 가장 큰 도전 과제가 될 것이며, 580억 달러 규모의 시장 재편을 촉발할 것이라고 전망했다. 생성형 AI의 발전에 따라 기업은 업무 효율을 높이기 위해 생성형 AI 혁신을 우선순위에 둘 것으로 보인다. 과거의 형식과 호환성은 중요성이 낮아져, 진입 장벽은 낮아지고 다양한 공급업체 간의 새로운 경쟁이 촉발될 것으로 전망된다. 일상적 생성형 AI의 비용 구조와 패키징은 시간이 지나면서 변화할 것으로 보인다. 업체들은 유료 기능을 무료로 전환하고, 무료 제품을 더 넓은 사용자층에 적합하도록 만들 것이다. 2027년까지 기업 채용 과정의 75%가 모집 단계에서 업무용 AI 역량 인증 및 테스트를 포함하게 될 것으로 예상된다. 기업은 표준화된 프레임워크와 맞춤형 설문조사를 통해 지원자의 AI 활용 능력을 진단하고, 인력 내 기술 격차를 해소할 수 있을 것이다. 이러한 추세는 정보 수집, 보존, 종합이 핵심인 직종에서 특히 두드러질 것이다. 생성형 AI 역량이 급여와 점점 더 밀접하게 연계됨에 따라, 지원자들은 AI 역량 개발에 더 큰 가치를 두게 될 것이다. 이에 따라 문제 해결, 생산성 향상, 합리적 의사결정 능력을 입증하는 것이 필수 요건으로 부상할 것으로 예상된다. 한편, 가트너는 2026년까지 생성형 AI 사용으로 인한 비판적 사고력 저하로 전 세계 기업의 50%가 채용 과정에서 ‘AI 프리(AI Free)’ 능력 평가를 요구할 것으로 보았다. 기업이 생성형 AI 활용을 확대함에 따라, 채용 절차는 독립적 사고 능력을 갖춘 지원자와 AI가 생성한 결과물에 지나치게 의존하는 지원자를 구분하는 방향으로 변화할 것으로 보인다. 모집 과정에서는 AI 도움 없이 문제 해결, 증거 평가 및 판단 능력을 입증하는 역량이 점점 더 중요한 평가 기준이 될 것이다. 인간의 추론 능력을 별도로 평가하기 위한 전문 테스트 방법과 플랫폼이 등장하면서, AI 프리 평가 도구 및 서비스에 대한 2차 시장이 형성될 가능성도 높다. 2027년까지 전 세계 국가의 35%가 고유한 컨텍스트 데이터를 활용하는 지역 특화 AI 플랫폼에 고착될 전망이다. 기술적, 지정학적 요인으로 인해, 기업들은 엄격한 규제, 언어적 다양성, 문화적 적합성에 대응하기 위해 AI 설루션을 특성화할 수밖에 없으며, 그 결과 AI 환경은 파편화될 것으로 보인다. 지역 간 차이가 증가됨에 따라 범용 AI 설루션은 점차 사라질 것으로 예상된다. 다국적 기업은 글로벌 시장에 통합형 AI를 배포함에 있어 복잡한 과제에 직면하게 될 것이며, 고유한 규제 준수와 데이터 거버넌스 요구 조건을 가진 다양한 플랫폼 파트너십을 관리해야 할 것이다. 가트너는 2028년까지 고객 대면 비즈니스 프로세스의 80%에 다중 에이전트 AI를 활용하는 기업이 시장을 장악할 것으로 보았다. 고객관계관리(CRM) AI가 일상적인 업무를 처리하고, 인간은 복잡하고 감정적 요소가 중요한 상호작용에 집중하는 하이브리드 AI 모델이 업계 표준으로 자리 잡을 것이다. 고객은 계속해서 거래 실행이나 제품 정보 확인에는 AI 지원 완전 셀프서비스를 선호하는 반면, 복잡한 문제 해결이나 청구 분쟁 등에서는 인간을 선호할 것이다. 최소한의 노력과 신속한 서비스에 대한 고객의 기대가 일반화되면서, CRM 프로세스에 다중 에이전트 AI를 도입하지 못한 기업은 경쟁 우위를 상실할 위험이 있다. 한편, 2028년에는 B2B 구매의 90%가 AI 에이전트를 통해 이루어지며, AI 에이전트 거래로 15조 달러 이상의 B2B 지출이 발생할 것으로 보인다. 새로운 생태계에서 검증 가능한 운영 데이터는 화폐처럼 작용하며, 디지털 신뢰 프레임워크와 검증 가능성을 필수 전제로 하는 데이터 기반 경제를 촉진할 것이다. 컴포저블 마이크로서비스, API 우선, 클라우드 네이티브, 헤드리스 아키텍처로 설계된 제품은 상당한 경쟁 우위를 확보할 것이다. AI 위험 예방책 부족으로 인한 ‘AI발 사고’ 관련 소송은 2026년까지 1000건을 돌파할 전망이다. AI 관련 안전 관리 실패로 인한 사고와 피해 사례가 증가함에 따라 규제 기관의 감시 및 통제 강화, 리콜, 법 집행 기관의 개입, 소송 비용 증가가 예상된다. 규제 감독이 강화되면서 조직은 법적 의무 준수를 넘어, AI 위험 예방책을 활용해 비즈니스 시스템의 안전성과 투명성을 최우선 과제로 삼아야 하는 압박에 직면하게 될 것이다. AI 사용과 의사결정 거버넌스 실패의 영향은 지역별 법적·규제 체계의 차이에 따라 달라지며, 이는 조직이 다양한 위험과 책임에 노출될 수 있음을 의미한다. 또한, 2030년에는 금전거래의 22%가 이용 약관을 내장한 형태로 프로그래밍할 수 있게 되어 AI 에이전트에게 경제적 주체성을 부여할 것으로 보인다. 프로그래머블 머니는 M2M(Machine-To-Machine) 협상, 자동화된 상거래, 시장 탐색, 데이터 자산 수익화를 가능하게 함으로써 새로운 비즈니스 모델을 창출하고, 공급망 관리와 금융 서비스와 같은 산업을 근본적으로 재편하고 있다. 실시간으로 프로그래밍 가능한 거래는 마찰 감소, 유동성 향상, 운영 비용 절감을 통해 효율성을 높이고, 궁극적으로 자율 비즈니스 운영의 부상을 뒷받침할 것이다. 그러나 프로그래머블 머니 플랫폼과 블록체인 인프라 간의 파편화된 기준과 상호운용성 부족은 시장의 성장을 저해하고, AI 에이전트와 기계 고객이 완전한 경제 주체로 기능하는 것을 제한할 것이다. 2027년까지 프로세스 중심 서비스 계약의 비용 대비 가치 격차는 에이전트 AI 재설계를 통해 적어도 50% 감소할 것으로 전망됐다. AI 에이전트는 숨겨진 지식을 발견하도록 진화하며, 이러한 지식과의 상호작용 자체가 프로세스의 핵심이 될 것이다. AI 에이전트가 활용하는 숨겨진 지식은 새로운 가치 자산으로 이어질 것으로 예상된다. 한편, 표준화된 워크플로가 문맥적 오케스트레이션으로 대체됨에 따라 지속적인 혁신 기반 가격 책정은 인건비에 의해 제한되지 않을 것이다. 가트너는 2027년까지 파편화된 AI 규제가 전 세계 경제의 50%로 확산하며, 50억 달러 규모의 규정 준수 투자를 일으키게 될 것으로 보았다. 2024년에만 1000건 이상의 AI 관련 법률이 제안됐지만, 어떤 법률도 AI를 일관되게 정의하지 못하고 있다. AI 거버넌스는 혁신을 촉진하는 동시에 장벽으로 작용할 수 있다. 기술의 잠재력을 터뜨리는 것은 AI 사용 능력이다. 안전한 미래를 위해 기업들은 기술 담당 리더들에게 항구적인 ‘법률 및 규제’ 마인드맵 구축을 요구하게 될 것이다. 한편 보안과는 별개로, 새로운 형태로 등장하고 진화하는 AI의 위험을 관리하기 위해 전담 인력과 전문 소프트웨어를 갖춘 AI 거버넌스 프로그램이 표준으로 자리잡게 될 것이다. 가트너의 다릴 플러머(Daryl Plummer) 수석 VP 애널리스트는 “급격한 기술 변화가 가져오는 위험과 기회는 인간의 행동과 선택에 점점 더 큰 영향을 미치고 있다”면서, “기업의 CIO와 경영진은 미래에 대비하기 위해 기술 변화뿐만 아니라 행동 양식 변화 또한 최우선 과제로 삼아야 한다”고 말했다.
작성일 : 2025-10-23
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
슈나이더 일렉트릭, 실시간 모터 관리 설루션으로 해양산업 효율 향상 지원
슈나이더 일렉트릭이 조선·해양 산업의 설비 운용 효율과 안정성을 높일 수 있는 방법으로 자사의 실시간 모터 관리 설루션인 ‘테시스 테라(TeSys Tera)’를 제시했다. 조선·해양 산업에서 모터는 전기 에너지를 회전 및 기계 에너지로 변환하는 핵심 장비로, 전체 전력 소비의 약 80%를 차지할 만큼 에너지 소모가 큰 설비다. 때문에 모터의 안정적인 운전과 체계적인 유지관리는 산업 전반의 효율과 직결되며, 최근에는 친환경 규제 강화 및 스마트 선박 기술 도입에 따라 더욱 정교한 모터 관리 설루션의 필요성이 부각되고 있다. 슈나이더 일렉트릭의 테시스 테라는 이러한 산업 트렌드에 부합하는 디지털 기반의 고도화된 모터 관리 시스템이다. 테시스 테라는 지정된 통신 버스를 통해 모터의 상태, 운전 전류, 전압, 전력, 역률, 외부 냉각 팬 동작까지 실시간으로 수집·모니터링하며, 인더스트리 4.0 표준을 충족해 중앙 제어 시스템과의 연동을 지원한다. 슈나이더 일렉트릭은 “특히 모터 권선과 베어링, 본체 온도를 측정하는 외부 센서를 통해 과열이나 냉각 이상 등 이상 징후를 사전에 감지할 수 있어 치명적인 고장을 예방하고 유지보수 비용을 절감에도 기여한다. 또한 고조파까지 정밀하게 측정할 수 있는 기능은 슈나이더 일렉트릭의 고도화된 전력 관리 기술력을 잘 보여준다”고 소개했다.     진단 기능과 관련해서는 각 보호 기능별 트립(차단) 횟수를 개별적으로 기록하며, 최대 100개의 이벤트를 시간 정보와 함께 순차적으로 저장하는 FIFO(선입선출) 방식 로그 기능을 지원한다. 더불어 열 메모리, 선 전류, 접지 전류 등 20개의 상세 고장 로그를 기록해 고장 원인 분석과 시스템 개선에 유용한 데이터를 제공한다. 시동 전류 곡선은 최대 250포인트까지 기록할 수 있어, 실제 운전 조건에 따른 보호 설정(Trip Class 등)을 최적화할 수 있으며, 시간 기반의 로그 데이터는 공정 정지나 시스템 장애 발생 시 정확한 사건 순서(SOE)를 파악할 수 있게 해준다. 이는 24시간 가동이 필수적인 조선·해양 현장에서 더욱 높은 신뢰성과 운영 효율성을 확보하는 데 도움이 된다. 아울러 테시스 테라는 온도 센서를 활용해 모터 권선, 베어링, 본체 각각에 대해 개별적인 보호 기능을 제공해 과열로 인한 손상을 사전에 방지한다. 모든 보호 기능은 활성화/비활성화, 경보 및 차단 수준 설정, 자동 또는 원격 리셋 기능(시간 지연 포함) 등 사용자가 공정 환경에 맞춰 완벽하게 구성할 수 있다. 또 외부 디지털·아날로그 입력도 고장 조건으로 인식하도록 설정 가능하다. 사용자 친화적인 소프트웨어 인터페이스도 특징이다. 윈도우 기반의 다국어 지원 소프트웨어는 메뉴와 아이콘 중심의 직관적인 UI를 제공한다. 동일 기능 내 여러 데이터를 한 화면에서 탐색할 수 있도록 안내형 내비게이션을 지원함으로써, 복잡한 설정이나 진단 과정도 간소화했다. 또한 별도의 HMI(Human-Machine Interface)를 통해 현장에서 직접 제어기 구성 및 파라미터 변경이 가능하며, 제어 키패드가 내장된 HMI는 상태 확인과 제어 명령을 로컬에서 즉시 수행할 수 있어 네트워크 연결이 원활하지 않은 환경에서도 독립적인 운용이 가능하다. 슈나이더 일렉트릭 코리아 파워 프로덕트 사업부의 김은지 본부장은 “슈나이더 일렉트릭의 디지털 모터 관리 설루션 테시스 테라는 실시간 디지털 모니터링과 정밀한 보호 기능을 통해 모터의 성능 저하와 고장을 사전에 방지함으로써 조선 및 해양 산업의 안전성과 생산성을 높이는 필수적인 설루션으로 주목받고 있다”고 말했다. 한편 슈나이더 일렉트릭 코리아는 오는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 테시스 테라를 선보일 예정이라고 전했다.
작성일 : 2025-10-16
지멘스-두카티, 모터사이클 기술 연구 개발 통합 및 최적화 위해 파트너십 확대
지멘스 디지털 인더스트리 소프트웨어가 두카티 코르세와의 기술 파트너십 협약을 향후 2년간 갱신한다고 발표했다. 더불어 지멘스 엑셀러레이터(Siemens Xcelerator) 플랫폼이 더욱 강력하고 안전하며 지속 가능한 모터사이클을 만들고자 하는 두카티의 사명을 달성하는데 어떠한 중요한 역할을 해왔는지 소개했다. 두카티의 연구개발팀이 채택한 지멘스 엑셀러레이터에는 다양한 소프트웨어와 기능이 포함된다. 폴라리온(Polarion) 소프트웨어는 요구사항 파악과 관리 기능을 제공하며, 디자인센터 NX(Designcenter NX) 소프트웨어는 혁신적인 설계를 지원한다. 팀센터(Teamcenter) 소프트웨어는 설계 및 엔지니어링 데이터를 두카티의 ERP(전사 자원 관리) 시스템에 연결하는 디지털 스레드 백본 역할을 수행함으로써 부서 간 협업과 중앙집중식 데이터 동기화를 가능하게 한다. 심센터(Simcenter) 소프트웨어와 심센터 테스트랩(Simcenter Testlab) 소프트웨어를 통해 두카티 코르세는 가상 시뮬레이션을 수행하고 디지털 시뮬레이션을 주말 레이스 동안 트랙에서 수집한 데이터와 물리적 테스트 과정과 통합할 수 있게 됐다. 아울러 지멘스의 설루션은 설계 및 엔지니어링을 생산 단셰로 연결하는 데에도 중요한 역할을 하는데, 지멘스의 파이버심(Fibersim) 소프트웨어는 복잡한 카본 파이버(탄소섬유) 부품의 개발 기간을 단축할 수 있도록 지원한다. 두카티는 모터사이클 레이싱 트랙에서 우위를 점유하는 것은 물론, 지멘스 엑셀러레이터를 통해 모터 레이싱과 일반 도로용 바이크 사업을 연결하고 있다. 팀센터는 이 둘을 하나로 연결하는 중추 역할을 하고 있다.     두카티 모터 홀딩의 피에트로 마파(Pietro Mappa) CAD/PLM 매니저는 “지멘스 엑셀러레이터 덕분에 레이싱 세계의 데이터를 일반 도로용 바이크 세계로 완벽히 공유해 개발 시간을 단축할 수 있었다. 일반 모터사이클과 레이싱 양쪽의 기계, 전자, 소프트웨어 팀은 협업과 데이터 공유를 위한 단일 도구를 갖게 됐다. 더 이상 부서 간 장벽은 존재하지 않으며, 트랙 엔지니어와 차량 설계 엔지니어가 함께 협업할 수 있는 단일 통합 환경을 구축하게 됐다”고 설명했다. 두카티 모터 홀딩의 마시밀리아노 베르테이(Massimiliano Bertei) CTO는 “지멘스와의 파트너십은 현재의 당면과제를 해결하는 데 도움이 됐을 뿐만 아니라 레이스 트랙과 글로벌 시장에 대한 앞으로의 도전에도 완벽하게 대비할 수 있는 기반을 마련해 줬다. 우리는 혁신을 기본 원칙으로 삼아, 항상 최고의 경쟁력을 유지할 수 있는 기술 파트너와 함께 꾸준히 성공을 이어나갈 준비가 돼 있다. 레이싱 세계에서는 마지막 순간까지 바이크를 수정할 수 있는 능력이 매우 중요하다. 예를 들어, 경기가 있는 주말에는 지멘스의 기술을 사용해 원격으로 새로운 부품을 설계한 다음, 이를 트랙으로 보내 3D 프린터로 출력할 수 있다”고 말했다. 지멘스 디지털 인더스트리 소프트웨어의 프랑코 메갈리(Franco Megali) 이탈리아, 이스라엘, 그리스 지역 부사장 겸 CEO는 “두카티와의 협업은 디지털 전환이 레이싱 트랙을 위한 최첨단 기술을 개발하고 이러한 인사이트를 더욱 광범위한 산업 분야에 신속히 적용하는 데 어떻게 기여하는 지를 보여주는 사례이다. 이는 여러 분야의 팀이 협업해 기업 전체에서 놀라운 속도로 혁신을 달성할 수 있도록 지원하는 지멘스 엑셀러레이터의 힘을 보여주는 완벽한 예시”라고 말했다.
작성일 : 2025-10-15
[무료 다운로드] 통합 3D CAD/CAM 설루션의 전략적 가치
제조업의 미래를 위한 ZW3D 2026   ZW3D 2026은 기계/제조 분야에 특화된 3D CAD/CAE/CAM 소프트웨어이다. 제조업의 미래를 위한 올인원 CAD/CAM 통합 설루션을 지향하는 ZW3D 2026은 2D와 3D 데이터 모두를 활용하여 가공 데이터를 생성하고, 프로세스 최적화를 통해 디지털 전환과 스마트한 혁신을 가속화할 수 있다.   ■ 자료 제공 : 지더블유캐드코리아, www.zwsoft.co.kr   올인원 CAD/CAM 프로세스 최적화의 필요성 제조 산업 분야에서는 설계, 엔지니어링, 제작 전 과정을 얼마나 효율적으로 연계하는지가 기업의 경쟁력을 좌우한다. 하지만 여전히 많은 현장은 2D 도면 기반 작업에 의존하고 있으며, 복잡한 형상과 보다 정밀한 방식의 수요가 증가하면서 2D 작업 방식의 한계가 뚜렷하게 나타나고 있다. 분리된 CAD/CAM 시스템은 데이터 변환 과정에서 발생할 수 있는 데이터 손실이나 이를 복원하지 못해 생산성 저하와 품질 리크스로 직결되고, 곡면이나 자유 형상이 많은 부품은 2D 도면만으로 해석하는 데에 많은 시간과 노력이 필요하다. 또한 작업자 숙련도에 따라 가공 결과가 매우 달라지기도 한다. 이러한 한계를 극복하기 위해서는 설계와 가공이 단절 없이 연결되는 통합 설루션이 필수이다. ZW3D 2026은 통합된 CAD/CAM 소프트웨어 환경을 제공함으로써, 앞에서 언급한 프로세스의 문제를 획기적으로 개선할 수 있다.   ZW3D 2026의 산업별 특화 기능 2.5D 부품 가공 설루션 ZW3D CAM의 서드파티 모듈인 캠포커스(CAM Focus)는 2.5D 밀링 가공에 특화된 옵션으로, 기본 프로세스만으로도 작업이 가능하지만 캠포커스를 활용하면 더욱 효율적이고 체계적인 가공이 가능하다. 소재 정의, 좌표계 설정, 공구통 관리 등을 지원하는 설정 패널과 툴패스를 생성하는 2X 가공 패널, 그리고 도면 수정이나 정보 조회에 활용할 수 있는 곡선 편집 및 유틸리티 기능까지 하나의 환경에서 제공되어 작업 흐름을 단순화한다. 특히 2D 도면과 3D 모델을 구분하지 않고 동일한 방식으로 작업할 수 있어, 사용자는 보다 직관적이고 일관된 환경에서 가공을 수행할 수 있다.     설정 프로세스의 단축 ZW3D는 2D 도면을 불러오면 3D CAD 환경에서 작업이 시작된다. 도면의 불필요한 요소를 정리한 후, 간단한 버튼 클릭만으로 CAM 모드로 전환해 가공 작업을 진행한다. 가공 소재(스톡)와 좌표계(G54, G55 등) 설정도 직관적으로 이루어진다. 스톡(소재) 설정은 3D 모델이 있는 경우 자동으로 박스를 생성해주며, 도면의 경우 Z값을 입력하면 손쉽게 생성할 수 있도록 구성되어 있다. 좌표계 설정 또한 모델이나 스톡 기준으로 간편하게 원하는 지점을 선택하여 생성할 수 있다.     공구 DB에서는 공구통을 생성하고 자주 사용하는 공구를 등록해두고 툴패스 생성 시 사용할 수 있다. 공구에는 기본 정보뿐만 아니라 절삭 조건 피드와 스핀들 값도 입력해두고 툴패스 생성시 해당 값을 불러오도록 설정할 수 있다.     최적화된 부품 가공 프로세스 ZW3D는 다양한 가공 환경에 최적화된 툴패스를 제공한다. 윤곽 가공이나 포켓 가공 시, 사용자는 도면 또는 모델의 곡선을 선택해 가공 영역을 지정하고, 공구 선택과 가공 조건 입력까지 하나의 창에서 모두 설정할 수 있다. 포켓 및 윤곽 가공은 유형 선택 후 체인으로 영역을 지정하며, 공구와 조건을 설정하는 동시에 사전 드릴점을 지정해 해당 지점으로 안전하게 진입하도록 할 수도 있다. 또한, 동일한 창에서 추가 가공 기능을 활용해 기존 공구가 닿지 못한 영역만 자동으로 작은 공구로 잔삭 처리할 수 있다. 정삭 역시 공구와 조건만 설정하면 손쉽게 툴패스를 생성할 수 있다. 이처럼 캠포커스 인터페이스를 통해 모든 설정을 직관적으로 제어할 수 있으며, 불필요한 반복 작업을 줄여 CAM 작업 시간을 최소화하고 생산성을 높일 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
[무료 다운로드] 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화
자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (1)   글로벌 제조 환경은 자율제조 AI(인공지능) 및 SDM(소프트웨어 정의 제조)로 전환하고 있다. 그러나 시시각각 급변하는 생산자원(4M2E) 메타 데이터와 OT 사이버 보안에 대한 국제 표준 준수 없이는 사상누각이 될 수 있다. 앞으로 2회에 걸쳐 이에 대응하기 위한 방법을 소개하고자 한다.이번 호에서는 자율제조 AI 및 SDM 환경에서 4M2E 생산자원 데이터 표준화와 관련된 도전과 기회를 종합적으로 분석한다.   ■ 연재순서 제1회 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화 제2회 산업 사이버 위협을 돌파하기 위한 IEC 62443   ■ 차석근 에이시에스의 부사장이며 산업부 국표원 첨단제조 표준화 포럼 의장 및 산업부 산업융합 옴부즈만 위원을 맡고 있다.   글로벌 제조 환경은 인공지능(AI) 기반의 자율제조와 소프트웨어 정의 제조(SDM : Software Defined Manufacturing)로의 전환을 통해 전례 없는 혁신을 경험하고 있다. 이러한 변화는 생산성, 효율성, 그리고 경쟁력 향상이라는 막대한 잠재력을 내포하고 있다. 그러나 이러한 혁신의 완전한 실현은 방대한 제조 데이터의 효과적인 관리 및 활용, 특히 4M2E(Man, Machine, Material, Method, Environment, Energy) 생산자원 데이터의 표준화에 달려 있다. 동시에, IT(정보 기술)와 OT(운영 기술) 시스템의 융합이 가속화되면서 산업 제어 시스템(IACS)은 사이버 위협에 더욱 노출되고 있으며, 이는 IEC 62443과 같은 국제 산업용 사이버 보안 표준 준수의 중요성을 증대시키고 있다. 이번 연재에서는 자율제조 및 SDM 환경에서 4M2E 생산자원 데이터 표준화의 필요성과 기술 동향을 심층 분석하고, 대한민국 수출 제품의 IEC 62443 산업용 사이버 보안 준비 현황과 당면 과제를 짚어보고자 한다. 특히 국내 중소기업이 겪는 인력, 예산, 노후 설비 등의 애로사항과 공급망 보안의 중요성을 강조한다. 이러한 분석을 바탕으로, 데이터 표준화와 사이버 보안 역량을 동시에 강화하여 국가 경쟁력을 제고하고 안전한 글로벌 시장 참여를 보장하기 위한 구체적인 정책적 및 전략적 대응 방안을 제안한다. 이는 기술 개발 지원, 인력 양성, 중소기업 맞춤형 프로그램 확대, 그리고 국제 협력 강화를 포함하는 포괄적인 접근 방식을 제시한다.   자율제조 및 SDM 시대의 도래와 산업 혁신 글로벌 제조 산업은 인공지능(AI)과 소프트웨어 정의 제조(SDM)의 발전으로 심오한 변화를 겪고 있다. 이러한 변화는 생산성, 효율성, 그리고 전반적인 경쟁력의 향상을 약속한다. 미국 국립과학재단(NSF)의 지원을 받아 개발된 마빌라(MaVila)와 같은 새로운 AI 모델은 공장 내부를 ‘보고’ ‘대화’할 수 있도록 설계되었다. 이 모델은 부품 이미지를 분석하고, 결함을 평이한 언어로 설명하며, 해결책을 제안하고, 심지어 기계와 통신하여 자동 조정을 수행할 수 있다. 이러한 역량은 지능적이고 적응력 있는 제조 시스템으로의 중요한 도약을 의미한다. 한편, SDM은 경직된 하드웨어 중심의 자동화를 유연한 소프트웨어 중심 아키텍처, AI 기반 지능, 그리고 제어 및 데이터 흐름을 최적화하는 모듈형 산업 플랫폼으로 대체하고 있다. 이러한 운영 기술 인프라의 현대화는 제조 부문의 전반적인 경쟁력을 향상시키는 데 필수이다. SDM의 핵심은 하드웨어, 연결성, 스토리지, 보안 및 IT와 OT 환경 전반에 걸쳐 내장된 지능을 포함한 제조의 모든 측면을 체계적으로 최적화하고 현대화하는 데 있다.   생산자원 데이터 표준화 및 산업용 사이버 보안의 핵심 과제 자율제조 및 SDM의 완전한 구현은 방대한 제조 데이터의 효과적인 관리 및 활용에 크게 의존한다. 그러나 수많은 센서, 기계 및 시스템에서 생성되는 파편화된 데이터는 종종 표준화가 부족하여 관리, 통합 및 분석이 어렵다. 이러한 데이터 파편화는 생산성을 높이고 효율성을 개선하며 비용을 절감하기 위한 산업 데이터의 완전한 활용을 방해한다. 특히 다양한 세대의 기계에서 발생하는 광범위하고 이질적인 데이터 소스를 가진 기업의 경우, 표준화된 라벨링의 부재는 데이터 관리 및 활용을 더욱 복잡하게 만든다. 동시에, 이러한 첨단 제조 환경에서 IT 및 OT 시스템이 융합되면서 산업 제어 시스템(IACS)은 사이버 위협에 점점 더 노출되고 있으며, IEC 62443과 같은 국제 표준 준수를 통한 강력한 사이버 보안은 필수이다. 사용자 질의는 특히 대한민국 수출 제품의 이 분야에서의 잠재적인 ‘준비 미비’를 강조하며, 이는 국가 산업 전략에 있어 중요한 과제를 부각시킨다.   자율제조 및 SDM의 개념과 데이터의 중요성 AI 기반 자율제조의 발전과 데이터 활용 인공지능은 다양한 분야를 근본적으로 변화시키고 있으며, 제새로운 AI 모델은 공장 환경에 특화되어 개발되고 있다. 이 모델들은 공장 내 시각 및 언어 기반 데이터로부터 직접 학습하여 부품 이미지를 분석하고, 결함을 평이한 언어로 설명하며, 해결책을 제안하고, 심지어 기계와 통신하여 자동 조정을 수행할 수 있다. 이렇게 내부적이고 제조 특화된 데이터 중심 접근 방식은 더욱 스마트하고 적응력 있는 제조 시스템을 구축하여 경제 부문을 더욱 효과적으로 지원하는 데 매우 중요하다. 궁극적인 목표는 작업자의 역량을 강화하고, 생산성을 높이며, 치열한 글로벌 시장에서 국가의 입지를 강화하는 것이다. AI가 진정한 자율제조를 가능하게 하려면 일반적이거나 파편화된 데이터에 의존할 수 없다. 복잡한 시스템, 장비 및 워크플로에 대한 깊이 있는 실시간 이해가 요구된다. 이는 데이터가 단순히 수집되는 것을 넘어, AI가 기계가 읽을 수 있고 실행 가능한 형태로 맥락화되고 표준화되어야 함을 의미한다. 만약 AI 모델이 파편화되고 비표준화된 데이터로 학습된다면, 정확하고 관련성 높은 정보를 제공하고 자율적인 조정을 수행하는 능력이 심각하게 제한되어 자율제조의 본질적인 약속을 저해할 수 있다. 따라서 제조 분야에서 AI의 성공과 신뢰성은 입력 데이터의 품질, 일관성 및 표준화에 직접적으로 비례하며, 이는 AI 기반 자율성을 위한 데이터 표준화의 근본적인 중요성을 강조한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
[무료 다운로드] DX 시대, 샌드위치로 살아남기
설계, 데이터로 다시 쓰다 (1)   ‘DX’는 디지털 전환(Digital Transformation)을 의미한다. 2000년대 초반부터 아날로그 방식을 디지털 방식으로 전환하다는 것을 의미하다가, IT 기술이 발전함에 따라 기업들이 비즈니스 모델을 재구성하여 새로운 가치를 창출할 수 있는 과정으로 의미가 확대되었다. 디지털 시대에 성공적으로 전환한 기업은 선두 그룹에 도달했고, 등한시한 기업은 위기를 맞고 있다. 우리를 추격하던 중국은 최근 10년 간 디지털 전환에 성공하여 어느 새 선두권과 경쟁하고 있고, 우리는 샌드위치 신세로 전락하고 말았다. 앞으로 4회의 연재를 통해 선진 기업의 디지털 전환 성공 사례를 본보기 삼아, 위기에 처한 우리의 돌파구가 될 인사이트를 탐색하고자 한다.   ■ 연재순서 제1회 DX 시대, 샌드위치로 살아남기 제2회 DX 시대에서 AX 시대로 제3회 AX 시대를 위한 데이터 전략 제4회 Hello World   ■ 최병열 피도텍에서 AI 기반 Data-driven Design SW 개발 총괄을 맡고 있다. 한양대에서 공학박사 학위를 받았고, 20여 년간 100여건의 최적 설계 프로젝트를 주도하며 컨설팅 경험을 쌓았다. 홈페이지 | www.pidotech.com   중국의 성장 2015년 5월 19일 중국은 ‘중국제조 2025’ 정책을 발표하였다. 독일의 ‘Industry 4.0’을 벤치마킹하여 저임금/조립 중심의 제조업에서 첨단 제조 강국으로의 전환을 이루고자 하였다. 기존 ‘메이드 인 차이나’의 값싼 저품질 이미지에서 탈피하고, 미국과의 경쟁에서 살아남기 위해 강력한 국가 주도로 진행되었다.   그림 1. ‘중국제조 2025’의 10대 전략 산업 분야(출처 : MFG)   정책만 수립한 것이 아니었다. ‘중국제조 2025’가 수립되기 전 2008년부터 ‘천인계획’이라고 불리는 인재 확보 전략을 수립하였다. 우수한 자국 인재는 물론 해외 인재까지 유지하려는 노력이었다.   그림 2. 중국의 인재 정책 ‘천인계획’의 성과(출처 : 조선일보)   최근 KBS 다큐멘터리 ‘인재전쟁 : 공대에 미친 중국, 의대에 미친 한국’에서 그 결실을 충분히 파악할 수 있다. 현재는 중국의 과학기술계 위상이 전 세계적으로 바뀌어서 ‘네이처 인덱스 2025 연구기관 순위’에서 1위는 물론 10위권내에 8개 순위를 중국이 차지하였다. 아쉽게도 한국의 서울대와 KAIST는 52위와 82위를 차지하였는데, ‘의대 우선, 공대 천시’ 문화의 예정된 결과로 보인다. 인재를 위한 중국의 투자 성과는 딥시크(DeepSeek) 설립자인 량원펑의 사례로 잘 이해할 수 있다. 그는 저장대에서 석사까지 마쳤고, 헤지펀드를 만들어 80억 달러 규모의 자산을 운용할 만큼 금전적으로 성공하였다. 이후 주변 천재들과 함께 딥시크를 설립하였다. 막대한 투자금에 중국 정부, 지방 정부의 인재 발굴 시스템과 대학, 연구기관과의 기술적 협업, 이 세 가지를 기반으로 세계 시장과 어깨를 겨룰 수 있는 AI(인공지능) 모델을 개발하였고, 더 나아가 중국의 AI 역량을 한 단계 끌어올리는 역할을 하였다. DX 시대에서는 하드웨어보다는 소프트웨어 파워가 중요하다. 실제 제품을 만들어가면서 수정하고 개선하던 시대를 벗어나, 가상의 시뮬레이션을 통해 성능을 평가하고 개선하는 시대로 바뀐 것이다. 성능 평가를 위해 가상의 제품 시뮬레이션에 사용되는 CAE 소프트웨어는 공학 기술 노하우의 집약체이기 때문에, 단기간에 따라잡기 어려운 분야 중 하나이다. 하지만 중국의 CAE 수준은 투자에 걸맞게 비약적으로 발전했다. CAE 분야와 관련된 SCI 논문 수가 2020년 이후 세계 1~2위권을 다투고 있고, 소프트웨어 알고리즘과 병렬처리, 디지털 트윈 등 CAE 관련 특허도 연간 1000건 이상 출원되며 2015년 대비 3배로 증가하고 있다. 이러한 성과를 토대로 해외 시장에서 경쟁하는 중국산 CAE 소프트웨어 개발도 활발히 이루어지고 있다. 중국 광저우에 본사를 두고 ZWCAD, ZW3D 등을 개발하는 ZW소프트(ZWSoft), 중국 창사에 본사를 두고 있는 적층 제조 소프트웨어를 개발하는 파순 테크놀로지(Farsoon Technology) 등이 있으며, 중국계 대표가 설립한 터보타이즈(TurboTides inc.)에서는 터보 기계 해석 및 설계 플랫폼인 터보타이즈(TurboTides)를 개발하여 세계 시장으로 도약하고 있다. 중국 정부는 2015년 이후로 ‘중국제조 2025’ 정책에 최소 230억 달러(약 31조 원) 규모의 금융·재정 투자를 진행한 것으로 발표하고 있다. 하지만 추산이 어려운 보조금 등의 규모를 따져 보면 발표액의 10배 정도의 규모가 투입되었을 것으로 추산하고 있다. 성과는 분명했다. 중국은 세계 시장 점유율을 끌어올리는 데에 성공했고, 그중 대표적인 6개 분야를 소개하면 다음과 같다.   그림 3. ‘중국 제조 2025’의 성과(ChatGPT로 제작)   전기차 시장에서는 비와이디(BYD)가 테슬라를 제치고 판매량 1위를 달성하였고, 세계 전기차 판매량 1위 국가라는 타이틀도 보유하게 되었다. 태양광 분야에서는 론지(LONGi), JA 솔라(JA Solar) 등이 주도하여 세계 태양광 모듈 생산의 75% 이상을 담당하였다. 2000년대 초반 한국이 주도하던 LCD 분야는 2019년을 기점으로 중국에 왕좌를 내주고 말았다. 상업용 드론 시장은 DJI가 세계 시장 점유율 82%(2022년 기준)를 차지할 만큼 주도하고 있고, AI 기술로 무장한 중국의 스타트업들이 무섭게 성장하고 있다. CATL, BYD 등이 중심이 된 리튬이온 배터리도 전 세계의 60% 이상을 차지하며, 그 뒤를 쫓는 한국과 일본을 위협하고 있다. 로봇청소기 시장은 중국 기업과 중국이 아닌 기업들의 점유율로 시장 성장 추세를 파악할 정도로 중국의 성장이 무섭다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02