• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 고대역폭 메모리"에 대한 통합 검색 내용이 1,896개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
알테어, GPU·AI·양자컴퓨팅 지원하는 ‘HPC웍스 2026’ 출시
  알테어가 고성능 컴퓨팅(HPC) 및 클라우드 플랫폼 ‘알테어 HPC웍스(Altair HPCWorks) 2026’을 발표했다. 이번 업데이트는 그래픽처리장치(GPU) 통합 및 활용도 강화, 인공지능(AI)·머신러닝 지원 확대, 고도화된 리포팅 기능을 통해 HPC 환경의 가시성과 효율성을 향상시켰다. 최신 버전은 AI 워크로드를 중심으로 설계돼 GPU와의 통합성을 강화했다. 업데이트된 쿠버네티스 커넥터 및 주피터 노트북 연동 기능을 통해 AI 및 머신러닝 모델 학습 환경을 효율적으로 지원하며, 엔비디아, AMD, 인텔 GPU 가속기를 폭넓게 지원한다. IT 관리자는 향상된 GPU 탐색 및 리포팅 기능을 통해 GPU 리소스를 손쉽게 통합하고 최적화할 수 있다. AI 기반 자동화 기능도 대폭 강화됐다. HPC웍스 2026은 AI 기반 메모리 자원 예측 기능을 통해 작업 제출 및 자원 활용을 최적화하고, 지능형 스케줄링 및 메모리 선택 기능으로 HPC 워크로드의 효율성을 극대화한다. 사용자는 복잡한 정보기술(IT) 지식 없이도 빠르게 결과를 얻을 수 있다. 양자 컴퓨팅 지원도 강화됐다. 새로 출시된 버전은 전통적인 방식의 HPC와 양자 컴퓨팅을 결합한 하이브리드 워크플로를 효율적으로 실행할 수 있도록 지원한다. 이를 통해 신용카드 사기 거래 탐지와 같이 복잡하고 동적인 패턴을 분석하는 작업에 활용할 수 있다. 알테어 HPC웍스 2026은 자사 AI 플랫폼인 알테어 래피드마이너와의 연계를 통해 맞춤형 AI 모델 학습과 워크로드 자동화를 지원한다. 또한 리포트·대시보드 확장, 윈도우 전용 데스크톱 클라이언트 제공, 스트리밍 API 등으로 IT 운영 효율을 강화했다. 알테어의 샘 마할링엄 최고기술책임자(CTO)는 “기술 환경이 빠르게 진화함에 따라 알테어는 AI, 머신러닝, 데이터 분석, EDA(전자설계자동화), 양자 컴퓨팅 등 최신 워크로드를 완벽히 지원하도록 설루션을 발전시키고 있다”면서, “지멘스의 일원으로서 향후 이러한 기술력을 더욱 가속화할 예정”이라고 말했다.
작성일 : 2025-10-23
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
AWS, 포괄적 AI 에이전트 플랫폼 ‘아마존 베드록 에이전트코어’ 출시
아마존웹서비스(AWS)가 포괄적인 에이전틱 플랫폼인 ‘아마존 베드록 에이전트코어(Amazon Bedrock AgentCore)’를 출시한다고 발표했다. AWS는 “미션 크리티컬 시스템 구축 경험을 바탕으로 개발된 아마존 베드록 에이전트코어는 안전하고 신뢰할 수 있으며 확장 가능한 종합 에이전트 플랫폼으로, 에이전트의 비결정적 특성에 최적화된 프로덕션 환경을 제공한다”고 소개했다. 에이전트코어는 기업이 AI 에이전트를 파일럿에서 프로덕션까지 신속하게 전환하고 개발자가 에이전트를 구축, 배포, 운영하는 데 필요한 완전한 기반을 제공한다. 개발자는 복잡한 워크플로를 처리할 수 있도록 에이전트에 도구, 메모리, 데이터를 손쉽게 연결할 수 있으며, 몇 줄의 코드로 안전하고 확장 가능한 런타임 환경에 배포할 수 있다. 또한 엔터프라이즈급 접근 제어 및 관리 기능을 통해 안정적으로 운영할 수 있다. 이 모든 기능은 인프라를 관리 없이 원하는 모델이나 프레임워크를 자유롭게 선택해 쉽게 시작할 수 있다. 에이전트코어는 구축부터 배포, 운영까지 에이전트 개발 수명주기 전반에 걸쳐 완전 관리형 서비스를 제공하는 에이전틱 플랫폼이다. 기업은 원하는 모델이나 프레임워크를 자유롭게 조합해 사용할 수 있으며 엔터프라이즈급 인프라 및 도구에 대한 액세스와 함께 높은 유연성을 제공한다. 에이전트코어는 통합 또는 개별 사용이 가능한 컴포저블(composable) 서비스를 제공한다. 기업은 크루AI, 구글 ADK, 랭그래프, 라마인덱스, 오픈AI 에이전트 SDK, 스트랜드 에이전트 등 선호하는 프레임워크와 아마존 베드록에서 제공되는 모델 또는 오픈AI, 제미나이 등 아마존 베드록 외부 모델을 사용하여 필요한 에이전트코어 서비스를 선택할 수 있다.     에이전트코어 코드 인터프리터(AgentCore Code Interpreter)는 격리된 환경에서 에이전트가 코드를 안전하게 생성하고 실행할 수 있게 하며, 에이전트코어 브라우저(AgentCore Browser)는 대규모 웹 애플리케이션 상호작용을 지원한다. 에이전트코어 게이트웨이(AgentCore Gateway)는 기존 API와 AWS 람다(AWS Lambda) 함수를 에이전트 호환 도구로 전환하고 기존 모델 컨텍스트 프로토콜(Model Context Protocol : MCP) 서버에 연결하며, 지라, 아사나, 젠데스크 등 서드파티 비즈니스 도구 및 서비스와의 원활한 통합을 제공한다. 에이전트코어 아이덴티티(AgentCore Identity)를 통해 에이전트는 오스(OAuth) 표준을 사용한 적절한 인증 및 권한 부여로 이러한 도구에 안전하게 액세스하고 운영할 수 있다. AI 에이전트는 컨텍스트를 유지하고 상호작용을 통해 학습할 수 있어야 한다. 에이전트코어 메모리(AgentCore Memory)는 개발자가 복잡한 메모리 인프라를 관리하지 않고도 정교하고 컨텍스트를 인식하는 경험을 만들 수 있도록 지원하며, 에이전트가 사용자 선호도, 과거 상호작용, 관련 컨텍스트에 대한 상세한 이해를 구축하고 유지할 수 있게 한다. 아마존 클라우드워치(Amazon CloudWatch) 기반의 에이전트코어 옵저버빌리티(AgentCore Observability)는 실시간 대시보드와 상세한 감사 추적을 통해 포괄적인 모니터링을 제공한다. 기업은 모든 에이전트 작업을 추적하고 문제를 신속하게 디버깅하며 성능을 지속적으로 최적화할 수 있다. 오픈텔레메트리(OpenTelemetry : OTEL) 호환성을 통해 다이나트레이스, 데이터독, 아리제 피닉스, 랭스미스, 랭퓨즈 등 기존 모니터링 도구와 통합된다. 에이전트 워크로드는 기존 애플리케이션과 달리 실행 시간이 불규칙하다. 에이전트코어 런타임(AgentCore Runtime)은 이러한 변동성(variability)에 대응해 필요에 따라 제로에서 수천 개의 세션으로 자동 확장되며 장시간 실행 작업을 위한 업계 최고 수준의 8시간 런타임을 제공한다. 에이전트코어는 에이전트가 안전하게 작동할 수 있도록 모든 서비스에 보안을 내장했다. 가상 프라이빗 클라우드(VPC) 환경과 AWS 프라이빗링크(AWS PrivateLink)를 지원하여 네트워크 트래픽을 비공개로 안전하게 유지한다. 에이전트코어 런타임은 마이크로VM 기술을 통해 매우 높은 수준의 보안을 제공하여 각 에이전트 세션에 고유한 격리된 컴퓨팅 환경을 제공함으로써 데이터 유출을 방지하고 모든 상호작용의 무결성을 유지한다. 에이전트코어는 키로(Kiro), 커서AI(Cursor A)I와 같은 통합 개발 환경(IDE)과 호환되는 MCP 서버를 통해 프로덕션급 에이전트 구축을 지원한다. AWS는 “시작까지 단 몇 분밖에 걸리지 않지만 이는 단순한 도구가 아니라 강력한 보안을 유지하면서 제로에서 수천 개의 세션으로 즉시 확장할 수 있는 완전한 기능의 프로덕션급 설루션”이라고 소개했다. 아마존 디바이스 운영 및 공급망(Amazon Devices Operations & Supply Chain) 팀은 에이전트코어를 사용하여 에이전틱 제조 접근 방식을 개발하고 있다. AI 에이전트들은 제품 사양을 사용하여 함께 작업하며 수동 프로세스를 자동화하며 협업한다. 한 에이전트는 제품 요구사항을 읽고 품질 관리를 위한 상세한 테스트 절차를 만들고, 다른 에이전트는 제조 라인의 로봇에 필요한 비전 시스템을 훈련시킨다. 그 결과 기존에 며칠이 걸리던 객체 감지 모델 미세 조정이 1시간 이내에 높은 정밀도로 단축됐다. 에이전트코어는 뭄바이, 싱가포르, 시드니, 도쿄, 더블린, 프랑크푸르트, 미국 동부(버지니아 북부), 미국 동부(오하이오), 미국 서부(오리건) 등 9개 AWS 리전에서 정식 출시됐다. 기업은 에이전트코어에서 작동하도록 설계된 AWS 마켓플레이스(AWS Marketplace)의 사전 구축된 에이전트 및 도구를 통해 가치 실현 시간을 가속화할 수 있다.
작성일 : 2025-10-17
오라클-AMD, 차세대 AI 확장성 지원 위한 파트너십 확대
오라클과 AMD는 고객이 AI 역량과 이니셔티브를 대규모로 확장할 수 있도록 지원하기 위한 양사의 오랜 다세대 협력 관계를 확대한다고 발표했다. 수년간의 공동 기술 혁신을 바탕으로, 오라클 클라우드 인프라스트럭처(OCI)는 AMD 인스팅트(AMD Instinct) MI450 시리즈 GPU 기반의 최초 공개형 AI 슈퍼클러스터의 출시 파트너가 될 예정이다. 초기 배포는 2026년 3분기부터 5만 개의 GPU로 시작되며, 2027년 이후까지 더욱 규모가 확대될 계획이다. 이번 발표는 2024년 AMD 인스팅트 MI300X 기반 셰이프(shape) 출시를 시작으로 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트(OCI Compute)의 정식 출시까지 이어지는 오라클과 AMD의 전략적 협업의 연장선상에 있다.  양사는 최종 고객에게 OCI 상의 AMD 인스팅트 GPU 플랫폼을 제공하기 위해 꾸준히 협업해 왔다. 이 플랫폼은 제타스케일 OCI 슈퍼클러스터(zettascale OCI Supercluster)에서 제공될 예정이다. 대규모 AI 컴퓨팅 수요가 급격히 증가함에 따라, 차세대 AI 모델은 기존 AI 클러스터의 한계를 뛰어넘고 있다. 이러한 워크로드의 훈련 및 운영을 위해서는 극한의 확장성과 효율성을 갖춘 유연하고 개방적인 컴퓨팅 설루션이 필요하다. OCI가 새롭게 선보일 AI 슈퍼클러스터는 AMD ‘헬리오스(Helios)’ 랙 설계를 기반으로 하며, 여기에는 ▲AMD 인스팅트 MI450 시리즈 GPU ▲차세대 AMD 에픽 CPU(코드명 베니스) ▲차세대 AMD 펜산도(Pensando) 고급 네트워킹 기능(코드명 불카노)가 포함된다. 수직적으로 최적화된 이 랙 스케일 아키텍처는 대규모 AI 모델의 훈련 및 추론을 위한 최대 성능, 탁월한 확장성, 우수한 에너지 효율성을 제공하도록 설계됐다. 마헤쉬 티아가라얀 OCI 총괄 부사장은 “오라클의 고객들은 전 세계에서 가장 혁신적인 AI 애플리케이션을 구축하고 있으며, 이를 위해서는 강력하고 확장 가능한 고성능의 인프라가 필수적이다. 최신 AMD 프로세서 기술, OCI의 안전하고 유연한 플랫폼, 오라클 액셀러론(Oracle Acceleron) 기반 고급 네트워킹의 결합으로 고객은 확신을 갖고 혁신 영역을 넓혀갈 수 있다. 에픽부터 AMD 인스팅트 가속기까지, 10년 이상 이어진 AMD와의 협력을 바탕으로 오라클은 탁월한 가격 대비 성능, 개방적이고 안전하며 확장가능한 클라우드 기반을 지속적으로 제공하여 차세대 AI 시대의 요구에 부응하고 있다”고 말했다. AMD의 포레스트 노로드(Forrest Norrod) 데이터센터 설루션 비즈니스 그룹 총괄 부사장 겸 총괄 매니저는 “AMD와 오라클은 계속해서 클라우드 분야의 AI 혁신에 앞장서고 있다. AMD 인스팅트 GPU, 에픽 CPU, 그리고 첨단 AMD 펜산도 네트워킹 기술을 통해 오라클 고객들은 차세대 AI 훈련, 미세 조정 및 배포를 위한 강력한 역량을 확보할 수 있다. AMD와 오라클은 대규모 AI 데이터센터 환경에 최적화된 개방적이고 안전한 시스템으로 AI 발전을 가속화하고 있다”고 말했다. AMD 인스팅트 MI450 시리즈 GPU 기반 셰이프는 고성능의 유연한 클라우드 배포 옵션과 광범위한 오픈소스 지원을 제공하도록 설계되었다. 이는 최신 언어 모델, 생성형 AI 및 고성능 컴퓨팅 워크로드를 실행하는 고객에게 맞춤형 기반을 제공한다. OCI상의 AMD 인스팅트 MI450 시리즈 GPU는 AI 훈련 모델을 위한 메모리 대역폭을 확장해 고객이 더욱 신속하게 결과를 달성하고, 복잡한 워크로드를 처리하며, 모델 분할 필요성을 줄일 수 있도록 지원한다. AMD 인스팅트 MI450 시리즈 GPU는 개당 최대 432GB의 HBM4 메모리와 20TB/s의 메모리 대역폭을 제공하여, 이전 세대 대비 50% 더 큰 규모 모델의 훈련 및 추론을 인메모리에서 수행할 수 있다. AMD의 최적화된 헬리오스 랙 설계는 고밀도 액체 냉각 방식의 72-GPU 랙을 통해 성능 밀도, 비용 및 에너지 효율이 최적화된 대규모 운영을 가능하게 한다. 헬리오스는 UALoE(Universal Accelerator Link over Ethernet) 스케일업 연결성과 이더넷 기반의 UEC(Ultra Ethernet Consortium) 표준에 부합하는 스케일아웃 네트워킹을 통합하여 포드 및 랙 간 지연을 최소화하고 처리량을 극대화한다. 차세대 AMD 에픽 CPU로 구성된 아키텍처는 작업 오케스트레이션 및 데이터 처리를 가속화하여 고객이 클러스터 활용도를 극대화하고 대규모 워크플로를 간소화할 수 있도록 지원한다. 또한, 에픽 CPU는 기밀 컴퓨팅 기능과 내장형 보안 기능을 제공하여 민감한 AI 워크로드의 종단간 보안을 개선한다. 또한, DPU 가속 융합 네트워킹은 대규모 AI 및 클라우드 인프라의 성능 향상과 보안 태세 강화를 위해 라인레이트(Line-Rate) 데이터 수집을 지원한다. 프로그래밍 가능한 AMD 펜산도 DPU 기술을 기반으로 구축된 DPU 가속 융합 네트워킹은 데이터센터에서 차세대 AI 훈련, 추론 및 클라우드 워크로드를 실행하는 데 필요한 보안성과 성능을 제공한다. AI를 위한 스케일아웃 네트워킹은 미래 지향적 개방형 네트워킹 패브릭을 통해 고객이 초고속 분산 훈련(distributed training)과 최적화된 집합 통신(collective communication)을 활용할 수 있도록 지원한다. 각 GPU에는 최대 3개의 800Gbps AMD 펜산도 ‘불카노’ AI-NIC를 장착할 수 있어, 손실 없는 고속의 프로그래밍 가능한 연결성을 제공하고, RoCE 및 UEC 표준을 지원한다. 혁신적인 UALink 및 UALoE 패브릭은 고객이 워크로드를 효율적으로 확장하고, 메모리 병목 현상을 줄이며, 수 조 파라미터 단위의 대규모 모델을 통합 관리할 수 있도록 지원한다. 확장 가능한 아키텍처는 CPU를 경유하지 않고 홉(hop)과 지연시간을 최소화하며, UALoE 패브릭을 통해 전송되는 UALink 프로토콜을 통해 랙 내 GPU 간 직접적이고 하드웨어 일관성 있는 네트워킹 및 메모리 공유를 가능하게 한다. UALink는 AI 가속기를 위해 특별히 설계된 개방형 고속 상호연결 표준으로 광범위한 산업 생태계의 지원을 받는다. 이를 통해 고객은 개방형 표준 기반 인프라에서 까다로운 AI 워크로드를 실행하는 데 필요한 유연성, 확장성 및 안정성을 확보할 수 있다. 한편, OCI는 대규모 AI 구축, 훈련 및 추론을 수행하는 고객에게 더 많은 선택권을 제공하기 위해 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트의 정식 출시를 발표했다. 이 제품은 최대 13만 1072개의 GPU로 확장 가능한 제타스케일 OCI 슈퍼클러스터에서 이용 가능하다. AMD 인스팅트 MI355X 기반 셰이프는 탁월한 가치, 클라우드 유연성 및 오픈소스 호환성을 위해 설계되었다.
작성일 : 2025-10-17
슈나이더 일렉트릭, 실시간 모터 관리 설루션으로 해양산업 효율 향상 지원
슈나이더 일렉트릭이 조선·해양 산업의 설비 운용 효율과 안정성을 높일 수 있는 방법으로 자사의 실시간 모터 관리 설루션인 ‘테시스 테라(TeSys Tera)’를 제시했다. 조선·해양 산업에서 모터는 전기 에너지를 회전 및 기계 에너지로 변환하는 핵심 장비로, 전체 전력 소비의 약 80%를 차지할 만큼 에너지 소모가 큰 설비다. 때문에 모터의 안정적인 운전과 체계적인 유지관리는 산업 전반의 효율과 직결되며, 최근에는 친환경 규제 강화 및 스마트 선박 기술 도입에 따라 더욱 정교한 모터 관리 설루션의 필요성이 부각되고 있다. 슈나이더 일렉트릭의 테시스 테라는 이러한 산업 트렌드에 부합하는 디지털 기반의 고도화된 모터 관리 시스템이다. 테시스 테라는 지정된 통신 버스를 통해 모터의 상태, 운전 전류, 전압, 전력, 역률, 외부 냉각 팬 동작까지 실시간으로 수집·모니터링하며, 인더스트리 4.0 표준을 충족해 중앙 제어 시스템과의 연동을 지원한다. 슈나이더 일렉트릭은 “특히 모터 권선과 베어링, 본체 온도를 측정하는 외부 센서를 통해 과열이나 냉각 이상 등 이상 징후를 사전에 감지할 수 있어 치명적인 고장을 예방하고 유지보수 비용을 절감에도 기여한다. 또한 고조파까지 정밀하게 측정할 수 있는 기능은 슈나이더 일렉트릭의 고도화된 전력 관리 기술력을 잘 보여준다”고 소개했다.     진단 기능과 관련해서는 각 보호 기능별 트립(차단) 횟수를 개별적으로 기록하며, 최대 100개의 이벤트를 시간 정보와 함께 순차적으로 저장하는 FIFO(선입선출) 방식 로그 기능을 지원한다. 더불어 열 메모리, 선 전류, 접지 전류 등 20개의 상세 고장 로그를 기록해 고장 원인 분석과 시스템 개선에 유용한 데이터를 제공한다. 시동 전류 곡선은 최대 250포인트까지 기록할 수 있어, 실제 운전 조건에 따른 보호 설정(Trip Class 등)을 최적화할 수 있으며, 시간 기반의 로그 데이터는 공정 정지나 시스템 장애 발생 시 정확한 사건 순서(SOE)를 파악할 수 있게 해준다. 이는 24시간 가동이 필수적인 조선·해양 현장에서 더욱 높은 신뢰성과 운영 효율성을 확보하는 데 도움이 된다. 아울러 테시스 테라는 온도 센서를 활용해 모터 권선, 베어링, 본체 각각에 대해 개별적인 보호 기능을 제공해 과열로 인한 손상을 사전에 방지한다. 모든 보호 기능은 활성화/비활성화, 경보 및 차단 수준 설정, 자동 또는 원격 리셋 기능(시간 지연 포함) 등 사용자가 공정 환경에 맞춰 완벽하게 구성할 수 있다. 또 외부 디지털·아날로그 입력도 고장 조건으로 인식하도록 설정 가능하다. 사용자 친화적인 소프트웨어 인터페이스도 특징이다. 윈도우 기반의 다국어 지원 소프트웨어는 메뉴와 아이콘 중심의 직관적인 UI를 제공한다. 동일 기능 내 여러 데이터를 한 화면에서 탐색할 수 있도록 안내형 내비게이션을 지원함으로써, 복잡한 설정이나 진단 과정도 간소화했다. 또한 별도의 HMI(Human-Machine Interface)를 통해 현장에서 직접 제어기 구성 및 파라미터 변경이 가능하며, 제어 키패드가 내장된 HMI는 상태 확인과 제어 명령을 로컬에서 즉시 수행할 수 있어 네트워크 연결이 원활하지 않은 환경에서도 독립적인 운용이 가능하다. 슈나이더 일렉트릭 코리아 파워 프로덕트 사업부의 김은지 본부장은 “슈나이더 일렉트릭의 디지털 모터 관리 설루션 테시스 테라는 실시간 디지털 모니터링과 정밀한 보호 기능을 통해 모터의 성능 저하와 고장을 사전에 방지함으로써 조선 및 해양 산업의 안전성과 생산성을 높이는 필수적인 설루션으로 주목받고 있다”고 말했다. 한편 슈나이더 일렉트릭 코리아는 오는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 테시스 테라를 선보일 예정이라고 전했다.
작성일 : 2025-10-16
인텔, 추론 최적화 데이터센터용 GPU 신제품 발표
인텔은 2025 OCP 글로벌 서밋에서, 자사 AI 가속기 포트폴리오에 추가되는 주요 제품인 인텔 데이터센터용 GPU 신제품 코드명 ‘크레센트 아일랜드(Crescent Island)’를 발표했다. 이 GPU는 증가하는 AI 추론 워크로드 수요를 충족하도록 설계되었으며, 고용량 메모리·에너지 효율적인 성능을 제공한다. 추론이 주요한 AI(인공지능) 워크로드로 자리잡으며, 강력한 칩 이상의 요소, 즉 시스템 차원의 혁신이 성공을 가늠하는 주요 요소가 되었다. 하드웨어부터 오케스트레이션까지, 추론은 다양한 컴퓨팅 유형을 개발자 중심의 개방형 소프트웨어 스택과 통합하는 워크로드 중심의 개방형 접근 방식을 필요로 하며, 이러한 접근 방식은 배포 및 확장이 용이한 시스템으로 제공된다. 인텔은 “인텔 제온 6 프로세서, 인텔 GPU를 기반으로 구축한 설루션을 통해 AI PC부터 데이터 센터, 산업용 에지까지 엔드 투 엔드 설루션을 제공할 수 있는 입지를 갖추고 있다”면서, “성능, 에너지 효율성, 개발자 연속성을 위한 시스템 공동 설계 및 OCP(Open Compute Project)와 같은 커뮤니티와의 협력을 통해 AI 추론이 가장 필요한 모든 곳에서 실행될 수 있도록 지원하고 있다”고 전했다. 코드명 크레센트 아일랜드로 명명된 새로운 데이터센터 GPU는 공랭식 엔터프라이즈 서버에 맞춰 전력 및 비용 최적화를 이루었으며, 추론용 워크플로에 최적화된 대용량 메모리 및 대역폭을 제공하도록 설계되었다. 와트당 성능(PPW)이 최적화된 Xe3P 마이크로아키텍처에 기반을 둔 크레센트 아일랜드 GPU는 160GB의 LPDDR5X 메모리를 탑재했다. 또한 ‘서비스형 토큰(Token-as-a-Service)’ 공급업체 및 추론 사용 사례에 적합한 광범위한 데이터 유형을 지원한다. 인텔의 이기종 AI 시스템을 위한 개방형 통합 소프트웨어 스택은 조기 최적화 및 이터레이션(iteration) 작업이 가능하도록 현재 아크 프로 B(Arc Pro B) 시리즈 GPU에서 개발 및 테스트 중이다. 새로운 데이터센터용 GPU의 고객 샘플링은 2026년 하반기에 제공될 예정이다. 인텔의 사친 카티(Sachin Katti) 최고기술책임자(CTO)는 “인공지능은 정적 학습에서 에이전트형 AI가 주도하는 실시간·전역 추론으로 전환되고 있다”면서, “이러한 복잡한 워크로드를 확장하려면 적절한 실리콘을 적절한 작업에 매칭하는 이종 시스템이 필요하다. 인텔의 Xe 아키텍처 데이터센터 GPU는 토큰 처리량이 급증함에 따라 고객이 필요로 하는 효율적인 헤드룸 성능과 더 큰 가치를 제공할 것”이라고 밝혔다. 
작성일 : 2025-10-15
HP Z2 미니 G1a 리뷰 : 초소형 워크스테이션의 AI·3D 실전 성능
워크스테이션은 콤팩트한 외형 속에 데스크톱급 성능을 담아낸 전문가용 시스템이다. 단순한 소형 PC와 달리, 3D·영상·AI·엔지니어링 등 고성능이 필요한 크리에이터와 전문 작업자를 위해 설계된 것이 특징이다. 이번 리뷰에서는 실제 소프트웨어 워크플로와 AI·LLM 테스트까지 다양한 관점에서 심층 평가를 진행했다.   ▲ HP Z2 미니 G1a   하드웨어 및 설치 환경 HP Z2 미니 G1a(HP Z2 Mini G1a)의 가장 큰 강점 중 하나는 강력한 하드웨어 스펙이다. AMD 라이젠 AI 맥스+ 프로 395(AMD Ryzen AI Max+ PRO 395) 프로세서(16코어 32스레드, 3.00GHz), 최대 128GB LPDDR5X 메모리, 8TB NVMe SSD, 그리고 16GB VRAM을 탑재한 라데온 8060S(Radeon 8060S) 통합 그래픽 등, 동급 소형 워크스테이션에서는 보기 힘든 구성을 갖췄다. 특히 메모리는 최대 128GB까지 확장 가능하며, 이 중 최대 96GB를 그래픽 자원에 독점 할당할 수 있다. 듀얼 NVMe 및 RAID 지원으로 대용량 데이터 처리와 안정성을 확보했으며, 50TOPS에 달하는 NPU 성능 덕분에 AI 추론 등 최신 워크로드도 소화할 수 있다. 테스트는 윈도우 11 프로 기반, 64GB RAM과 16GB 라데온 8060S, 듀얼 NVMe SSD가 장착된 구성으로 진행됐다.   ▲ HP Z2 미니 G1a의 하드웨어 스펙   전문 소프트웨어 워크플로 직접 HP Z2 미니 G1a를 사용해 본 첫 인상은 “미니 사이즈에서 이 정도 성능이라니?”였다. 크기는 작지만, 성능은 결코 작지 않았다. 시네마 4D(Cinema 4D)로 복잡한 3D 신을 제작하고, 지브러시(ZBrush)에서 대형 폴리곤 모델링과 서브툴 멀티 작업을 해 보니 작업 흐름이 부드럽고, 장시간 동작에도 다운이나 랙 없이 꾸준한 성능으로 작업할 수 있었다. 시네벤치(Cinebench), 시네마 4D, 지브러시, 애프터 이펙트(After Effects), AI 생성형 이미지·영상, LLM 실행 등 전 영역에서 성능 저하를 체가하기 어려웠다. 시네마 4D에서는 수십만~수백만 폴리곤에 달하는 대형 3D 신 파일을 불러오고, 뷰포트 내 실시간 조작이나 배치 렌더링, 애니메이션 키프레임 작업에서 CPU 기반 멀티스레드 성능이 큰 장점을 발휘했다. 시네벤치 2024 멀티코어 점수는 1832점으로, 애플의 M1 울트라보다 높은 수치를 달성해 전문 사용자에게 매력적인 대안이 될 것으로 보인다.   ▲ 시네마 4D에서 테스트   애프터 이펙트 환경에서는 GPU 가속 지원이 부족한 점에도 불구하고, 강력한 CPU 성능 덕분에 고해상도(4K) 다중 레이어 영상 합성, 이펙트, 복수 트랙 편집에서도 랙이나 끊김 없이 작업을 이어갈 수 있었다. 시네마 4D, 지브러시, 콤피UI(ComfyUI) 등과의 멀티태스킹 환경에서도 리소스 병목 없이 쾌적하게 여러 프로그램을 병행 실행하는 것이 가능했다.   ▲ 애프터 이펙트에서 테스트   아이언캐드 대형 어셈블리 테스트 엔지니어링 현장에서 요구되는 대형 어셈블리 작업을 검증하기 위해 동료와 함께 아이언캐드(IronCAD)로 2만여 개(2만 1800개)에 달하는 파트가 포함된 820MB 대용량 CAD 파일을 로딩해 테스트를 진행했다. 이 워크플로는 최근 산업·기계 설계 현장에서 자주 마주치는 극한 환경을 그대로 반영한 조건이었다. 테스트 결과, HP Z2 마니 G1a의 평균 FPS는 약 19로 측정됐다. 이는 노트북용 RTX2060 GPU가 내는 실제 CAD 작업 성능과 동등한 수준에 해당한다. 고용량 모델의 빠른 불러오기, 실시간 3D 뷰 조작, 개별 파트 속성 편집 작업에서 큰 병목이나 지연 없이 효율적인 사용 경험을 확인했다. 대형 파일임에도 불구하고 시스템 자원 부족이나 다운 없이 멀티태스킹 환경에서도 안정적으로 작업이 이어지는 점이 인상적이었다.   ▲ 아이언캐드에서 테스트   AI 및 LLM 활용 AI 작업이나 LLM 실행에서도 강점이 명확했다. 콤피UI에서 Wan2.2, Video-wan2_2_14B_t2v 같은 고사양 텍스트-비디오 생성 모델도 무리 없이 돌릴 수 있었고, LM 스튜디오(LM Studio)와 올라마(Ollama) 기반의 대형 LLM 역시 빠른 추론 속도를 보여줬다. NPU(50TOPS)의 연산 가속과 64GB RAM의 넉넉함 덕분에, AI 모델 로컬 실행/추론에서 항상 안정적인 환경이 보장된다는 느낌이다. 오픈소스 AI 이미지 생성이나 텍스트-비디오 워크플로도 CPU-메모리 조합만으로 병목 없이 부드럽게 동작했다. 쿠다(CUDA)를 지원하지 않는 환경의 한계로 일부 오픈소스 AI 툴은 실행에 제약이 있었으나, CPU와 NPU 조합만으로도 로컬 기반 AI 이미지 생성 및 텍스트-비디오 워크플로에서 동급 대비 빠르고 매끄러운 결과를 보였다.    ▲ 콤피UI에서 테스트   LLM 분야에서는 LM 스튜디오와 올라마를 이용해 7B~33B 규모의 다양한 대형 언어 모델을 구동했다. 64GB RAM과 50TOPS NPU의 지원 덕분에 GPT-3.5, 라마 2(Llama 2) 등 대용량 파라미터 기반의 모델도 실제 업무에서 실시간 질문-응답, 코드 자동완성, 문서 요약 등에 무리 없이 활용 가능했다.   ▲ LLM 테스트   통합 메모리 아키텍처 효과 Z2 미니 G1a의 최고 강점은 UMA(통합 메모리 아키텍처)에 있다. 이 기술은 시스템 메모리(RAM)의 상당 부분을 GPU 연산에 직접 할당해, 기존 분리형 GPU VRAM 성능의 한계를 극복한다. 실제로 탑재된 메모리(64GB~128GB 중 구매 옵션에 따라 선택)를 GPU에 최대 96GB까지 독점적으로 할당할 수 있으며, 복잡한 3D·그래픽 집약적 프로젝트 처리와 생성형 AI·LLM 등의 작업에서 병목 없이 고효율 워크플로를 경험할 수 있었다.   실사용·테스트를 위한 리뷰 환경 제품 리뷰 당시 64GB RAM 탑재 모델을 기준으로, 기본 설정에서는 16~32GB를 GPU에 할당해 일반 CAD·3D·AI 작업을 진행했다. 또한 고해상도 3D 렌더나 생성형 AI 영상 작업에서는 BIOS/소프트웨어에서 48~50GB까지 VRAM 할당을 수동 조정해 본 결과, 대형 프로젝트 파일에서 뷰포트 프레임 저하나 메모리 부족 경고 없이 안정적인 작업 환경을 제공했다. 반대로 GPU에 할당하는 메모리를 늘리면 고용량 데이터 병목이 해결되고, 3D 뷰포트 FPS나 AI 추론 속도 및 이미지 품질·정확도가 확실히 향상되는 것이 일관되게 확인되었다. 실제 기업 환경에서는 128GB 모델을 쓰면 최대 96GB까지 VRAM 할당이 가능하므로 GPU 메모리 병목이 무의미해지고, 기존 미니PC와는 비교할 수 없는 확장성과 작업 안전성을 확보할 수 있다.   아쉬운 점 첫째, 테스트용으로 받았던 장비에서는 HDMI 단자의 부재로 미니 DP로 모니터를 연결해야 했는데, 이는 테스트했던 데모 제품의 기본 옵션에 해당한다. 하지만 HP Z2 미니 G1a는 기업용/구매 시 고객 요구에 따라 HDMI 포트를 포함한 맞춤형 Flex I/O 슬롯 옵션 구성이 가능하다고 한다. 실제로 HP 공식 문서 및 판매 페이지에 따르면, 썬더볼트4(Thunderbolt4), USB-C, 미니 DP 외에도 HDMI를 Flex IO 슬롯에 추가할 수 있으므로, 다수의 모니터·TV·AV 장비로 연결해 사용하는 환경에서도 문제없이 세팅할 수 있다. 둘째, GPU가 AMD 라데온 기반이기 때문에 엔비디아 CUDA를 필요로 하는 GPU 가속 작업(예 : Redshift GPU 렌더러, 딥러닝 프레임워크)은 아예 테스트 자체가 불가능하다. AI, 3D, 영상 워크플로에서 CUDA 생태계를 사용하는 환경에서는 제품 선택 전 미리 확인이 필요하다. 셋째, 고부하 작업 시 팬 소음이 다소 발생할 수 있으므로 조용한 사무실 환경이라면 쿼이엇 모드 설정이 필요하다.   결론 및 추천 HP Z2 미니 G1a 워크스테이션은 한정된 공간에서 고성능이 필요한 크리에이티브 및 AI 전문가, 엔지니어, 디지털 아티스트에게 탁월한 선택지가 될 수 있다. 실제로 써보면, 공간 제약이 있는 환경에서도 3D 모델링, 영상 편집, 생성형 AI, LLM 추론 등 고사양 멀티태스킹을 안정적으로 병행할 수 있었고, 기업용 보안, ISV 인증, 최신 네트워크까지 갖췄다. 다양한 작업을 동시에 손쉽게 처리할 수 있다는 점에서 미니 데스크톱 중에서도 실전 현장에 ‘매우 쓸 만한’ 최상위 선택지라고 생각이 든다. 비록 CUDA 미지원 및 HDMI 포트 부재라는 한계가 있지만, CPU·메모리 중심의 워크플로에선 동급 최고 수준의 안정성과 성능을 보여준다. 최신 AI 및 LLM, 3D·영상·컴포지팅 등 멀티태스킹이 잦은 전문 분야라면 이 제품이 오랜 기간 든든한 실전 파트너가 될 것이다. 견적 상담 문의하기 >> https://www.hp.com/kr-ko/shop/hp-workstation-amd-app   ■ 배현수 부장 마루인터내셔널(맥슨 한국총판) 기술지원팀, AI 크리에이터, 모션그래픽 디자이너     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[피플&컴퍼니] 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표
시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다   제품이 복잡해지면서 반도체 설계와 전체 시스템의 구현을 통합하는 엔지니어링이 필수가 됐다. 앤시스는 EDA(전자 설계 자동화) 기업 시높시스와 통합을 통해 제품 개발의 전체 과정을 단일 플랫폼으로 지원한다는 비전을 마련했다. 이와 함께 AI(인공지능) 기술을 자사 포트폴리오 전반에 적용해, 전문가의 전유물이었던 시뮬레이션의 장벽을 허문다는 전략도 제시했다. ■ 정수진 편집장   ▲ 앤시스 패드메쉬 맨들로이 부사장   ‘실리콘부터 시스템까지’ 아우르는 엔지니어링 시대 연다 제품이 점차 스마트해지고 복잡해지면서 물리 세계와 전자 세계의 만남이 그 어느 때보다 중요해지고 있다. 앤시스와 시높시스는 지난 7월 통합 완료를 발표했는데, 두 회사는 각자의 전문성을 결합해 반도체 칩 설계(실리콘)부터 최종 시스템에 이르는 전체 과정을 지원하는 통합 설루션을 제공할 계획이다. 앤시스의 패드메쉬 맨들로이(Padmesh Mandloi) 고객지원 부문 아시아 부사장은 “오늘날의 제품은 단순히 기능을 수행하는 것을 넘어 스스로 사고하고, 협업하며, 환경에 적응하는 지능형 시스템으로 발전하고 있다. 이런 변화는 엔지니어링의 복잡성을 가중시키고 있으며, 반도체 설계와 물리적 시스템의 구현을 별개로 볼 수 없게 되었다”면서, “시뮬레이션 분야의 선도 기업 앤시스와 EDA 1위 기업 시높시스가 손을 잡은 것은 이런 시대적 요구에 부응하기 위한 것”이라고 설명했다. 맨들로이 부사장은 “시스템은 실리콘의 요구사항을, 실리콘은 시스템의 요구사항을 정확히 이해해야 한다”고 짚었다. 예를 들면, 자동차 기업이 자율주행 기능을 구현하기 위해서는 AI 반도체 설계를 고려해야 하고, 반도체 기업은 칩이 자동차에 쓰일지 데이터센터에 쓰일지에 따라 다른 접근법을 선택해야 한다는 것이다. 제품 개발을 위해 엔지니어링 시뮬레이션과 EDA의 긴밀한 상호작용이 필수가 되면서, 앤시스는 시높시스와의 통합이 큰 시너지를 낼 수 있을 것으로 기대하고 있다.   물리 기반 시뮬레이션을 EDA 흐름에 통합 양사 통합의 핵심 전략은 앤시스의 강점인 물리 기반 시뮬레이션을 시높시스의 EDA 설계 흐름에 통합하는 것이다. 이를 통해 차세대 인공지능(AI) 칩, 3D IC 등 고도의 반도체를 설계할 때 필수로 고려해야 하는 열, 구조 변형, 뒤틀림 같은 물리적 문제를 설계 초기 단계부터 해결할 수 있게 된다는 것이다. 앤시스코리아의 박주일 대표는 “특히 고대역폭 메모리(HBM)와 같이 여러 칩을 쌓는 ‘스택 구조’에서 이러한 통합 설루션의 가치가 크다. 앤시스는 이미 HBM의 전력 무결성, 열, 구조적 스트레스 분석 분야에서 삼성전자, SK하이닉스 등과 협력해왔다. 앞으로 시높시스와 함께 칩 설계 단계부터 최종 분석까지 아우르는 단일 플랫폼을 제공할 수 있을 것”이라고 전했다. 앤시스와 시높시스는 조직을 통합하기보다는 각자의 비즈니스 운영 방식을 유지하며 시너지를 낼 수 있는 분야를 탐색하는 데 집중하고 있다. 시높시스가 소수의 반도체 기업을 깊이 있게 지원하는 반면, 앤시스는 수천 개의 다양한 산업군 고객을 보유하고 있어 사업 운영 방식에 차이가 있기 때문이라는 것이 박주일 대표의 설명이다. 그는 “다만, HBM 설루션처럼 시장의 요구가 높은 분야의 기술 통합은 더 빠르게 진행될 수 있다”고 덧붙였다. 앤시스는 시높시스와의 통합 설루션이 특히 복잡한 요구조건을 가진 첨단 산업에서 강점을 발휘할 것으로 보고 있다. 앤시스의 월트 헌(Walt Hearn) 글로벌 세일즈 및 고객 담당 부사장은 “이번 합병이 고객들에게 새로운 기술과 기회를 제공할 것으로 기대한다"면서, “물리 시뮬레이션과 EDA의 결합은 제품 개발의 어려운 과제를 해결하는 최고의 포트폴리오가 될 것”이라고 말했다.   ▲ 앤시스 월트 헌 부사장   AI로 엔지니어링의 문턱 낮춘다 앤시스는 인공지능(AI) 기술을 자사 포트폴리오 전반에 통합해 시뮬레이션의 효율과 속도를 높이고, 전문가 수준의 지식이 필요했던 기술의 문턱을 낮추는 데 주력하고 있다. 복잡한 제품 개발 환경에서 더 많은 엔지니어가 시뮬레이션 기술을 쉽게 활용하도록 돕는 것이 앤시스 AI 전략의 핵심이다. 맨들로이 부사장은 “시뮬레이션은 고도의 전문 지식을 갖춘 전문가의 영역으로 여겨져 왔다. 하지만 디지털 전환이 가속화되면서 기업의 비용 절감과 시장 출시 기간 단축을 위해 시뮬레이션의 활용을 확대하려는 요구가 커졌다”면서, “앤시스는 전문 지식에 대한 의존도를 낮추고 더 많은 사용자가 쉽게 접근할 수 있도록 AI 기술이 탑재된 플랫폼을 제공하는 것을 최우선 과제로 삼고 있다”고 설명했다. AI 기술은 초기 머신러닝(ML) 기반의 최적화 도구를 넘어, 대규모 언어 모델(LLM)과 AI 비서를 거쳐 완전히 자율화된 에이전틱 AI(agentic AI)로 나아가고 있다. 헌 부사장은 크게 네 가지 방향에서 AI를 앤시스 설루션에 적용하고 있다고 소개했다. 스마트 UI(사용자 인터페이스) : UI에 AI를 내장해 반복적인 작업을 자동화함으로써 엔지니어의 작업 효율을 높인다. 앤시스GPT(AnsysGPT) : 오픈AI의 기술을 기반으로 하는 앤시스GPT는 자연어 질의응답을 통해 사용자가 엔지니어링 문제에 대한 답을 더 빠르게 찾도록 돕는다. AI 내장 솔버 : 엔지니어링 해석의 핵심 엔진인 솔버 자체에 AI 기술을 통합해 문제 해결 속도를 이전보다 크게 높였다. 심AI(Ansys SimAI) : 과거의 방대한 시뮬레이션 데이터셋을 학습한 AI 솔버이다. 예를 들어, 기존에 일주일이 걸리던 자동차 외부 공기역학 해석 작업에 심AI를 활용하면 단 하루 만에 완료할 수 있다. 헌 부사장은 “앤시스GPT는 이미 2만여 고객사에서 활발히 사용되고 있으며, ‘앤시스 엔지니어링 코파일럿’도 개발하고 있다. 이 코파일럿은 지난 50년간 축적된 앤시스의 제품 개발 지식을 LLM에 탑재한 형태이다. 유동, 구조, 전자기학 등 모든 분야의 엔지니어링 콘텐츠를 단일 플랫폼 안에서 쉽게 검색하고 활용할 수 있게 될 것”이라고 소개하면서, “이런 혁신을 바탕으로 앤시스와 시높시스는 고객이 미션 크리티컬한 과제를 해결하고 AI 기반 제품과 서비스를 성공적으로 개발할 수 있도록 지원을 아끼지 않겠다”고 밝혔다.   솔버 최적화와 클라우드로 컴퓨팅 인프라 부담 해결 시뮬레이션과 AI 기술은 모두 대량의 컴퓨팅 자원을 필요로 한다. 기업에서는 컴퓨팅 인프라의 구축과 운용에 대한 부담이 클 수밖에 없다. 헌 부사장은 “소프트웨어 최적화와 유연한 클라우드 지원을 통해 고객들이 인프라 제약 없이 혁신에 집중할 수 있도록 돕겠다”고 밝혔다. 우선 R&D 차원에서 앤시스는 자사 솔버의 코드를 전면 재작성하고 있다. CFD(전산 유체 역학)와 전자기를 비롯해 모든 분야의 솔버를 GPU(그래픽 처리 장치) 환경에서 구동되도록 최적화하는 것이 핵심이다. 또한, 앤시스는 AWS(아마존 웹 서비스) 및 마이크로소프트 애저(Azure)와 협력해 클라우드 서비스를 제공하고 있다. 고객사가 대규모 해석과 같이 추가적인 컴퓨팅 성능이 필요할 경우 언제든지 클라우드 자원을 활용해 작업을 확장할 수 있도록 하겠다는 것이다. 헌 부사장은 “시높시스 역시 자체 클라우드를 통해 컴퓨팅 리소스를 제공하고 있는데, 향후 이를 통합하면 더욱 시너지를 낼 수 있을 것”이라고 전했다.   ▲ 앤시스코리아 박주일 대표   한국은 가장 복잡한 제품 개발하는 전략적 요충지 앤시스코리아는 최근 몇 년간 두 자릿수의 성장세를 유지하고 있으며, 올해는 예년보다 더 큰 폭의 성장을 예상하고 있다. 박주일 대표는 “이런 성장의 배경에는 국내 시장의 확고한 디지털 전환(DX) 트렌드와 갈수록 복잡해지는 제품 설계 환경이 있다”고 짚었다. 그는 “한국 기업들은 반도체, 자동차, 조선, 항공우주 등 모든 산업 영역에서 최고 수준의 복잡한 제품을 설계하며 글로벌 기업과 경쟁하고 있으며, 그만큼 국내 고객의 기술적 요구 수준 또한 높다”면서, “앤시스 코리아는 높은 수준의 국내 고객 요구를 시뮬레이션 기술로 충족시키는 것을 최우선 과제로 삼고 있으며, 이를 위해 국내 리소스뿐만 아니라 글로벌 조직과의 긴밀한 협업을 통해 한국 시장과 고객을 적극 지원하고 있다”고 설명했다. 앤시스는 HBM, 3D IC와 같은 스택 구조 반도체의 전력 무결성, 열, 구조 변형 문제 해결을 위해 국내 반도체 기업들과 협력하고 있다. 그리고 고밀도 AI 칩을 개발하는 국내 스타트업들과도 협력을 진행 중이다. 우주 산업에서는 국내 스타트업과 협력해 인공위성의 수명과 성능을 위협하는 우주 잔해물 문제 해결을 돕고 있다. 또한, 삼성전자, LG전자, 현대자동차 등 국내 대기업을 중심으로 AI 기술이 탑재된 시뮬레이션 설루션 도입을 빠르게 진행 중이다. 맨들로이 부사장은 “한국 앤시스 고객의 만족도는 96.8%로 역대 최고치를 기록했으며, 이는 지난 몇 년간 꾸준히 상승해 온 결과이다. 앤시스는 이러한 높은 만족도에 큰 자부심을 가지고 있으며, 앞으로도 최고의 기술을 통해 한국 고객들을 지원하는 데 집중할 것”이라고 전했다.    ▲ 앤시스코리아는 9월 17일 연례 콘퍼런스 ‘시뮬레이션 월드 코리아 2025’를 열고, 최신 기술 트렌드와 함께 자사의 비전, 신기술, 고객 사례를 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[케이스 스터디] 언리얼 엔진으로 향상된 HMI 경험 구축
자동차 HMI 기술 브랜드 실리 아우토   핀란드에 본사를 둔 실리 아우토(Siili Auto)는 일반 소비자에게는 다소 낯설 수 있지만 메르세데스 벤츠, 현대, BMW와 같은 자동차 OEM과 1티어 기업에게는 최신 휴먼 머신 인터페이스(HumanMachine Interfaces : HMI) 기술과 연계된 브랜드로 알려져 있다.현재 에픽게임즈의 골드 서비스 파트너인 실리 아우토는 HMI 개발에 언리얼 엔진을 사용한 경험을 공유했다. ■ 자료 제공 : 에픽게임즈   실리 아우토는 디지털 계기판, 인포테인먼트 시스템, 헤드업 디스플레이(Heads-Up Displays : HUD), 첨단 운전자 보조 시스템(ADAS) 등 오늘날 최신 자동차에서 기대할 수 있는 다양한 시각적 기능을 구현하는 기술을 제공하고 있다. 실리가 설계하거나 개발에 참여한 HMI는 현재 전 세계 도로를 달리는 3000만 대 이상의 차량에 탑재되어 있기 때문에, 이미 꽤 많은 사람이 실리의 기술을 경험해 보았을 것이다. 실리 아우토가 언리얼 엔진에 처음 끌린 이유는 그래픽 퀄리티와 개발의 편의성이었지만, 곧 개발 기간을 획기적으로 줄이면서도 사용자 경험을 향상시킬 수 있다는 점을 알게 됐다.   ▲ ‘Siili Auto | 스포트라이트 | 언리얼 엔진’ 영상   언리얼 엔진으로 개발 기간 단축 언리얼 엔진은 실리 아우토의 시간과 비용을 절감하는 데 도움을 주었으며, 그 중 가장 대표적인 변화가 바로 개발 주기의 단축이다. 실리 아우토의 야미 얘르비외(Jami Järviö) CSM겸 파트너 매니저는 “예전에는 디자이너가 UI와 그 흐름, 그래픽 요소를 다른 툴에서 일일이 정의해야 했다. 그러나 개발자는 실제 HMI를 설계하고 테스트하기 위해 전혀 다른 툴을 사용했다. 그러다 보니 디자인과 실제 구현 사이의 차이를 확인하고, 그에 따라 수많은 버그를 보고해야 했다. 게다가 UI는 계속 업데이트되고 새로운 디자인이 추가되면서 이런 사이클이 끊임없이 반복됐다”고 말했다. 그 결과 전체 디자인 사이클은 약 5년이 걸렸다. 그러나 이제는 디자인 팀과 개발 팀 모두 언리얼 엔진으로 작업하면서 이 주기가 3년으로 단축됐다. 얘르비외는 “블루프린트를 활용하면 디자인부터 테스트까지 개발 속도를 크게 높일 수 있다”면서, “특히 언리얼 엔진에서 디자인할 때 전체 파이프라인의 효율이 크게 향상된다”고 말했다.   ▲ 이미지 출처 : Siili Auto   효율성을 위한 노력 실리 아우토 팀은 언리얼 엔진을 디자인과 개발을 아우르는 툴로 사용하면서 전체 워크플로를 한층 더 효율적으로 만들 수 있었고, 언리얼 인사이트를 활용해 한 단계 더 발전할 수 있었다. 얘르비외는 “우리는 언리얼 인사이트 툴을 사용해 소프트웨어가 하드웨어에서 어떻게 성능을 내는지 측정한다. 보통은 실행 속도, 초당 프레임 수를 측정하고, 문제가 발생하면 메모리 사용량과 CPU 및 GPU 드로 콜도 확인한다. 그리고 문제가 발견되면 코드를 수정하고 하드웨어에서 다시 테스트한다”고 전했다. 또한, “언리얼 엔진의 소스 코드에 접근할 수 있다는 점이 문제 해결과 커스터마이징 모두에서 핵심 역할을 한다. 팀이 원하는 방식으로 코드를 자유롭게 수정할 수 있다는 사실은 HMI 개발에 있어서 무엇보다도 바꿀 수 없는 가치”라고 덧붙였다.   ▲ 이미지 출처 : Siili Auto   손쉬운 통합 언리얼 엔진을 기존 파이프라인에 손쉽게 통합할 수 있다는 점도 실리 아우토에게 플러스 요인이었다. 언리얼 엔진이 C++ 기반이었기 때문에 하드웨어에 임베딩하는 데 거의 문제가 없었다. 얘르비외는 “우리는 강력한 C++ 역량을 기본적으로 갖추고 있었기 때문에 이것은 우리에게는 보너스가 되었다”고 말했다. 이처럼 각각의 장점만 보더라도 언리얼 엔진은 실리 아우토에게 좋은 선택이었지만, 얘르비외는 HMI가 개별적인 요소 이상의 역할을 한다고 강조했다. 운전자에게 브랜드화된 경험을 제공하기 위해서는 모든 것이 함께 어우러져야 한다는 것이다. 그는 “그 차가 감성을 불러일으켜야 하는 차인지, 아니면 일상적인 운행에 최적화된 차인지가 중요하다. 언리얼 엔진의 역량을 활용하면 브랜딩, 감성, 전반적인 사용자 경험까지 모두 구현할 수 있다”고 답했다.   ▲ 이미지 출처 : Siili Auto   ▲ 이미지 출처 : Siili Auto   ▲ 이미지 출처 : Siili Auto   ▲ 이미지 출처 : Siili Auto     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01