• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 그래픽"에 대한 통합 검색 내용이 3,715개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
CAD&Graphics 2025년 11월호 목차
  INFOWORLD   Editorial 17 AI와 CAE의 융합, ‘지능형 시뮬레이션’ 시대를 연다    Hot Window 18 말하면 설계하는 시대를 향해 – AI로 그리는 설계의 미래 / 한명기 21 리얼타임을 통한 디지털 트랜스포메이션의 진화 / 권오찬   Focus 26 AWS, 산업 혁신 이끄는 AI 에이전트 비전과 전략 공개 28 AEC/MFG 산업의 미래는? 지더블유캐드코리아, CAD/CAM/CAE 통합 플랫폼 비전 제시 30 유니티, “게임 엔진 넘어 AI·디지털 트윈 시대의 산업 기반 기술로”   Case Study 33 핵융합 실험을 위한 3D 시뮬레이션 플랫폼 개발 유니티로 구현한 핵융합 디지털 트윈, V-KSTAR 36 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전 / 이웅재 디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   People&Company 40  지더블유캐드코리아 최종복 대표이사 CAE·PDM까지 라인업 확장… ‘가성비’ 넘어 AI·성능으로 승부   New Product 42 HP Z2 미니 G1a 리뷰 / 이민철 BIM 엔지니어의 실무 프로젝트 성능 검증 50 3D 설계 환경에 통합된 전문 CAE 시뮬레이션 ZW3D Structural & Flow 54 접촉·포스 성능 향상 및 MFBD 후처리, 산업별 툴킷 기능 강화 리커다인 2026 57 실시간 3D 시각화 워크플로의 생산성 향상 트윈모션 2025.2 74 이달의 신제품   On Air 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 BIM의 융합, 건축 설계의 패러다임을 바꾸다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조 산업에서의 사이버 보안과 위기 상황 대응 방안 65 캐드앤그래픽스 CNG TV 지식방송 지상중계 시뮬레이션의 미래 : AI와 디지털 트윈이 주도하는 제조 혁신   Column 66 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 시대의 서바이벌 노트 : 인공지능 마인드세트와 원칙 69 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅲ – 본질에 집중하는 삶   76 New Books 78 News   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 81 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 코드로 강력한 수학 그래픽 애니메이션을 만드는 매님 84 새로워진 캐디안 2025 살펴보기 (12) / 최영석 유틸리티 기능 소개 Ⅹ 88 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (8) / 천벼리 아레스 커맨더의 동적 블록과 트리니티 블록 라이브러리   Reverse Engineering 91 시점 – 사물이나 현상을 바라보는 눈 (11) / 유우식 무엇을 믿을 것인가?   Mechanical 98 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (4) / 박수민 모델 기반 정의 개선사항   Analysis 104 앤시스 워크벤치를 활용한 해석 성공 사례 / 장형진 앤시스 LS-DYNA S-ALE를 활용한 폭발 성형 해석 방법 108 최적화 문제를 통찰하기 위한 심센터 히즈 (9) / 이종학 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 118 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (27) / 나인플러스IT 차세대 다중물리 CFD 설루션의 ‘4A’ 122 설계, 데이터로 다시 쓰다 (2) / 최병열 DX 시대에서 AX 시대로 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (4) / 윤경렬, 김도희 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 132 가상 제품 개발을 위한 MBSE 및 SysML의 이해와 핵심 전략 (1) / 오재응 디지털 모델 중심 시스템 설계로의 전환 전략   Manufacturing 138 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (2) / 차석근 산업 사이버 위협을 돌파하기 위한 IEC 62443   PLM 144 산업 디지털 전환을 가속화하는 버추얼 트윈 (8) / 이희라 부품 공용화 및 표준화를 위한 AI 기반 3D 형상 분석 설루션
작성일 : 2025-10-31
캔바, 크리에이티브 전 과정에 AI 결합한 ‘크리에이티브 운영체제’ 출시
올인원 비주얼 커뮤니케이션 플랫폼 캔바(Canva)가 ‘크리에이티브 운영체제(Creative Operating System)’를 출시했다고 발표했다. 이번 출시를 통해 캔바는 지난 10여년 간 축적해온 혁신을 집약해 창의력을 한층 강화하도록 설계된 새로운 기능을 선보인다. 새로운 운영체제는 캔바의 ‘디자인 모델(Design Model)’을 기반으로 설계되어, 디자인부터 협업, 퍼블리싱, 성과 관리까지 창작의 전 과정을 하나의 흐름으로 통합한다. 그 결과, 인간의 창의력이 주도하고 AI가 그 가능성을 확장하는 더 빠르고, 더 스마트하며 더 유기적으로 연결된 디자인 방식을 구현했다.     새로운 ‘크리에이티브 운영체제’의 중심에는 새롭게 재구성된 비주얼 스위트(Visual Suite)가 있다. 이 업그레이드를 통해 동영상, 이메일, 코드, 폼 모든 형식에서 가능성 영역을 한층 확장해, 아이디어를 구현하고 목표를 달성하는 과정을 쉽게 만들어준다. 이번 크리에이티브 운영체제는 다양한 기능을 새롭게 선보인다. 동영상 편집기 2.0(Video 2.0)은 복잡함과 불편함을 제거하기 위해 처음부터 다시 설계되었다. 전문가 수준의 편집 도구와 캔바 특유의 간편성이 결합되어 어떤 기기에서도 몰입도 높은 영상을 손쉽고 빠르게 제작할 수 있다. 매직 비디오(Magic Video)와 새로운 트렌드 템플릿 라이브러리를 통해 단 하나의 프롬프트만으로도 완성도 높은 콘텐츠를 생성할 수 있다. 새롭게 디자인된 타임라인은 영상 자르기, 동기화, 영상 레이어링을 빠르고 직관적으로 작업할 수 있으며, AI 도구들은 편집과 효과 적용을 자동화하는 데 도움을 준다.  캔바에서 가장 많이 요청된 기능 중 하나인 이메일 디자인(Email Design)은 완전히 새로운 형식을 선보이며, 마케팅 팀이 이미 콘텐츠를 디자인하는 플랫폼 안에서 이메일을 제작할 수 있게 해준다. 이제 팀은 별도의 코딩이나 툴 전환 없이 완전히 브랜딩된 마케팅 이메일을 제작하고 맞춤화하여 내보낼 수 있다. 완성된 디자인은 HTML 파일로 내보내 원하는 이메일 플랫폼에서 바로 배포할 수 있다. 캔바 폼(Forms)은 캔바 안에서 직접 피드백, RSVP, 데이터 등을 수집할 수 있는 새로운 방식이다. 완전히 브랜딩된 폼을 웹사이트를 포함한 다른 캔바 디자인에도 추가할 수 있으며, 시각적 스타일에 맞게 자유롭게 커스터마이징할 수 있다. 응답 내용은 자동으로 캔바 시트(Canva Sheets)로 연동되어 모든 정보를 한 곳에서 관리할 수 있다. 또한, 이제 캔바 시트를 캔바 코드(Canva Code)로 만든 결과물과 연결할 수 있어 데이터 기반의 인터랙티브 위젯을 손쉽게 제작할 수 있다. 라이브 대시보드, 계산기, 학습 도구 등 어떤 형태든 데이터가 변경될 때마다 자동으로 업데이트되며, 모든 요소가 유기적으로 연결된 상태를 유지한다.  아울러, 캔바는 창의성에 특화된 새로운 세대의 AI를 공개했다. 여기에는 디자인 자체를 이해하도록 학습된 모델이 포함된다. 이번 혁신은 창의력이 이끌고 기술이 가능성을 확장하는 방향, AI가 사용자의 목표 달성을 지원하는 방식을 발전시킨 것이다.  디자인 중심 캔바 AI 모델(Canva Design Model)은 디자인의 복잡성을 이해하도록 학습된 모델로, 수 년간의 연구와 디자인 지식을 바탕으로 구축됐다. 이 모델은 디자인의 논리를 해석하고, 레이아웃을 조율하며, 단 몇 초 만에 완전히 편집 가능한 콘텐츠를 생성한다. 캔바 AI는 대대적인 업그레이드를 거치며 이제 디자인의 모든 단계에 깊이 통합되었다. 사진, 영상, 질감, 3D 그래픽 등 원하는 모든 요소를 상상하기만 하면 캔버스 위에서 바로 구현해준다. 또한 새롭게 추가된 스타일 매치를 통해 모든 요소가 조화를 이루며 브랜드 일관성을 유지한 디자인을 손쉽게 완성할 수 있다.  @Canva에게 질문하기(Ask @Canva)는 디자인 과정 어디서든 도움을 받을 수 있는 디자인 어시스턴트다. 사용 중 ‘@Canva’를 태그하기만 하면 즉시 피드백, 디자인 제안, 스마트 편집 지원을 받을 수 있다. 카피 문구 제안부터 디자인 수정까지 편집기에 내장된 창작 파트너 역할을 수행한다. 이외에도 캔바는 브랜드 성장을 위한 마케팅 도구
도 소개했다. 캔바는 엔드 투 엔드 플랫폼으로 발전하며 브랜드 관리, 마케팅 캠페인, 성과 추적을 위한 신규 툴을 선보인다. 캔바 그로우(Canva Grow)는 광고 소재 기획부터 제작, 게시, 성과 분석까지 한 번에 처리할 수 있는 통합 마케팅 플랫폼이다. 마케팅 팀은 이제 캔바에서 광고를 디자인하고 메타(Meta) 등 다양한 플랫폼에서 실행하며, 실시간으로 인사이트를 추적하고 성과 지표에 따라 즉시 콘텐츠를 최적화할 수 있다. 브랜드 인식 AI를 기반으로 하는 캔바 그로우는 성과 데이터를 학습하여 시간이 지날수록 모든 캠페인을 더 스마트하고 효과적으로 발전시킨다. 브랜드 시스템(Brand System)은  브랜드 가이드라인과 브랜드 자산을 편집기로 직접 가져와 팀이 필요한 모든 것을 제작 환경 내에서 즉시 접근할 수 있도록 지원한다. 글꼴, 색상, 로고 템플릿이 자동으로 적용되어, 모든 디자인과 채널에서 브랜드 일관성을 손쉽게 유지할 수 있다. 성장 중인 팀이나 글로벌 기업 모두에게, 수동으로 하는 브랜드 검수 과정이 필요 없도록 하여 편리하고 일관성 있게 브랜드를 확장할 수 있다.  캔바는 개인, 마케터, 소규모 팀을 위한 ‘캔바 비즈니스(Canva Business)’ 요금제를 새롭게 도입했다. 이 요금제는 고급 AI, 분석, 브랜드 관리 도구를 활용해 브랜드를 성장시키고자 할 때 최적화된 구독 플랜으로, 캔바 프로(Canva Pro)와 캔바 엔터프라이즈(Canva Enterprise)의 중간 단계에 해당한다. 확장된 저장공간, 더 높은 AI 사용 한도, 인쇄 할인, 팀 성장을 돕는 다양한 전문 기능을 함께 제공한다. 캔바의 멜라니 퍼킨스(Melanie Perkins) 공동 창업자 및 CEO는 “지식의 접근성이 높아질수록 우리는 ‘정보의 시대’에서 ‘상상력의 시대’로 이동하고 있다고 믿는다. 이 시대에는 창의력이 그 어느 때보다 중요한 시기다”라며, “이 새로운 시대에 캔바 사용자들이 성공할 수 있도록 어떻게 지원할 수 있을지 고민해왔다. 그래서 이번에 올인원 ‘크리에이티브 운영체제’라는 캔바 최대의 혁신을 선보이게 되어 더더욱 기쁘다"고 밝혔다. 또한 “동영상, 이메일, 폼 등 주요 기능이 대폭 업그레이드된 비주얼 스위트, 브랜드와 비즈니스 성장을 위한 강력한 AI 레이어와 다양한 툴 등 새 기능들을 통해 사용자들이 자신의 아이디어를 어떻게 실현할지 무척 기대된다”고 전했다. 한편, 캔바는 전문 디자인과 일상 창작의 경계를 허문 새로운 ‘올 뉴 어피니티(All-New Affinity)’를 공개했다. 벡터 편집, 이미지 보정, 고급 레이아웃 디자인 등 많은 사랑을 받아온 전문 디자인 도구들을 하나의 강력한 제품과 통합된 파일 형식으로 결합해, 이제 여러 프로그램을 오갈 필요 없이 전문가 수준의 작업이 가능하다. 이제 어피니티는 전문 크리에이터가 어피니티에서 애셋을 제작한 뒤 바로 캔바로 이동해 협업, 게시, 브랜드 확장을 이어갈 수 있도록 지원하며, 전체 디자인 프로세스를 완성한다. 또한 어피니티는 이번에 최초로 영구 무료로 제공되어, 전문 크리에이터들의 마지막 진입 장벽을 제거하고 누구나 세계적 수준의 도구에 접근할 수 있도록 지원한다.
작성일 : 2025-10-31
델, 중소·중견기업을 위한 ‘델 프로 에센셜’ PC 라인업 출시
델 테크놀로지스가 국내 중소·중견기업(SMB) 시장을 겨냥해 ‘델 프로 에센셜(Dell Pro Essential)’ 노트북 및 데스크톱 PC 라인업을 새롭게 선보였다. 델 프로 에센셜은 신뢰할 수 있는 성능과 보안, 관리용이성을 내세운 엔트리급 기업용 PC 제품군이다. 2025년 초 델은 새로운 통합 브랜딩 전략을 통해 전문가급 생산성을 위한 기업용 PC 제품군을 ‘델 프로(Dell Pro)’ 포트폴리오로 통합했다. 델의 기존 기업용 노트북 브랜드인 ‘래티튜드(Latitude)’와 데스크톱 PC 브랜드인 ‘옵티플렉스(Optiplex)’를 계승한 ‘델 프로(Dell Pro)’는 강력한 성능과 깔끔한 디자인이 조화를 이루는 기업용 PC 제품군이다. 이번 에센셜(Essential) 라인업은 합리적인 가격대의 PC를 선호하는 중소·중견기업(SMB)을 겨냥한 제품군으로, 업무를 위한 필수적인 성능과 기능을 갖춰 최상급의 사용자 경험을 제공하는 데에 초점을 맞추었다.     이번에 출시한 제품은 기업용 노트북인 ▲델 프로 14∙15 에센셜(Dell Pro 14∙15 Essential)과 기업용 데스크톱 PC인 ▲델 프로 슬림·타워 에센셜(Dell Pro Slim·Tower Essential) 등 총 4종이다.  델 프로 14 에센셜과 델 프로 15 에센셜은 보안, 관리성 등 중소·중견기업의 요구 사항을 충족하고 긴 배터리 수명과 높은 내구성을 갖춰 이동 중에 작업을 수행하는 비즈니스 사용자에게 최적화된 기업용 노트북이다. 델 프로 14 에센셜은 14형 노트북으로, 최대 인텔 코어 7 CPU와 인텔 아이리스(Iris) Xe 그래픽 카드를 탑재했다. IPS 패널 기반의 16:10 화면비, 2K 해상도, 300니트 밝기를 지원하는 디스플레이가 적용됐다. ‘델 프로 15 에센셜’은 최대 13세대 인텔 코어 i7 CPU에 인텔 아이리스 Xe 그래픽 카드 또는 AMD 라이젠 5(Ryzen 5) 프로세서에 AMD 라데온(Radeon) 그래픽 카드가 탑재된 모델이 제공된다. FHD 해상도와 120Hz 주사율을 지원하는 디스플레이를 탑재했고, 숫자 패드까지 갖춘 풀사이즈 키보드를 탑재했다. 이들 제품은 데이터 암호화가 가능한 TPM 2.0(Trusted Platform Module 2.0) 보안 모듈을 탑재했다. 빠르고 안전한 로그인을 위한 지문 인식기 옵션, 물리적으로 카메라를 잠글 수 있는 프라이버시 셔터 옵션을 지원하며, 14인치 제품의 경우 분실 방지를 위한 웨지형 잠금 슬롯 등 다양한 보안 기능을 지원한다. 두 모델 모두 미 군사 표준규격인 MIL-STD-810H를 통과해 외부 충격에 강한 내구성까지 인정받았다. 델 프로 슬림 에센셜(QVS1260)과 델 프로 타워 에센셜(QVT1260)은 일상적인 업무를 더욱 효율적으로 처리하기 위해 필요한 안정적인 성능과 비용 효율적인 컴퓨팅 설루션으로, 중소·중견기업에 최적화된 데스크톱 PC이다. 델 프로 제품은 본체 크기에 따라 ‘타워’, ‘슬림’, ‘마이크로’ 제품군으로 나뉘는데, ‘델 프로 슬림 에센셜’은 9.5×29.3×30.3cm 사이즈로 협소한 장소에서도 공간 활용도를 높인다. 델 프로 타워 에센셜은 이보다 높이가 2cm, 너비가 6cm가량 크다. 두 제품 모두 최대 인텔 코어 울트라 5 프로세서와 인텔 UHD 그래픽스를 탑재하고, 16GB DDR5의 메모리를 지원해 워크로드를 빠르게 수행할 수 있도록 했다. 또한, 윈도우 11 프로, 윈도우 11 홈 및 우분투(11월말 지원 예정) 등 다양한 OS 옵션을 지원한다. 이들 제품은 공구 없이도 패널을 개폐할 수 있는 툴리스 설계를 적용해 사용자가 직접 부품을 손쉽게 교체하고 업그레이드할 수 있다. 3개의 PCIe 슬롯을 지원하고, 최대 1TB SSD까지 성능을 확장할 수 있다. 총 8개의 USB 포트와 SD 카드 슬롯 옵션을 탑재했고, 디스플레이포트(DisplayPort) 및 데이지 체인 연결로 최대 4대의 FHD 모니터와 2대의 4K 디스플레이를 연결할 수 있어 주변 기기와의 연결성도 높였다. 이들 제품은 중소·중견기업의 IT 관리를 간소화하도록 설계된 것이 특징이다. 델 관리 포털(Dell Management Portal)에서 마이크로소프트 인튠(Intune)을 사용해 클라우드에서 디바이스를 손쉽게 관리할 수 있으며, 마이크로소프트 오토파일럿(Autopilot)을 통해 IT 관리자의 개입 없이 디바이스를 자동으로 배포할 수도 있다. 한국 델 테크놀로지스의 김경진 총괄사장은 “최근 AI PC 수요 증가, 윈도우 10 지원 종료 등으로 PC 교체 수요가 지속적으로 늘고 있다”면서, “이번에 출시하는 에센셜 라인업은 합리적인 가격에도 기업 고객들의 다양한 니즈를 충족하는 필수 요소를 갖추고 있으며, 중소·중견기업의 혁신 여정을 함께 하는 중요한 기반이 될 것”이라고 말했다.
작성일 : 2025-10-22
젠하이저, 유선의 음질과 무선의 자유를 결합한 헤드폰 ‘HDB 630’ 출시
젠하이저가 프리미엄 헤드폰 ‘HDB 630’을 출시한다고 밝혔다. 이 제품은 젠하이저의 레퍼런스 라인업인 HD-6 시리즈 중 중립적인 사운드를 지향한 HD 650의 사운드 튜닝을 계승해 깨끗하고 균형 잡힌 중역대와 섬세한 보컬, 자연스러운 고음을 구현한다. 신제품은 아일랜드 툴라모어에 위치한 젠하이저의 첨단 생산시설에서 생산하는 SYS38 다이내믹 트랜스듀서에 HDB 630을 위해 개발한 새로운 어쿠스틱 시스템을 탑재하여, 기존 블루투스 헤드폰과 차별화된 해상도를 제공하는 것이 특징이다.     HDB 630은 단말기의 스펙과 상관없이 최고 음질의 코덱으로 상향 전송하는 USB-C 타입의 BTD700 동글을 함께 제공한다. 이를 통해 단말기의 스펙과 상관없이 모든 사운드를 AptX Adaptive 코덱으로 즐길 수 있고, 무선 연결 시에도 스냅드래곤이 인증한 24bit/96kHz의 고해상도 사운드를 감상할 수 있다. HDB 630에는 젠하이저의 초고가 헤드폰 시스템 ‘HE 1’에 적용된 ‘크로스피드(Crossfeed)’ 기능이 적용됐다. 크로스피드는 스피커로 음악을 들을 때 좌우 스테레오 신호가 공기 중에서 자연스럽게 섞이는 현상을 헤드폰에 적용한 기술로, 이를 통해 청음자는 스피커로 듣는 것과 유사한 자연스러운 입체감과 공간감을 느낄 수 있으며 극단적인 좌우 채널 분리에서 오는 피로감을 줄일 수 있다. HDB 630은 전문 음향 엔지니어가 사용하는 ‘파라메트릭 이퀄라이저(Parametric Equalizer)’도 지원한다. 고정된 주파수 대역에서 효과를 조정해야 하는 그래픽 이퀄라이저(Graphic Equalizer)와 달리 파라메트릭 이퀄라이저는 특정 주파수와 그 범위를 사용자가 선택하여 효과를 세밀하게 적용함으로써 각 사용자의 음향적 취향에 최적화된 맞춤형 사운드를 구현할 수 있도록 한다. 또한, ‘어댑티브 노이즈 캔슬링(ANC)’ 기능은 급격한 볼륨 변화나 먹먹함이 없이 주변의 소음 정도에 자동반응 하면서 음질과 음색에 변화를 주지 않아 사용자에게 자연스러운 청취 환경을 유지해 준다. HDB 630은 USB-C와 3.5mm 아날로그 케이블 등 다양한 연결 방식을 지원하며, ‘스마트 컨트롤 플러스(Smart Control Plus)’ 앱을 사용하면 사운드 설정을 공유하거나 노이즈 캔슬링, 착용 감지, 코덱 설정 등을 세부적으로 제어할 수 있다. HDB 630의 헤드밴드는 프리미엄 프로틴 레더(Protein Lether) 소재를 사용하여 고급감을 강조했으며, 한 번의 충전으로 ANC 모드에서 최대 60시간, 10분 충전으로 약 7시간을 사용할 수 있는 고속 충전 기능을 지원한다. 젠하이저의 토비아스 리터(Tobias Ritter) 음향 엔지니어는 “이동 중에도 깊이 있고 균형 잡힌 사운드를 즐길 수 있도록 하는 것이 이번 튜닝의 핵심 목표였다”면서, “음악의 감정과 디테일을 유선과 무선을 자유롭게 오가면서 생생하게 느낄 수 있다”고 말했다. ‘HDB 630’의 가격은 72만 9000원이다. 신제품은 젠하이저의 공식스토어 및 네이버 브랜드 스토어 등에서 구매할 수 있다.
작성일 : 2025-10-21
HP Z AI 워크스테이션 웨비나, 실무 사용기와 함께 공개
AI와 3D 그래픽 작업의 경계가 빠르게 허물어지고 있는 가운데, HP코리아가 차세대 크리에이터를 위한 새로운 솔루션을 선보인다. 10월 22일 오후 2시, 캐드앤그래픽스가 주최하는 웨비나 ‘고가의 GPU 없이도 최대 VRAM 96GB 작업 가능, HP Z AI 워크스테이션 및 사용기 소개’에서는 최신 HP Z AI 워크스테이션의 성능과 실제 현업 디자이너의 사용기를 생생하게 들을 수 있다. 이번 세션은 HP코리아의 차성호 이사(Value Products Category Manager)와 마루인터내셔널 배현수 부장(맥슨 한국총판 기술지원팀)이 발표자로 참여한다. 참가비는 무료이며, 사전등록을 통해 누구나 참여할 수 있다. 이번에 소개되는 HP Z AI 워크스테이션은 GPU 리소스에 대한 한계를 크게 낮춘 것이 특징이다. 고가의 GPU 없이도 최대 96GB VRAM을 활용할 수 있으며, 3D 디자인·렌더링 동시 작업, 대규모 LLM(대형언어모델) 실행 등 기존 워크스테이션에서 경험하기 어려웠던 고부하 작업을 로컬 환경에서도 안정적으로 수행할 수 있다. HP는 이번 모델을 통해 AI 시대의 ‘로컬 퍼포먼스 컴퓨팅’이라는 새로운 비전을 제시하고 있다. 특히 클라우드 의존도를 낮추면서도 고해상도 그래픽, 복잡한 시뮬레이션, 생성형 AI 모델 학습까지 가능하다는 점에서 크리에이터와 엔지니어 모두에게 주목받고 있다. 한편 이번 웨비나의 또 다른 핵심은 실제 현업 디자이너의 사용 경험이다. 맥슨(Maxon)의 한국총판 마루인터내셔널의 배현수 부장은 모션그래픽 디자이너이자 AI 크리에이터로, HP Z2 Mini G1a 데스크탑 워크스테이션을 활용한 협업 사례와 실무 노하우를 직접 공유할 예정이다. 이번 웨비나는 하이엔드 그래픽스, 3D 콘텐츠 제작, 생성형 AI 프로젝트를 수행하는 전문가들에게 실질적인 도움을 줄 것으로 기대된다.
작성일 : 2025-10-21
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
인텔, 팬서 레이크 아키텍처 공개하면서 18A 공정 기반의 AI PC 플랫폼 제시
인텔은 차세대 클라이언트 프로세서인 인텔 코어 울트라 시리즈 3(코드명 팬서 레이크)의 아키텍처 세부 사항을 공개했다. 2025년 말 출시 예정인 팬서 레이크는 미국에서 개발 및 제조되며, 진보된 반도체 공정인 인텔 18A로 제작된 인텔의 첫 번째 제품이 될 것으로 보인다. 인텔 코어 울트라 시리즈 3 프로세서는 인텔 18A 기반으로 제조된 클라이언트 시스템 온 칩(SoC)으로, 다양한 소비자 및 상업용 AI PC, 게이밍 기기, 에지 설루션을 구동할 예정이다. 팬서 레이크는 확장 가능한 멀티 칩렛 아키텍처를 도입하여 파트너사들에게 폼 팩터, 세그먼트, 가격대 전반에 걸쳐 향상된 유연성을 제공한다. 인텔이 소개한 팬서 레이크의 주요 특징은 ▲루나 레이크 수준의 전력 효율과 애로우 레이크 급 성능 ▲최대 16개의 새로운 P-코어 및 E-코어로 이전 세대 대비 50% 이상 향상된 CPU 성능 제공 ▲최대 12개의 Xe 코어를 탑재한 새로운 인텔 아크 GPU로, 이전 세대 대비 50% 이상 향상된 그래픽 성능 제공 ▲최대 180 플랫폼 TOPS(초당 수 조의 연산)를 지원하는 차세대 AI 가속화를 위한 균형 잡힌 XPU 설계 등이다.     인텔은 팬서 레이크를 PC뿐 아니라 로봇 공학을 포함한 에지 애플리케이션으로 확장할 계획이다. 새로운 인텔 로봇 공학 AI 소프트웨어 제품군과 레퍼런스 보드는 정교한 AI 기능을 갖춘 고객이 팬서 레이크를 제어 및 AI /인식 모두에 활용하여 비용 효율적인 로봇을 신속하게 혁신하고 개발할 수 있도록 지원한다.  팬서 레이크는 2025년 대량 생산을 시작하며, 첫 번째 SKU는 연말 이전에 출하될 예정이다. 또한 2026년 1월부터 폭넓게 시장에 공급될 예정이다.  한편, 인텔은 또한 2026년 상반기에 출시될 예정인 인텔 18A 기반 서버 프로세서인 제온 6+(코드명 클리어워터 포레스트)를 미리 공개했다. 팬서 레이크와 클리어워터 포레스트는 물론 인텔 18A 공정으로 제조된 여러 세대의 제품들은 모두 애리조나주 챈들러에 위치한 인텔의 공장인 팹 52에서 생산된다. 인텔의 차세대 E-코어 프로세서인 인텔 제온 6+는 인텔이 지금까지 개발한 가장 효율적인 서버 프로세서로, 인텔 18A 공정으로 제작된다. 인텔은 2026년 상반기에 제온 6+를 출시할 계획이다.  제온 6+의 주요 특징은 ▲최대 288개의 E-코어 지원 ▲전 세대 대비 사이클당 명령어 처리량(IPC) 17% 향상 ▲밀도, 처리량 및 전력 효율의 개선 등이다. 클리어워터 포레스트는 하이퍼스케일 데이터센터, 클라우드 제공업체 및 통신사를 위해 설계되어 조직이 워크로드를 확장하고 에너지 비용을 절감하며 더 지능적인 서비스를 제공할 수 있도록 지원한다.  인텔 18A는 미국에서 개발 및 제조된 최초의 2나노미터급 노드로, 인텔 3 대비 와트당 성능이 최대 15% 향상되고 칩 밀도가 30% 개선되었다. 이 공정은 미국 오리건 주 공장에서 개발 및 제조 검증 과정을 거쳐 초기 생산을 시작했으며, 현재 애리조나 주에서 대량 생산을 향해 가속화되고 있다. 인텔은 향후 출시될 자사의 클라이언트 및 서버 제품에서 최소 3세대에 인텔 18A 공정을 활용할 계획이다. 인텔 18A는 10년 만에 선보이는 인텔의 새로운 트랜지스터 아키텍처 리본FET(RibbonFET)를 적용해, 더 큰 확장성과 효율적인 스위칭을 통해 성능과 에너지 효율을 높인다. 그리고 새로운 백사이드 전원 공급 시스템인 파워비아(PowerVia)를 통해 전력 흐름과 신호 전달을 개선한다. 인텔의 첨단 패키징 및 3D 칩 적층 기술인 포베로스(Foveros)는 여러 칩렛을 적층 및 통합하여 고급 시스템 온 칩(SoC) 설계로 구현함으로써 시스템 수준에서 유연성, 확장성 및 성능을 제공한다.  인텔의 립부 탄(Lip-Bu Tan) CEO는 “우리는 향후 수십 년간 미래를 형성할 반도체 기술의 큰 도약으로 가능해진 흥미진진한 컴퓨팅의 새 시대에 접어들고 있다”며, “차세대 컴퓨팅 플랫폼은 선도적인 공정 기술, 제조 역량 및 첨단 패키징 기술과 결합되어 새로운 인텔을 구축하는 과정에서 전사적 혁신의 촉매가 될 것이다. 미국은 항상 인텔의 최첨단 연구개발, 제품 설계 및 제조의 본거지였다. 미국내 운영을 확대하고 시장에 새로운 혁신을 선보이면서 이러한 유산을 계승해 나가게 되어 자랑스럽게 생각한다”고 말했다.
작성일 : 2025-10-10
HP Z2 미니 G1a 리뷰 : 초소형 워크스테이션의 AI·3D 실전 성능
워크스테이션은 콤팩트한 외형 속에 데스크톱급 성능을 담아낸 전문가용 시스템이다. 단순한 소형 PC와 달리, 3D·영상·AI·엔지니어링 등 고성능이 필요한 크리에이터와 전문 작업자를 위해 설계된 것이 특징이다. 이번 리뷰에서는 실제 소프트웨어 워크플로와 AI·LLM 테스트까지 다양한 관점에서 심층 평가를 진행했다.   ▲ HP Z2 미니 G1a   하드웨어 및 설치 환경 HP Z2 미니 G1a(HP Z2 Mini G1a)의 가장 큰 강점 중 하나는 강력한 하드웨어 스펙이다. AMD 라이젠 AI 맥스+ 프로 395(AMD Ryzen AI Max+ PRO 395) 프로세서(16코어 32스레드, 3.00GHz), 최대 128GB LPDDR5X 메모리, 8TB NVMe SSD, 그리고 16GB VRAM을 탑재한 라데온 8060S(Radeon 8060S) 통합 그래픽 등, 동급 소형 워크스테이션에서는 보기 힘든 구성을 갖췄다. 특히 메모리는 최대 128GB까지 확장 가능하며, 이 중 최대 96GB를 그래픽 자원에 독점 할당할 수 있다. 듀얼 NVMe 및 RAID 지원으로 대용량 데이터 처리와 안정성을 확보했으며, 50TOPS에 달하는 NPU 성능 덕분에 AI 추론 등 최신 워크로드도 소화할 수 있다. 테스트는 윈도우 11 프로 기반, 64GB RAM과 16GB 라데온 8060S, 듀얼 NVMe SSD가 장착된 구성으로 진행됐다.   ▲ HP Z2 미니 G1a의 하드웨어 스펙   전문 소프트웨어 워크플로 직접 HP Z2 미니 G1a를 사용해 본 첫 인상은 “미니 사이즈에서 이 정도 성능이라니?”였다. 크기는 작지만, 성능은 결코 작지 않았다. 시네마 4D(Cinema 4D)로 복잡한 3D 신을 제작하고, 지브러시(ZBrush)에서 대형 폴리곤 모델링과 서브툴 멀티 작업을 해 보니 작업 흐름이 부드럽고, 장시간 동작에도 다운이나 랙 없이 꾸준한 성능으로 작업할 수 있었다. 시네벤치(Cinebench), 시네마 4D, 지브러시, 애프터 이펙트(After Effects), AI 생성형 이미지·영상, LLM 실행 등 전 영역에서 성능 저하를 체가하기 어려웠다. 시네마 4D에서는 수십만~수백만 폴리곤에 달하는 대형 3D 신 파일을 불러오고, 뷰포트 내 실시간 조작이나 배치 렌더링, 애니메이션 키프레임 작업에서 CPU 기반 멀티스레드 성능이 큰 장점을 발휘했다. 시네벤치 2024 멀티코어 점수는 1832점으로, 애플의 M1 울트라보다 높은 수치를 달성해 전문 사용자에게 매력적인 대안이 될 것으로 보인다.   ▲ 시네마 4D에서 테스트   애프터 이펙트 환경에서는 GPU 가속 지원이 부족한 점에도 불구하고, 강력한 CPU 성능 덕분에 고해상도(4K) 다중 레이어 영상 합성, 이펙트, 복수 트랙 편집에서도 랙이나 끊김 없이 작업을 이어갈 수 있었다. 시네마 4D, 지브러시, 콤피UI(ComfyUI) 등과의 멀티태스킹 환경에서도 리소스 병목 없이 쾌적하게 여러 프로그램을 병행 실행하는 것이 가능했다.   ▲ 애프터 이펙트에서 테스트   아이언캐드 대형 어셈블리 테스트 엔지니어링 현장에서 요구되는 대형 어셈블리 작업을 검증하기 위해 동료와 함께 아이언캐드(IronCAD)로 2만여 개(2만 1800개)에 달하는 파트가 포함된 820MB 대용량 CAD 파일을 로딩해 테스트를 진행했다. 이 워크플로는 최근 산업·기계 설계 현장에서 자주 마주치는 극한 환경을 그대로 반영한 조건이었다. 테스트 결과, HP Z2 마니 G1a의 평균 FPS는 약 19로 측정됐다. 이는 노트북용 RTX2060 GPU가 내는 실제 CAD 작업 성능과 동등한 수준에 해당한다. 고용량 모델의 빠른 불러오기, 실시간 3D 뷰 조작, 개별 파트 속성 편집 작업에서 큰 병목이나 지연 없이 효율적인 사용 경험을 확인했다. 대형 파일임에도 불구하고 시스템 자원 부족이나 다운 없이 멀티태스킹 환경에서도 안정적으로 작업이 이어지는 점이 인상적이었다.   ▲ 아이언캐드에서 테스트   AI 및 LLM 활용 AI 작업이나 LLM 실행에서도 강점이 명확했다. 콤피UI에서 Wan2.2, Video-wan2_2_14B_t2v 같은 고사양 텍스트-비디오 생성 모델도 무리 없이 돌릴 수 있었고, LM 스튜디오(LM Studio)와 올라마(Ollama) 기반의 대형 LLM 역시 빠른 추론 속도를 보여줬다. NPU(50TOPS)의 연산 가속과 64GB RAM의 넉넉함 덕분에, AI 모델 로컬 실행/추론에서 항상 안정적인 환경이 보장된다는 느낌이다. 오픈소스 AI 이미지 생성이나 텍스트-비디오 워크플로도 CPU-메모리 조합만으로 병목 없이 부드럽게 동작했다. 쿠다(CUDA)를 지원하지 않는 환경의 한계로 일부 오픈소스 AI 툴은 실행에 제약이 있었으나, CPU와 NPU 조합만으로도 로컬 기반 AI 이미지 생성 및 텍스트-비디오 워크플로에서 동급 대비 빠르고 매끄러운 결과를 보였다.    ▲ 콤피UI에서 테스트   LLM 분야에서는 LM 스튜디오와 올라마를 이용해 7B~33B 규모의 다양한 대형 언어 모델을 구동했다. 64GB RAM과 50TOPS NPU의 지원 덕분에 GPT-3.5, 라마 2(Llama 2) 등 대용량 파라미터 기반의 모델도 실제 업무에서 실시간 질문-응답, 코드 자동완성, 문서 요약 등에 무리 없이 활용 가능했다.   ▲ LLM 테스트   통합 메모리 아키텍처 효과 Z2 미니 G1a의 최고 강점은 UMA(통합 메모리 아키텍처)에 있다. 이 기술은 시스템 메모리(RAM)의 상당 부분을 GPU 연산에 직접 할당해, 기존 분리형 GPU VRAM 성능의 한계를 극복한다. 실제로 탑재된 메모리(64GB~128GB 중 구매 옵션에 따라 선택)를 GPU에 최대 96GB까지 독점적으로 할당할 수 있으며, 복잡한 3D·그래픽 집약적 프로젝트 처리와 생성형 AI·LLM 등의 작업에서 병목 없이 고효율 워크플로를 경험할 수 있었다.   실사용·테스트를 위한 리뷰 환경 제품 리뷰 당시 64GB RAM 탑재 모델을 기준으로, 기본 설정에서는 16~32GB를 GPU에 할당해 일반 CAD·3D·AI 작업을 진행했다. 또한 고해상도 3D 렌더나 생성형 AI 영상 작업에서는 BIOS/소프트웨어에서 48~50GB까지 VRAM 할당을 수동 조정해 본 결과, 대형 프로젝트 파일에서 뷰포트 프레임 저하나 메모리 부족 경고 없이 안정적인 작업 환경을 제공했다. 반대로 GPU에 할당하는 메모리를 늘리면 고용량 데이터 병목이 해결되고, 3D 뷰포트 FPS나 AI 추론 속도 및 이미지 품질·정확도가 확실히 향상되는 것이 일관되게 확인되었다. 실제 기업 환경에서는 128GB 모델을 쓰면 최대 96GB까지 VRAM 할당이 가능하므로 GPU 메모리 병목이 무의미해지고, 기존 미니PC와는 비교할 수 없는 확장성과 작업 안전성을 확보할 수 있다.   아쉬운 점 첫째, 테스트용으로 받았던 장비에서는 HDMI 단자의 부재로 미니 DP로 모니터를 연결해야 했는데, 이는 테스트했던 데모 제품의 기본 옵션에 해당한다. 하지만 HP Z2 미니 G1a는 기업용/구매 시 고객 요구에 따라 HDMI 포트를 포함한 맞춤형 Flex I/O 슬롯 옵션 구성이 가능하다고 한다. 실제로 HP 공식 문서 및 판매 페이지에 따르면, 썬더볼트4(Thunderbolt4), USB-C, 미니 DP 외에도 HDMI를 Flex IO 슬롯에 추가할 수 있으므로, 다수의 모니터·TV·AV 장비로 연결해 사용하는 환경에서도 문제없이 세팅할 수 있다. 둘째, GPU가 AMD 라데온 기반이기 때문에 엔비디아 CUDA를 필요로 하는 GPU 가속 작업(예 : Redshift GPU 렌더러, 딥러닝 프레임워크)은 아예 테스트 자체가 불가능하다. AI, 3D, 영상 워크플로에서 CUDA 생태계를 사용하는 환경에서는 제품 선택 전 미리 확인이 필요하다. 셋째, 고부하 작업 시 팬 소음이 다소 발생할 수 있으므로 조용한 사무실 환경이라면 쿼이엇 모드 설정이 필요하다.   결론 및 추천 HP Z2 미니 G1a 워크스테이션은 한정된 공간에서 고성능이 필요한 크리에이티브 및 AI 전문가, 엔지니어, 디지털 아티스트에게 탁월한 선택지가 될 수 있다. 실제로 써보면, 공간 제약이 있는 환경에서도 3D 모델링, 영상 편집, 생성형 AI, LLM 추론 등 고사양 멀티태스킹을 안정적으로 병행할 수 있었고, 기업용 보안, ISV 인증, 최신 네트워크까지 갖췄다. 다양한 작업을 동시에 손쉽게 처리할 수 있다는 점에서 미니 데스크톱 중에서도 실전 현장에 ‘매우 쓸 만한’ 최상위 선택지라고 생각이 든다. 비록 CUDA 미지원 및 HDMI 포트 부재라는 한계가 있지만, CPU·메모리 중심의 워크플로에선 동급 최고 수준의 안정성과 성능을 보여준다. 최신 AI 및 LLM, 3D·영상·컴포지팅 등 멀티태스킹이 잦은 전문 분야라면 이 제품이 오랜 기간 든든한 실전 파트너가 될 것이다. 견적 상담 문의하기 >> https://www.hp.com/kr-ko/shop/hp-workstation-amd-app   ■ 배현수 부장 마루인터내셔널(맥슨 한국총판) 기술지원팀, AI 크리에이터, 모션그래픽 디자이너     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[피플&컴퍼니] 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표
시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다   제품이 복잡해지면서 반도체 설계와 전체 시스템의 구현을 통합하는 엔지니어링이 필수가 됐다. 앤시스는 EDA(전자 설계 자동화) 기업 시높시스와 통합을 통해 제품 개발의 전체 과정을 단일 플랫폼으로 지원한다는 비전을 마련했다. 이와 함께 AI(인공지능) 기술을 자사 포트폴리오 전반에 적용해, 전문가의 전유물이었던 시뮬레이션의 장벽을 허문다는 전략도 제시했다. ■ 정수진 편집장   ▲ 앤시스 패드메쉬 맨들로이 부사장   ‘실리콘부터 시스템까지’ 아우르는 엔지니어링 시대 연다 제품이 점차 스마트해지고 복잡해지면서 물리 세계와 전자 세계의 만남이 그 어느 때보다 중요해지고 있다. 앤시스와 시높시스는 지난 7월 통합 완료를 발표했는데, 두 회사는 각자의 전문성을 결합해 반도체 칩 설계(실리콘)부터 최종 시스템에 이르는 전체 과정을 지원하는 통합 설루션을 제공할 계획이다. 앤시스의 패드메쉬 맨들로이(Padmesh Mandloi) 고객지원 부문 아시아 부사장은 “오늘날의 제품은 단순히 기능을 수행하는 것을 넘어 스스로 사고하고, 협업하며, 환경에 적응하는 지능형 시스템으로 발전하고 있다. 이런 변화는 엔지니어링의 복잡성을 가중시키고 있으며, 반도체 설계와 물리적 시스템의 구현을 별개로 볼 수 없게 되었다”면서, “시뮬레이션 분야의 선도 기업 앤시스와 EDA 1위 기업 시높시스가 손을 잡은 것은 이런 시대적 요구에 부응하기 위한 것”이라고 설명했다. 맨들로이 부사장은 “시스템은 실리콘의 요구사항을, 실리콘은 시스템의 요구사항을 정확히 이해해야 한다”고 짚었다. 예를 들면, 자동차 기업이 자율주행 기능을 구현하기 위해서는 AI 반도체 설계를 고려해야 하고, 반도체 기업은 칩이 자동차에 쓰일지 데이터센터에 쓰일지에 따라 다른 접근법을 선택해야 한다는 것이다. 제품 개발을 위해 엔지니어링 시뮬레이션과 EDA의 긴밀한 상호작용이 필수가 되면서, 앤시스는 시높시스와의 통합이 큰 시너지를 낼 수 있을 것으로 기대하고 있다.   물리 기반 시뮬레이션을 EDA 흐름에 통합 양사 통합의 핵심 전략은 앤시스의 강점인 물리 기반 시뮬레이션을 시높시스의 EDA 설계 흐름에 통합하는 것이다. 이를 통해 차세대 인공지능(AI) 칩, 3D IC 등 고도의 반도체를 설계할 때 필수로 고려해야 하는 열, 구조 변형, 뒤틀림 같은 물리적 문제를 설계 초기 단계부터 해결할 수 있게 된다는 것이다. 앤시스코리아의 박주일 대표는 “특히 고대역폭 메모리(HBM)와 같이 여러 칩을 쌓는 ‘스택 구조’에서 이러한 통합 설루션의 가치가 크다. 앤시스는 이미 HBM의 전력 무결성, 열, 구조적 스트레스 분석 분야에서 삼성전자, SK하이닉스 등과 협력해왔다. 앞으로 시높시스와 함께 칩 설계 단계부터 최종 분석까지 아우르는 단일 플랫폼을 제공할 수 있을 것”이라고 전했다. 앤시스와 시높시스는 조직을 통합하기보다는 각자의 비즈니스 운영 방식을 유지하며 시너지를 낼 수 있는 분야를 탐색하는 데 집중하고 있다. 시높시스가 소수의 반도체 기업을 깊이 있게 지원하는 반면, 앤시스는 수천 개의 다양한 산업군 고객을 보유하고 있어 사업 운영 방식에 차이가 있기 때문이라는 것이 박주일 대표의 설명이다. 그는 “다만, HBM 설루션처럼 시장의 요구가 높은 분야의 기술 통합은 더 빠르게 진행될 수 있다”고 덧붙였다. 앤시스는 시높시스와의 통합 설루션이 특히 복잡한 요구조건을 가진 첨단 산업에서 강점을 발휘할 것으로 보고 있다. 앤시스의 월트 헌(Walt Hearn) 글로벌 세일즈 및 고객 담당 부사장은 “이번 합병이 고객들에게 새로운 기술과 기회를 제공할 것으로 기대한다"면서, “물리 시뮬레이션과 EDA의 결합은 제품 개발의 어려운 과제를 해결하는 최고의 포트폴리오가 될 것”이라고 말했다.   ▲ 앤시스 월트 헌 부사장   AI로 엔지니어링의 문턱 낮춘다 앤시스는 인공지능(AI) 기술을 자사 포트폴리오 전반에 통합해 시뮬레이션의 효율과 속도를 높이고, 전문가 수준의 지식이 필요했던 기술의 문턱을 낮추는 데 주력하고 있다. 복잡한 제품 개발 환경에서 더 많은 엔지니어가 시뮬레이션 기술을 쉽게 활용하도록 돕는 것이 앤시스 AI 전략의 핵심이다. 맨들로이 부사장은 “시뮬레이션은 고도의 전문 지식을 갖춘 전문가의 영역으로 여겨져 왔다. 하지만 디지털 전환이 가속화되면서 기업의 비용 절감과 시장 출시 기간 단축을 위해 시뮬레이션의 활용을 확대하려는 요구가 커졌다”면서, “앤시스는 전문 지식에 대한 의존도를 낮추고 더 많은 사용자가 쉽게 접근할 수 있도록 AI 기술이 탑재된 플랫폼을 제공하는 것을 최우선 과제로 삼고 있다”고 설명했다. AI 기술은 초기 머신러닝(ML) 기반의 최적화 도구를 넘어, 대규모 언어 모델(LLM)과 AI 비서를 거쳐 완전히 자율화된 에이전틱 AI(agentic AI)로 나아가고 있다. 헌 부사장은 크게 네 가지 방향에서 AI를 앤시스 설루션에 적용하고 있다고 소개했다. 스마트 UI(사용자 인터페이스) : UI에 AI를 내장해 반복적인 작업을 자동화함으로써 엔지니어의 작업 효율을 높인다. 앤시스GPT(AnsysGPT) : 오픈AI의 기술을 기반으로 하는 앤시스GPT는 자연어 질의응답을 통해 사용자가 엔지니어링 문제에 대한 답을 더 빠르게 찾도록 돕는다. AI 내장 솔버 : 엔지니어링 해석의 핵심 엔진인 솔버 자체에 AI 기술을 통합해 문제 해결 속도를 이전보다 크게 높였다. 심AI(Ansys SimAI) : 과거의 방대한 시뮬레이션 데이터셋을 학습한 AI 솔버이다. 예를 들어, 기존에 일주일이 걸리던 자동차 외부 공기역학 해석 작업에 심AI를 활용하면 단 하루 만에 완료할 수 있다. 헌 부사장은 “앤시스GPT는 이미 2만여 고객사에서 활발히 사용되고 있으며, ‘앤시스 엔지니어링 코파일럿’도 개발하고 있다. 이 코파일럿은 지난 50년간 축적된 앤시스의 제품 개발 지식을 LLM에 탑재한 형태이다. 유동, 구조, 전자기학 등 모든 분야의 엔지니어링 콘텐츠를 단일 플랫폼 안에서 쉽게 검색하고 활용할 수 있게 될 것”이라고 소개하면서, “이런 혁신을 바탕으로 앤시스와 시높시스는 고객이 미션 크리티컬한 과제를 해결하고 AI 기반 제품과 서비스를 성공적으로 개발할 수 있도록 지원을 아끼지 않겠다”고 밝혔다.   솔버 최적화와 클라우드로 컴퓨팅 인프라 부담 해결 시뮬레이션과 AI 기술은 모두 대량의 컴퓨팅 자원을 필요로 한다. 기업에서는 컴퓨팅 인프라의 구축과 운용에 대한 부담이 클 수밖에 없다. 헌 부사장은 “소프트웨어 최적화와 유연한 클라우드 지원을 통해 고객들이 인프라 제약 없이 혁신에 집중할 수 있도록 돕겠다”고 밝혔다. 우선 R&D 차원에서 앤시스는 자사 솔버의 코드를 전면 재작성하고 있다. CFD(전산 유체 역학)와 전자기를 비롯해 모든 분야의 솔버를 GPU(그래픽 처리 장치) 환경에서 구동되도록 최적화하는 것이 핵심이다. 또한, 앤시스는 AWS(아마존 웹 서비스) 및 마이크로소프트 애저(Azure)와 협력해 클라우드 서비스를 제공하고 있다. 고객사가 대규모 해석과 같이 추가적인 컴퓨팅 성능이 필요할 경우 언제든지 클라우드 자원을 활용해 작업을 확장할 수 있도록 하겠다는 것이다. 헌 부사장은 “시높시스 역시 자체 클라우드를 통해 컴퓨팅 리소스를 제공하고 있는데, 향후 이를 통합하면 더욱 시너지를 낼 수 있을 것”이라고 전했다.   ▲ 앤시스코리아 박주일 대표   한국은 가장 복잡한 제품 개발하는 전략적 요충지 앤시스코리아는 최근 몇 년간 두 자릿수의 성장세를 유지하고 있으며, 올해는 예년보다 더 큰 폭의 성장을 예상하고 있다. 박주일 대표는 “이런 성장의 배경에는 국내 시장의 확고한 디지털 전환(DX) 트렌드와 갈수록 복잡해지는 제품 설계 환경이 있다”고 짚었다. 그는 “한국 기업들은 반도체, 자동차, 조선, 항공우주 등 모든 산업 영역에서 최고 수준의 복잡한 제품을 설계하며 글로벌 기업과 경쟁하고 있으며, 그만큼 국내 고객의 기술적 요구 수준 또한 높다”면서, “앤시스 코리아는 높은 수준의 국내 고객 요구를 시뮬레이션 기술로 충족시키는 것을 최우선 과제로 삼고 있으며, 이를 위해 국내 리소스뿐만 아니라 글로벌 조직과의 긴밀한 협업을 통해 한국 시장과 고객을 적극 지원하고 있다”고 설명했다. 앤시스는 HBM, 3D IC와 같은 스택 구조 반도체의 전력 무결성, 열, 구조 변형 문제 해결을 위해 국내 반도체 기업들과 협력하고 있다. 그리고 고밀도 AI 칩을 개발하는 국내 스타트업들과도 협력을 진행 중이다. 우주 산업에서는 국내 스타트업과 협력해 인공위성의 수명과 성능을 위협하는 우주 잔해물 문제 해결을 돕고 있다. 또한, 삼성전자, LG전자, 현대자동차 등 국내 대기업을 중심으로 AI 기술이 탑재된 시뮬레이션 설루션 도입을 빠르게 진행 중이다. 맨들로이 부사장은 “한국 앤시스 고객의 만족도는 96.8%로 역대 최고치를 기록했으며, 이는 지난 몇 년간 꾸준히 상승해 온 결과이다. 앤시스는 이러한 높은 만족도에 큰 자부심을 가지고 있으며, 앞으로도 최고의 기술을 통해 한국 고객들을 지원하는 데 집중할 것”이라고 전했다.    ▲ 앤시스코리아는 9월 17일 연례 콘퍼런스 ‘시뮬레이션 월드 코리아 2025’를 열고, 최신 기술 트렌드와 함께 자사의 비전, 신기술, 고객 사례를 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[케이스 스터디] 언리얼 엔진으로 향상된 HMI 경험 구축
자동차 HMI 기술 브랜드 실리 아우토   핀란드에 본사를 둔 실리 아우토(Siili Auto)는 일반 소비자에게는 다소 낯설 수 있지만 메르세데스 벤츠, 현대, BMW와 같은 자동차 OEM과 1티어 기업에게는 최신 휴먼 머신 인터페이스(HumanMachine Interfaces : HMI) 기술과 연계된 브랜드로 알려져 있다.현재 에픽게임즈의 골드 서비스 파트너인 실리 아우토는 HMI 개발에 언리얼 엔진을 사용한 경험을 공유했다. ■ 자료 제공 : 에픽게임즈   실리 아우토는 디지털 계기판, 인포테인먼트 시스템, 헤드업 디스플레이(Heads-Up Displays : HUD), 첨단 운전자 보조 시스템(ADAS) 등 오늘날 최신 자동차에서 기대할 수 있는 다양한 시각적 기능을 구현하는 기술을 제공하고 있다. 실리가 설계하거나 개발에 참여한 HMI는 현재 전 세계 도로를 달리는 3000만 대 이상의 차량에 탑재되어 있기 때문에, 이미 꽤 많은 사람이 실리의 기술을 경험해 보았을 것이다. 실리 아우토가 언리얼 엔진에 처음 끌린 이유는 그래픽 퀄리티와 개발의 편의성이었지만, 곧 개발 기간을 획기적으로 줄이면서도 사용자 경험을 향상시킬 수 있다는 점을 알게 됐다.   ▲ ‘Siili Auto | 스포트라이트 | 언리얼 엔진’ 영상   언리얼 엔진으로 개발 기간 단축 언리얼 엔진은 실리 아우토의 시간과 비용을 절감하는 데 도움을 주었으며, 그 중 가장 대표적인 변화가 바로 개발 주기의 단축이다. 실리 아우토의 야미 얘르비외(Jami Järviö) CSM겸 파트너 매니저는 “예전에는 디자이너가 UI와 그 흐름, 그래픽 요소를 다른 툴에서 일일이 정의해야 했다. 그러나 개발자는 실제 HMI를 설계하고 테스트하기 위해 전혀 다른 툴을 사용했다. 그러다 보니 디자인과 실제 구현 사이의 차이를 확인하고, 그에 따라 수많은 버그를 보고해야 했다. 게다가 UI는 계속 업데이트되고 새로운 디자인이 추가되면서 이런 사이클이 끊임없이 반복됐다”고 말했다. 그 결과 전체 디자인 사이클은 약 5년이 걸렸다. 그러나 이제는 디자인 팀과 개발 팀 모두 언리얼 엔진으로 작업하면서 이 주기가 3년으로 단축됐다. 얘르비외는 “블루프린트를 활용하면 디자인부터 테스트까지 개발 속도를 크게 높일 수 있다”면서, “특히 언리얼 엔진에서 디자인할 때 전체 파이프라인의 효율이 크게 향상된다”고 말했다.   ▲ 이미지 출처 : Siili Auto   효율성을 위한 노력 실리 아우토 팀은 언리얼 엔진을 디자인과 개발을 아우르는 툴로 사용하면서 전체 워크플로를 한층 더 효율적으로 만들 수 있었고, 언리얼 인사이트를 활용해 한 단계 더 발전할 수 있었다. 얘르비외는 “우리는 언리얼 인사이트 툴을 사용해 소프트웨어가 하드웨어에서 어떻게 성능을 내는지 측정한다. 보통은 실행 속도, 초당 프레임 수를 측정하고, 문제가 발생하면 메모리 사용량과 CPU 및 GPU 드로 콜도 확인한다. 그리고 문제가 발견되면 코드를 수정하고 하드웨어에서 다시 테스트한다”고 전했다. 또한, “언리얼 엔진의 소스 코드에 접근할 수 있다는 점이 문제 해결과 커스터마이징 모두에서 핵심 역할을 한다. 팀이 원하는 방식으로 코드를 자유롭게 수정할 수 있다는 사실은 HMI 개발에 있어서 무엇보다도 바꿀 수 없는 가치”라고 덧붙였다.   ▲ 이미지 출처 : Siili Auto   손쉬운 통합 언리얼 엔진을 기존 파이프라인에 손쉽게 통합할 수 있다는 점도 실리 아우토에게 플러스 요인이었다. 언리얼 엔진이 C++ 기반이었기 때문에 하드웨어에 임베딩하는 데 거의 문제가 없었다. 얘르비외는 “우리는 강력한 C++ 역량을 기본적으로 갖추고 있었기 때문에 이것은 우리에게는 보너스가 되었다”고 말했다. 이처럼 각각의 장점만 보더라도 언리얼 엔진은 실리 아우토에게 좋은 선택이었지만, 얘르비외는 HMI가 개별적인 요소 이상의 역할을 한다고 강조했다. 운전자에게 브랜드화된 경험을 제공하기 위해서는 모든 것이 함께 어우러져야 한다는 것이다. 그는 “그 차가 감성을 불러일으켜야 하는 차인지, 아니면 일상적인 운행에 최적화된 차인지가 중요하다. 언리얼 엔진의 역량을 활용하면 브랜딩, 감성, 전반적인 사용자 경험까지 모두 구현할 수 있다”고 답했다.   ▲ 이미지 출처 : Siili Auto   ▲ 이미지 출처 : Siili Auto   ▲ 이미지 출처 : Siili Auto   ▲ 이미지 출처 : Siili Auto     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01