• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 " 건설 자동화"에 대한 통합 검색 내용이 3,076개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
프로세스 자동화 Ⅲ - 유로 형상 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (8)   이번 호에서는 파이프 유로 형상 설계 최적화를 위해 NX CAD와 심센터 스타-CCM+(Simcenter STAR-CCM+)를 사용하여 CAD 치수 변수를 수정하며 유동해석의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다. ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   이번에 사용할 심센터 스타-CCM+는 2006년에 첫 버전이 공개되었으며, 통합된 환경과 클라이언트-서버 접근 방식은 당시의 CFD 해석 방법에 새로운 패러다임을 제시했다. 첫 출시 이후 주요 기능이 빠르게 확장되었는데, 대표적으로 코드의 기반이 되는 ‘메시 파이프라인(mesh pipeline)’과, 산업용 CFD 최초로 다면체(polyhedral) 메시 기술을 도입한 점이 큰 변화였다. 2010년에는 컴퓨팅 하드웨어의 가격이 저렴해지는 반면, 라이선스 비용이 하드웨어 활용의 제약이 된다는 시장의 목소리를 반영해 ‘파워 세션(Power Session) 라이선스’를 도입하였고, 이를 통해 하나의 고정 비용으로 무제한 코어에서 대규모 병렬 해석을 수행할 수 있게 되어, 소프트웨어 사용 비용과 하드웨어 활용 간의 한계를 완전히 해소하는 사용 환경을 마련하였다. 2012년에는 업계 최초로 ‘오버셋 메시(overset meshes)’ 기능을 도입해 실제 현장에서 움직이는 격자 기반 해석을 더욱 직관적으로 구현할 수 있게 되었고, 2015년에는 산업용 CFD를 넘어 유체-구조 연성 등 진정한 다중물리 해석을 지원하기 위해 유한요소(finite elements) 해석 솔버를 통합했으며 전자기 해석까지 기능을 확장했다. 오늘날 스타-CCM+는 자동화 기능, 설계 탐색 도구, 포괄적인 다중물리 해석, 그리고 산업을 선도하는 데이터 분석 및 협업형 가상현실 환경까지 지원하며 그 성장을 지속하고 있다. 그 외에도 다양한 혁신적 진보를 이루었지만, 이 내용만으로도 지난 짧은 기간 내 스타-CCM+가 얼마나 빠르게 발전했는지 잘 보여준다고 할 수 있다.   그림 1   프로세스 자동화 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시 설계 및 분석에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 다이렉트 인터페이스 포털(Direct Interface Portal)이 필요하다. HEEDS(히즈)에서는 심센터 스타-CCM+를 위한 포털(Portal)을 제공하므로 빠른 설정이 가능하다. 그림 2는 HEEDS에서 제공하는 다양한 설루션의 다이렉트 인터페이스 포털 목록이다.   그림 2   <그림 3>은 파이프 유로 설계 최적화 자동화 워크플로의 주요 단계와 각 툴의 역할을 요약한다.   그림 3   첫째, NX_CAD 포털에서는 HEEDS가 NX CAD의 파트 파일(*.prt)을 NX Expressions를 활용하여 변수(치수 등)를 자동으로 수정한다. 수정된 파이프 형상이 파라솔리드(parasolid) 형식(*.x_t)으로 내보내지는데, 이 파일에는 해석에 필요한 Named Face(경계면) 정보를 포함한다. 둘째, STAR-CCM+ 포털에서는 스타-CCM+ 해석 파일(*. sim)이 전달받은 신규 형상(*.x_t)을 읽고, 메시 업데이트와 경계조건 수정이 자동으로 적용된다. 이후 유동 해석이 수행된 뒤, 결과값은 HEEDS가 자동 추출한다. <그림 3>은 NX CAD와 스타-CCM+ 간의 입력/출력 파일 흐름, 형상 전송, 변수-응답 데이터 매핑 관계를 시각적으로 정리한다. 이처럼 각 단계를 자동화로 설정하면 설계 변수 변경부터 해석 실행 및 결과 평가까지 전체 최적화 과정을 빠르고 효율적으로 반복할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
오토데스크, 한국건설기술연구원과 디지털 건설 기준 및 BIM 연계 협력
오토데스크가 한국건설기술연구원(KICT)과 ‘건설기준 디지털화 사업’ 협력을 위한 업무협약(MOU)을 맺었다고 밝혔다. 이를 통해 한국의 국가 건설 기준과 BIM(건설 정보 모델링)의 연계성을 강화해 나갈 예정이다. 이번 협약에 따라 오토데스크와 한국건설기술연구원은 ▲디지털 건설 기준과 BIM 간 연계 기술검토 및 자료 교류 ▲실무 활용성 검증을 위한 피드백 및 기술 자문 ▲공동 기술 세미나·워크숍을 통한 지속적인 교류 활동 등 구체적인 협력을 추진한다. 디지털 건설 기준은 기존 문서 형태로 관리되던 국가 건설 기준을 컴퓨터가 이해하고 BIM과 같은 디지털 도구에서 직접 활용할 수 있도록 데이터화한 것이다. 한국건설기술연구원 국가건설기준센터는 현재 국가건설 기준 디지털화 사업을 추진 중이며, 이를 통해 건축·토목 전반의 설계·시공 과정에서 활용 가능한 디지털 건설 기준 체계를 구축하고 있다. 이번 MOU는 이러한 사업에서 개발 중인 기술을 더욱 활용성 높게 고도화하고, 현장 적용성을 검증하기 위해 추진된 협력이다. 특히 오토데스크의 대표 BIM 소프트웨어인 레빗(Revit)을 연계 사례로 활용함으로써, 개발된 기술의 실무 확산을 촉진하고 산업 전반의 디지털 건설 혁신을 가속화하는 기반을 강화할 수 있을 전망이다.     한국건설기술연구원의 강태경 산업혁신부원장은 “국가 건설 기준의 디지털 전환은 단순한 제도 개선을 넘어 건설 산업 전반의 혁신과 경쟁력 제고를 이끌 핵심 과제”라며, “세계적인 기술 노하우를 보유한 오토데스크와의 협력을 통해 BIM과 디지털 건설 기준의 연계성을 강화하고 현장 적용성을 높여 스마트한 건설 환경을 앞당기는 기반을 마련할 것”이라고 말했다. 오토데스크코리아의 오찬주 대표는 “이번 협력은 국내 건설 산업이 보다 스마트하고 안전하며 지속가능할 수 있도록 전환하는 데 중요한 이정표가 될 것으로 기대된다”고 설명하며, “한국건설기술연구원의 전문성과 오토데스크의 BIM 및 디지털 기술 역량을 결합해 데이터, 자동화, 혁신이 함께하는 기반을 마련하고, 오류는 줄이면서 효율은 끌어올려 한국을 넘어 세계적 수준의 미래지향적 건설 생태계를 구축하는 데 기여할 것”이라고 전했다.
작성일 : 2025-10-02
유아이패스-오픈AI, 엔터프라이즈 에이전틱 자동화 위해 협력
에이전틱 자동화 기술 기업인 유아이패스가 오픈AI와 협력해 ‘챗GPT 커넥터’를 선보인다고 발표했다. 이 커넥터는 오픈AI의 최첨단 모델을 유아이패스의 엔터프라이즈 오케스트레이션 기반의 워크플로와 통합해, 기업들이 에이전틱 AI를 통해 가치를 더 빠르게 실현하고 투자 대비 효과(ROI)를 높일 수 있도록 지원한다. 유아이패스의 에이전틱 자동화 역량과 오픈AI의 모델·API는 AI 에이전트 개발과 배포 과정을 간소화해 사용자가 복잡한 인프라에 구애받지 않고 비즈니스 목표에 집중할 수 있게 하며, 프로세스 관리자가 AI 에이전트에 대한 신뢰를 높일 수 있도록 한다.   오픈AI 모델은 이미 유아이패스 에이전트를 구동하고 있으며, 최근에는 유아이패스 에이전트 빌더(Agent Builder)에 최신 GPT-5 업데이트가 탑재됐다. 유아이패스와 오픈AI는 에이전틱 자동화에서 컴퓨터 활용 모델을 위한 벤치마크를 마련 중이다. 이 벤치마크를 통해 다양한 AI 모델의 컴퓨터 시스템 상호작용 성능을 보다 쉽게 평가하고 비교할 수 있다. 또한 에이전트 기능을 세밀하게 검증할 수 있으며, 실제 엔터프라이즈 환경을 위해 유연하고 확장 가능한 프레임워크를 제공하며, 에이전트가 발전함에 따라 새 시나리오까지 확장할 수 있다.   유아이패스 마에스트로(UiPath Maestro)는 업무 프로세스에서 유아이패스와 오픈AI 및 다양한 타사 AI 에이전트를 통합 관리해 기업용 대형 액션 모델(LAM)의 적용 범위를 넓힌다. 프로세스 관리자는 마에스트로의 단일 화면에서 업무 프로세스를 구축·관리·최적화할 수 있으며, 업무에 가장 적합한 에이전트를 활용해 에이전틱 자동화를 가속화할 수 있다.   또한 유아이패스는 MCP(모델 컨텍스트 프로토콜) 통합을 통해 챗GPT 사용자에게 자동화 기능을 제공한다. 사용자는 챗GPT 엔터프라이즈 내에서 무인 자동화, API 워크플로, 자율 에이전트, 마에스트로 워크플로를 직접 확인할 수 있다. 더 많은 조직이 챗GPT를 도입함에 따라, 유아이패스는 엔터프라이즈급 에이전틱 자동화와 오케스트레이션을 결합해 AI 자동화를 가속화할 수 있다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “유아이패스 플랫폼은 에이전틱 전환의 전 과정에서 중요하고 반복적인 프로세스를 식별하고, AI 에이전트를 구축하며, 워크플로를 관리할 때까지 지원해 기업이 성과와 ROI를 창출할 수 있도록 돕는다”면서, “챗GPT의 확산과 업계를 선도하는 모델이 유아이패스 플랫폼의 강력한 기능과 결합해 기업 고객에게 최적의 해법으로 자리 잡고 있다”고 말했다.   오픈AI의 지안카를로 리오네티(Giancarlo Lionetti) 최고상업책임자(CCO)는 “오픈AI는 기업용 컴퓨터 활용 에이전트를 빠르게 발전시키고 있으며, 성능 평가는 진행 상황을 가늠하고 더 높은 기준을 마련하는 핵심 수단”이라며, “유아이패스와의 협력을 통해 기업 환경에 맞는 성능 평가를 제공하고, 업계 전반의 수준을 끌어올릴 수 있다”고 말했다.
작성일 : 2025-10-02
NaviQ v2.0 : BIM 기반 공사비 자동 산출 설루션
개발 및 공급 : 글로텍 www.glotechsoft.com 주요 특징 : BIM 기반 수량–공사비 자동 산출, CBS 단가 DB 연동 공사비 자동 산출, OBS/WBS 연동으로 공정·기성관리까지 지원, 기존 2D 산출 방식과의 통합 지원 등 사용 환경(OS) : 윈도우 10 이상 시스템 권장 사양 : 인텔 코어 i5 이상 CPU, 16GB 이상 RAM, 엔비디아 GTX 1060 이상 GPU(나비스웍스 연동 시), 10GB 이상 여유 저장공간 소프트웨어 요구사항 : .NET Framework 4.7 이상, 레빗 또는 나비스웍스(2022~2024) 설치 권장   그림 1. BIM 기반 견적 산출 설루션 NaviQ v2.0   NaviQ(나비큐) v2.0은 글로텍이 개발한 BIM 기반 견적 산출 설루션으로, 설계자가 작성한 BIM(건설 정보 모델링) 모델로부터 수량을 자동 산출하고, CBS 단가 데이터베이스(DB)와 연계하여 공사비 내역서를 자동 작성할 수 있는 실무형 통합 설루션이다. 이 제품은 철도, 도로, LH, 건축, 항만 등 다양한 인프라 분야에서 설계-시공-기성관리 전 단계를 아우르는 비용 자동화 기능을 지원하며, 특히 기존 EBS 사용자에게 친숙한 인터페이스를 제공하여 도입 장벽을 낮춘 것이 특징이다.   NaviQ 2.0의 주요 특징 BIM 모델 기반 수량 산출(체적, 면적, 길이, 갯수 자동 인식) CBS 일위대가 DB 연동 공사비 자동 산출 OBS(단위 기준), WBS(공정 기준)와의 매핑을 통한 공정 연계 기존 2D 산출 수량과의 혼합 사용 가능 가근거, 수량근거 자동 기록 및 내역서 엑셀 출력 무료 뷰어 및 7일 체험판(trial) 제공으로 도입 부담 최소화   제품 구성   그림 2. NaviQ v2.0 제품군   NaviQ v2.0은 다음과 같은 구성으로 이루어져 있다. NaviQ Viewer : BIM 수량 확인 전용 툴(무상 배포) NaviQ Trial : 7일간 전체 기능 사용 가능 NaviQ Standard : 1년 기간제 라이선스(1 유저), 정식 제품(단가DB 연동, 자동산식 적용, 내역서 출력 등 전체 기능 포함) NaviQ Site : 1년 기간제 라이선스(1 사이트), Standard 제품을 한 개 회사가 인원 제한 없이 사용할 경우   NaviQ 2.0의 주요 기능 NaviQ v2.0은 설계자가 작성한 BIM 모델을 기반으로 수량 – 공사비 – 공정 – 기성관리까지 전 주기 데이터를 자동으로 연계할 수 있는 BIM 5D 실무 특화 설루션이다. 특히 국내 표준품셈 기반의 CBS 일위대가 DB를 직접 연동하고, BIM 물량을 공정 단위(WBS)로 분개하여 기성관리까지 연결할 수 있는 구조를 갖추고 있다. 뿐만 아니라 기존 2D 방식의 수동 산출 물량도 함께 병합할 수 있어 디지털 전환에 대한 진입 장벽을 낮추었으며, CBS-WBS 매트릭스 구조 기반의 정량화된 내역서 산출도 가능하다. 또한, 상용 공정관리 소프트웨어와의 연동을 통해 기성율, 공정 진척도, 물량 실적까지 통합 관리할 수 있다.   그림 3. NaviQ v2.0의 사용자별 활용 시나리오   CBS 일위대가 DB 데이터 활용 가능 : 국내 표준품셈 기반 CBS 단가 DB와 자동 연동되어 BIM 수량에 따른 재료비, 노무비, 경비가 자동 산출되며, 내역서 구조에 맞게 자동 적용된다. BIM 산출물량 WBS 단위 물량분개 : BIM 모델로부터 추출한 자동 수량은 WBS 공정 단위별로 분개되며, 각 공정에 해당하는 수량·공사비·일정 정보를 정량화할 수 있다. 수동물량 산입 및 WBS 단위 물량분개 : BIM 미적용 구간의 수동 물량(2D CAD 기반 또는 직접 입력)은 자동 수량과 병합 가능하며, 동일하게 WBS 단위로 분배되어 기성관리까지 연계된다. 매트릭스 기반 CBS-WBS 조합 5D 내역서 산출 : CBS(공사비 단가 기준)와 WBS(공정 기준)를 매트릭스(matrix) 형태로 매핑하여 각 공정별 비용 집계와 실행 계획 비교가 가능하며, 실시간 내역서 산출이 이루어진다. 상용 공정관리 SW 연동을 통한 공정–기성 관리 : MS 프로젝트(MS Project), 프리마베라(Primavera) 등 상용 공정관리 소프트웨어와 연동되어 기성 진척도·공정률·수량 실적을 통합 추적할 수 있으며, 실적 기반 예산 통제가 가능하다.   그림 4. NaviQ v2.0의 BIM 견적산출 실행 화면   고객 지원 전략 NaviQ v2.0의 개발·공급·확산은 3개사의 전략적 협업을 기반으로 시작되었다. 제품의 개발 및 기술지원은 글로텍이 주관하고, 공식 판매는 라인테크가 담당하며, 사용자 교육과 도입 지원은 한국디지털교육원이 맡는 구조로 3개사가 MOU를 체결하고 제품 생태계를 공동 구축하고 있다. 이러한 역할 분담 체계는 단순한 유통을 넘어, 고객의 도입–학습–실무 적용까지 전 주기를 통합 지원할 수 있는 파트너십 기반 운영 모델로 자리 잡고 있으며, 향후에는 NaviQ 제품을 도입한 설계사, 시공사, 발주기관 고객을 비즈니스 파트너로 확대 공유하는 전략도 함께 추진 중이다. 특히 BIM 기반 공공사업 확대와 디지털 건설 수요가 증가하는 가운데, 파트너 기업 간 공동 브랜딩, 공동 제안, 공동 마케팅 체계를 통해 기술 + 서비스 + 확산 전략이 결합된 실질적 BIM 5D 산업 플랫폼 구축을 목표로 하고 있다.   향후 계획 글로텍은 2025년 하반기를 NaviQ 신제품의 본격적인 시장 랜딩 시점으로 설정하고, 이를 위해 다각도의 홍보 전략을 추진할 계획이다. 포털 키워드 광고, 전문지 신문기사, SNS·블로그 채널을 활용한 온라인 홍보는 물론, 설계사·시공사·발주처 등 핵심 타깃을 대상으로 한 제품 설명회 및 세미나도 개최하여 인지도 확대와 실질적 도입 확산을 동시에 노린다. 이와 함께, 2026년부터는 사용자 현장의 피드백을 반영한 고도화 업데이트를 지속적으로 추진할 예정이다. BIM 5D 기반의 기능을 넘어 디지털 트윈 연계, AI 기반 수량 예측·기성 분석, 실적 리포트 자동화 등 차세대 건설 자동화를 실현하기 위한 기술 개발이 본격화될 전망이다. 이를 위해 글로텍은 전담 기술지원 조직을 통해 사용자 교육, 온라인 매뉴얼 제공, 커뮤니티 운영, 정기 기술 세미나 개최 등 제품 사용 전·중·후 단계 전반에 걸친 지원 체계를 갖추고 있으며, 공공기관의 BIM 의무화 정책 흐름에 발맞춰 관련 인증 획득과 제도 연계 확대도 병행하여 추진할 방침이다.   ■ 같이 보기 : [피플&컴퍼니] 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[피플&컴퍼니] 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원
BIM 기반의 철도 인프라 통합 운영 설루션 연구·개발   건설 IT 전문 기업 글로텍과 한국철도기술연구원이 철도 인프라를 위한 5D BIM 설루션 ‘NaviQ(나비큐)’를 상용화했다. 나비큐는 3D 모델과 수량, 단가, 공정 정보를 하나의 흐름으로 연결하는 것이 특징이다. 이를 통해 수작업의 비효율을 개선하고, BIM 도입 장벽을 낮출 수 있을 것으로 보인다. NaviQ의 개발 과정과 향후 계획을 인터뷰를 통해 들어보았다. ■ 정수진 편집장   ▲ 글로텍 이재홍 센터장(왼쪽), 한국철도기술연구원 박영곤 수석연구원(오른쪽)   한국철도기술연구원에서 추진한 BIM 통합 운영 시스템 개발 연구에 대해 소개한다면 ‘철도 인프라 생애주기 관리를 위한 BIM 통합 운영 시스템 개발 및 구축 연구’는 철도 인프라의 정보를 BIM 기술 기반으로 관리하기 위해 철도 인프라의 BIM 발주, 설계, 시공 기술을 고도화하고, 운영 및 유지보수 단계까지 연계되도록 표준화된 통합 운영 체계 및 시스템을 개발하여 이를 현장에 구축하고 실증하는 것을 목표로 추진되었다. 한국철도기술연구원이 주관하고 글로텍을 포함한 유관 기관들이 협력하여 실제 철도 노선 사례에 BIM 데이터를 적용하였고, 이를 기반으로 공정, 수량, 공사비 정보를 자동 연동하는 통합 운영 체계를 개발·구축하였다. 현재까지는 설계 단계에서 생성된 BIM 데이터를 기반으로 수량을 자동 산출하고, 이를 CBS 단가와 연계하여 공사비 내역서를 자동 생성하는 핵심 엔진의 실증을 완료한 상태이다. 이후 단계로는 기존 시공 관리 시스템 및 BIM 통합 운영 시스템(KR-BIMS)과의 연계를 통해 생애주기 기반 관리 체계를 확대해 나가고 있다.   NaviQ의 개발을 시작하게 된 배경은 무엇인지 기존 BIM 시스템은 3D 시각화나 설계 자동화에는 효과적이었지만, 실제 공사비 산출이나 수량·공정과의 연동 기능은 부족한 경우가 많았다. 특히 공공기관, 설계사, 시공사 등에서 사용 중인 단가·공정 관리 시스템과 BIM 모델 간의 데이터 연동이 원활하지 않아서 재입력, 정보 누락, 작업 중복과 같은 비효율이 반복되어 왔다. 이러한 한계를 극복하고자, 실무 중심의 접근 방식으로 ‘BIM 모델 → 수량 자동 산출 → 공사비 자동 산출 → 공정 및 기성관리 연계’의 흐름을 구현할 수 있는 설루션의 필요성을 절감하게 되었고, 그 결과로 NaviQ의 개발이 시작되었다.   ▲  한국철도기술연구원 박영곤 수석연구원   NaviQ의 핵심 기능 및 장점에 대해 소개한다면 NaviQ는 BIM 기반 자동 수량·공사비 산출 설루션으로, 설계자가 모델링한 BIM 객체를 기반으로 체적, 면적, 길이, 개수 등의 수량을 자동 추출하고, 이를 CBS(내역서), WBS(공정), OBS(단위체계)와 연동하여 실시간으로 공사비 내역서를 생성할 수 있는 시스템이다. 주요 기능은 다음과 같다. 레빗 및 시빌3D 등 다양한 BIM 모델을 나비스웍스와 연동하여 BIM 수량 자동 추출 CBS 일위대가 DB 연동을 통한 공사비 내역서 자동 산출 기존 2D 산출 수량과의 통합 산출 기능 기성관리용 물량 분개 및 실적 연동 기능 지원 7일 무료 체험판 및 뷰어 무상 배포 제공 무엇보다 사용자 입장에서 가장 큰 장점은, 기존 EBS 기반의 수동 작업 방식을 그대로 유지하면서도 BIM 자동화 기능을 점진적으로 적용할 수 있다는 점이다. 학습 부담이 적고 기존 방식과의 호환성이 뛰어나, 실무에 바로 적용할 수 있다.   기존 BIM 제품과 비교할 때 NaviQ의 차별점과 경쟁력은 무엇인지 NaviQ의 가장 큰 차별점은 ‘BIM 모델과 수량, 단가, 공정, 기성관리까지 하나의 흐름으로 연결한 실무 중심의 통합 설루션’이라는 점이다. 기존의 BIM 도구는 주로 형상 모델링과 시각화 기능에 집중되어 있었으며, 단가 DB와 연동하여 내역서를 자동화하거나 실시간 공사비를 산출하는 기능은 제한적이었다. NaviQ는 국내 공공 발주 기관에서 활용하는 CBS 단가 DB를 직접 연동하고, 이를 OBS 및 WBS와 매핑하여 물량 산출부터 기성관리까지 실무 전체를 커버할 수 있는 구조로 되어 있다. 또한 BIM 기반 수량이 불완전하거나 적용이 어려운 구간에 대해서는 기존 2D 방식의 수량을 혼합 적용할 수 있도록 설계되어, BIM 전환 초기에도 유연한 적용이 가능하다.   NaviQ의 상용화 계획과 참여 업체들의 협력 방안에 대해 소개한다면 2025년 8월 28일 정식 출시와 함께 NaviQ 공식 홈페이지를 https://naviq.co.kr 오픈하였으며, 현재 뷰어 무상 배포, 7일 무료 체험, 그리고 2.0 버전의 정식 라이선스 판매가 동시에 이루어지고 있다. 한국철도기술연구원은 연구 총괄 기관으로서 철도 인프라에 최적화된 BIM 표준 및 응용 기술을 개발하였으며, 글로텍은 실용화를 위한 소프트웨어 기획, UI/UX 설계, 제품화 및 기술 지원 부문을 담당하였다. 앞으로는 설계사, 시공사, 감리사 등과의 협력을 통해 실 프로젝트의 적용 사례를 확대하고, 피드백 기반의 기능 고도화를 추진할 예정이다.   ▲ 글로텍 이재홍 센터장   NaviQ의 비즈니스 모델과 시장 확대 전략에 대해 소개한다면 NaviQ는 현재 대형 건설사, 종합 설계사, 공공 발주기관을 주된 타깃으로 하고 있으며, 점차 중견·중소 설계사 및 기술지원 기관까지 확장해 나갈 계획이다. 비즈니스 모델은 다음과 같이 세 단계로 구성되어 있다. 뷰어 무상 배포 : BIM 내역서 검토·활용 목적 체험판 무료 제공(7일) : 구매 전 체험을 통한 기술 적합성 검토 2.0 버전 판매 : 사용자 수 및 라이선스 기간에 따른 정식 사용 계약 시장 확대 전략으로는 기존 EBS 사용자의 자연스러운 전환을 유도함과 동시에, BIM 의무화 정책에 따른 신규 수요에 적극 대응할 계획이다. 국토교통부, LH, 국가철도공단, 한국도로공사 등 주요 공공기관의 플랫폼과의 연동도 준비 중이다.   NaviQ에 대한 시장의 초기 반응이나 적용 사례가 있다면 정식 출시 직후부터 주요 설계사와 시공사에서 제품 데모 요청과 도입 관련 문의가 꾸준히 이어지고 있다. 특히 기존 수작업 수량 방식과 BIM 산출 방식의 통합 적용 가능성에 대해 많은 관심을 보이고 있으며, ‘BIM 도입 초기 단계에서도 무리 없이 활용 가능하다’는 평가를 받고 있다. 일부 고객사는 현재 자사 프로젝트에 체험판을 적용하여 실적 데이터를 기반으로 본격적인 도입을 검토하고 있으며, 한국철도기술연구원이 수행한 BIM 실증 노선에도 적용되어 실무 검증을 마쳤다.   국내 BIM 시장의 상황과 전망에 대해 어떻게 보는지 국내 BIM 시장은 여전히 설계 중심의 적용에 머물러 있으며, 시공·기성관리·유지관리 단계로의 연계는 초기 수준에 머물러 있다. 그러나 정부의 디지털 플랫폼 정책, 스마트 건설 기술 로드맵, 공공 BIM 의무화 정책 등이 결합되면서 전체 산업 생태계가 빠르게 변화하고 있다. 향후 BIM 기술이 설계 중심에서 시공, 유지관리, 운영 단계까지 확장되기 위해서는 정량적 수량, 단가, 공정 정보의 자동 연계 기술이 핵심이 될 것이다. NaviQ와 같은 통합형 BIM 5D 설루션이 이를 가능하게 할 중요한 열쇠가 될 것으로 기대한다.   글로텍의 비전 및 향후 계획에 대해 소개한다면 글로텍은 30여 년간 건설 분야 공사비 내역서 시스템(EBS), 단가 DB 시스템, 수량산출 자동화 설루션을 개발해 온 기업으로, 실무 기반의 건설 IT 설루션을 꾸준히 개발해 왔다. 최근에는 BIM 기반 자동 수량·공사비 산출 기술을 집중적으로 고도화하고 있으며, 그 결정체가 바로 NaviQ이다. 앞으로는 디지털 트윈과 연계한 5D 시뮬레이션, AI 기반 원가·공정 예측, 기성관리 자동화 기술 등으로 IT 기술 개발 포트폴리오를 확장하고자 한다. 단순 설루션 제공을 넘어 건설 디지털 전환의 실행 파트너로서 역할을 강화해 나갈 계획이다.   ■ 같이 보기 : NaviQ v2.0 : BIM 기반 공사비 자동 산출 설루션     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[피플&컴퍼니] 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표
시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다   제품이 복잡해지면서 반도체 설계와 전체 시스템의 구현을 통합하는 엔지니어링이 필수가 됐다. 앤시스는 EDA(전자 설계 자동화) 기업 시높시스와 통합을 통해 제품 개발의 전체 과정을 단일 플랫폼으로 지원한다는 비전을 마련했다. 이와 함께 AI(인공지능) 기술을 자사 포트폴리오 전반에 적용해, 전문가의 전유물이었던 시뮬레이션의 장벽을 허문다는 전략도 제시했다. ■ 정수진 편집장   ▲ 앤시스 패드메쉬 맨들로이 부사장   ‘실리콘부터 시스템까지’ 아우르는 엔지니어링 시대 연다 제품이 점차 스마트해지고 복잡해지면서 물리 세계와 전자 세계의 만남이 그 어느 때보다 중요해지고 있다. 앤시스와 시높시스는 지난 7월 통합 완료를 발표했는데, 두 회사는 각자의 전문성을 결합해 반도체 칩 설계(실리콘)부터 최종 시스템에 이르는 전체 과정을 지원하는 통합 설루션을 제공할 계획이다. 앤시스의 패드메쉬 맨들로이(Padmesh Mandloi) 고객지원 부문 아시아 부사장은 “오늘날의 제품은 단순히 기능을 수행하는 것을 넘어 스스로 사고하고, 협업하며, 환경에 적응하는 지능형 시스템으로 발전하고 있다. 이런 변화는 엔지니어링의 복잡성을 가중시키고 있으며, 반도체 설계와 물리적 시스템의 구현을 별개로 볼 수 없게 되었다”면서, “시뮬레이션 분야의 선도 기업 앤시스와 EDA 1위 기업 시높시스가 손을 잡은 것은 이런 시대적 요구에 부응하기 위한 것”이라고 설명했다. 맨들로이 부사장은 “시스템은 실리콘의 요구사항을, 실리콘은 시스템의 요구사항을 정확히 이해해야 한다”고 짚었다. 예를 들면, 자동차 기업이 자율주행 기능을 구현하기 위해서는 AI 반도체 설계를 고려해야 하고, 반도체 기업은 칩이 자동차에 쓰일지 데이터센터에 쓰일지에 따라 다른 접근법을 선택해야 한다는 것이다. 제품 개발을 위해 엔지니어링 시뮬레이션과 EDA의 긴밀한 상호작용이 필수가 되면서, 앤시스는 시높시스와의 통합이 큰 시너지를 낼 수 있을 것으로 기대하고 있다.   물리 기반 시뮬레이션을 EDA 흐름에 통합 양사 통합의 핵심 전략은 앤시스의 강점인 물리 기반 시뮬레이션을 시높시스의 EDA 설계 흐름에 통합하는 것이다. 이를 통해 차세대 인공지능(AI) 칩, 3D IC 등 고도의 반도체를 설계할 때 필수로 고려해야 하는 열, 구조 변형, 뒤틀림 같은 물리적 문제를 설계 초기 단계부터 해결할 수 있게 된다는 것이다. 앤시스코리아의 박주일 대표는 “특히 고대역폭 메모리(HBM)와 같이 여러 칩을 쌓는 ‘스택 구조’에서 이러한 통합 설루션의 가치가 크다. 앤시스는 이미 HBM의 전력 무결성, 열, 구조적 스트레스 분석 분야에서 삼성전자, SK하이닉스 등과 협력해왔다. 앞으로 시높시스와 함께 칩 설계 단계부터 최종 분석까지 아우르는 단일 플랫폼을 제공할 수 있을 것”이라고 전했다. 앤시스와 시높시스는 조직을 통합하기보다는 각자의 비즈니스 운영 방식을 유지하며 시너지를 낼 수 있는 분야를 탐색하는 데 집중하고 있다. 시높시스가 소수의 반도체 기업을 깊이 있게 지원하는 반면, 앤시스는 수천 개의 다양한 산업군 고객을 보유하고 있어 사업 운영 방식에 차이가 있기 때문이라는 것이 박주일 대표의 설명이다. 그는 “다만, HBM 설루션처럼 시장의 요구가 높은 분야의 기술 통합은 더 빠르게 진행될 수 있다”고 덧붙였다. 앤시스는 시높시스와의 통합 설루션이 특히 복잡한 요구조건을 가진 첨단 산업에서 강점을 발휘할 것으로 보고 있다. 앤시스의 월트 헌(Walt Hearn) 글로벌 세일즈 및 고객 담당 부사장은 “이번 합병이 고객들에게 새로운 기술과 기회를 제공할 것으로 기대한다"면서, “물리 시뮬레이션과 EDA의 결합은 제품 개발의 어려운 과제를 해결하는 최고의 포트폴리오가 될 것”이라고 말했다.   ▲ 앤시스 월트 헌 부사장   AI로 엔지니어링의 문턱 낮춘다 앤시스는 인공지능(AI) 기술을 자사 포트폴리오 전반에 통합해 시뮬레이션의 효율과 속도를 높이고, 전문가 수준의 지식이 필요했던 기술의 문턱을 낮추는 데 주력하고 있다. 복잡한 제품 개발 환경에서 더 많은 엔지니어가 시뮬레이션 기술을 쉽게 활용하도록 돕는 것이 앤시스 AI 전략의 핵심이다. 맨들로이 부사장은 “시뮬레이션은 고도의 전문 지식을 갖춘 전문가의 영역으로 여겨져 왔다. 하지만 디지털 전환이 가속화되면서 기업의 비용 절감과 시장 출시 기간 단축을 위해 시뮬레이션의 활용을 확대하려는 요구가 커졌다”면서, “앤시스는 전문 지식에 대한 의존도를 낮추고 더 많은 사용자가 쉽게 접근할 수 있도록 AI 기술이 탑재된 플랫폼을 제공하는 것을 최우선 과제로 삼고 있다”고 설명했다. AI 기술은 초기 머신러닝(ML) 기반의 최적화 도구를 넘어, 대규모 언어 모델(LLM)과 AI 비서를 거쳐 완전히 자율화된 에이전틱 AI(agentic AI)로 나아가고 있다. 헌 부사장은 크게 네 가지 방향에서 AI를 앤시스 설루션에 적용하고 있다고 소개했다. 스마트 UI(사용자 인터페이스) : UI에 AI를 내장해 반복적인 작업을 자동화함으로써 엔지니어의 작업 효율을 높인다. 앤시스GPT(AnsysGPT) : 오픈AI의 기술을 기반으로 하는 앤시스GPT는 자연어 질의응답을 통해 사용자가 엔지니어링 문제에 대한 답을 더 빠르게 찾도록 돕는다. AI 내장 솔버 : 엔지니어링 해석의 핵심 엔진인 솔버 자체에 AI 기술을 통합해 문제 해결 속도를 이전보다 크게 높였다. 심AI(Ansys SimAI) : 과거의 방대한 시뮬레이션 데이터셋을 학습한 AI 솔버이다. 예를 들어, 기존에 일주일이 걸리던 자동차 외부 공기역학 해석 작업에 심AI를 활용하면 단 하루 만에 완료할 수 있다. 헌 부사장은 “앤시스GPT는 이미 2만여 고객사에서 활발히 사용되고 있으며, ‘앤시스 엔지니어링 코파일럿’도 개발하고 있다. 이 코파일럿은 지난 50년간 축적된 앤시스의 제품 개발 지식을 LLM에 탑재한 형태이다. 유동, 구조, 전자기학 등 모든 분야의 엔지니어링 콘텐츠를 단일 플랫폼 안에서 쉽게 검색하고 활용할 수 있게 될 것”이라고 소개하면서, “이런 혁신을 바탕으로 앤시스와 시높시스는 고객이 미션 크리티컬한 과제를 해결하고 AI 기반 제품과 서비스를 성공적으로 개발할 수 있도록 지원을 아끼지 않겠다”고 밝혔다.   솔버 최적화와 클라우드로 컴퓨팅 인프라 부담 해결 시뮬레이션과 AI 기술은 모두 대량의 컴퓨팅 자원을 필요로 한다. 기업에서는 컴퓨팅 인프라의 구축과 운용에 대한 부담이 클 수밖에 없다. 헌 부사장은 “소프트웨어 최적화와 유연한 클라우드 지원을 통해 고객들이 인프라 제약 없이 혁신에 집중할 수 있도록 돕겠다”고 밝혔다. 우선 R&D 차원에서 앤시스는 자사 솔버의 코드를 전면 재작성하고 있다. CFD(전산 유체 역학)와 전자기를 비롯해 모든 분야의 솔버를 GPU(그래픽 처리 장치) 환경에서 구동되도록 최적화하는 것이 핵심이다. 또한, 앤시스는 AWS(아마존 웹 서비스) 및 마이크로소프트 애저(Azure)와 협력해 클라우드 서비스를 제공하고 있다. 고객사가 대규모 해석과 같이 추가적인 컴퓨팅 성능이 필요할 경우 언제든지 클라우드 자원을 활용해 작업을 확장할 수 있도록 하겠다는 것이다. 헌 부사장은 “시높시스 역시 자체 클라우드를 통해 컴퓨팅 리소스를 제공하고 있는데, 향후 이를 통합하면 더욱 시너지를 낼 수 있을 것”이라고 전했다.   ▲ 앤시스코리아 박주일 대표   한국은 가장 복잡한 제품 개발하는 전략적 요충지 앤시스코리아는 최근 몇 년간 두 자릿수의 성장세를 유지하고 있으며, 올해는 예년보다 더 큰 폭의 성장을 예상하고 있다. 박주일 대표는 “이런 성장의 배경에는 국내 시장의 확고한 디지털 전환(DX) 트렌드와 갈수록 복잡해지는 제품 설계 환경이 있다”고 짚었다. 그는 “한국 기업들은 반도체, 자동차, 조선, 항공우주 등 모든 산업 영역에서 최고 수준의 복잡한 제품을 설계하며 글로벌 기업과 경쟁하고 있으며, 그만큼 국내 고객의 기술적 요구 수준 또한 높다”면서, “앤시스 코리아는 높은 수준의 국내 고객 요구를 시뮬레이션 기술로 충족시키는 것을 최우선 과제로 삼고 있으며, 이를 위해 국내 리소스뿐만 아니라 글로벌 조직과의 긴밀한 협업을 통해 한국 시장과 고객을 적극 지원하고 있다”고 설명했다. 앤시스는 HBM, 3D IC와 같은 스택 구조 반도체의 전력 무결성, 열, 구조 변형 문제 해결을 위해 국내 반도체 기업들과 협력하고 있다. 그리고 고밀도 AI 칩을 개발하는 국내 스타트업들과도 협력을 진행 중이다. 우주 산업에서는 국내 스타트업과 협력해 인공위성의 수명과 성능을 위협하는 우주 잔해물 문제 해결을 돕고 있다. 또한, 삼성전자, LG전자, 현대자동차 등 국내 대기업을 중심으로 AI 기술이 탑재된 시뮬레이션 설루션 도입을 빠르게 진행 중이다. 맨들로이 부사장은 “한국 앤시스 고객의 만족도는 96.8%로 역대 최고치를 기록했으며, 이는 지난 몇 년간 꾸준히 상승해 온 결과이다. 앤시스는 이러한 높은 만족도에 큰 자부심을 가지고 있으며, 앞으로도 최고의 기술을 통해 한국 고객들을 지원하는 데 집중할 것”이라고 전했다.    ▲ 앤시스코리아는 9월 17일 연례 콘퍼런스 ‘시뮬레이션 월드 코리아 2025’를 열고, 최신 기술 트렌드와 함께 자사의 비전, 신기술, 고객 사례를 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[포커스] 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개
알테어는 9월 5일 ‘2025 추계 AI 워크숍’을 진행했다. ‘엔지니어를 위한 AI’를 주제로 진행된 이번 워크숍에서 알테어는 AI를 활용해 제품 개발 프로세스를 가속화하고 의사결정의 정확성을 높이며, 지능형 디지털 트윈을 완성한다는 비전을 선보였다. 또한 AI 기반 시뮬레이션, 생성형 AI, AI 에이전트, 지식 그래프 등 최신 AI 기술의 실제 적용 사례와 활용 방안을 소개했다. ■ 정수진 편집장     한국알테어의 김도하 지사장은 개회사를 통해 AI 기술이 산업 고객의 현장에서 빠르게 내재화되며 동반 성장하고 있다면서, “이는 고객들이 명확한 비전과 단계별 로드맵을 가지고 각자의 환경에 맞춰 AI를 접목하고 있기 때문”이라고 설명했다. 또한, 국가 AI 프로젝트가 시작되어 1만 4000 장의 GPU가 1차 도입되는 등 정부가 주도하는 ‘소버린 AI’ 시대가 열리고 있는 점에 주목하면서, “AI를 통한 제조 산업의 르네상스가 도래하고 있으며, 알테어 또한 시장과 함께 성장하기 위해 준비하고 있다”고 전했다.   엔지니어링 언어를 학습하는 AI 알테어의 케샤브 선다레시(Keshav Sundaresh) 디지털 전환 총괄 시니어 디렉터는 “AI는 더 이상 개념이 아니라 실제 현장의 핵심 기술”이라면서, 엔지니어링 수명주기 전반에 걸친 로코드·고효율 AI 접근법을 구현해야 한다고 짚었다. MIT의 연구에 따르면, 기업의 생성형 AI 파일럿 프로젝트 가운데 95%가 실질적인 재무 성과를 내는 데 실패하고 있는 것으로 나타났다. 그 원인으로는 ▲특정 결과에 편중된 데이터 ▲단편적이고 사일로화된 데이터 ▲값비싼 컴퓨팅 자원 ▲도메인 지식과 AI 기술 간 격차 ▲기존 시스템과의 통합 및 신뢰성 문제 등이 꼽힌다. 선다레시 시니어 디렉터는 이런 현실적 장벽을 극복할 수 있도록 알테어와 지멘스의 기술 역량을 결합해 AI 기반의 통합 설루션 포트폴리오를 제공할 수 있다는 점을 강조했다. “제품의 요구사항 정의부터 폐기에 이르는 모든 과정에서 AI를 활용하고, 단절된 디지털 스레드를 통합하여 데이터 기반의 신속한 의사결정을 지원하겠다”는 것이다. 이를 위한 핵심 전략은 ‘AI에게 엔지니어링 및 제조의 언어’를 가르치는 것이다. 기존의 LLM(대규모 언어 모델)이 텍스트나 이미지 등 일반 데이터에 강점을 보인다면, 지멘스와 알테어는 기계 설계, 전기/전자, BOM(Bill-of-Materials), 시뮬레이션 데이터 등 산업 특화 데이터를 학습시켜 신뢰도 높은 ‘산업용 파운데이션 모델(Industrial Foundation Model)’을 구축하고 있다는 것이 선다레시 시니어 디렉터의 설명이다.   AI 확산으로 제조 혁신의 속도 높인다 AI 비전을 구체화하는 방법론으로 알테어는 ‘라이프사이클 인텔리전스(Lifecycle Intelligence)’ 프레임워크를 제시했다. 이 프레임워크는 AI 도입의 장벽을 낮추고 모든 엔지니어가 AI를 손쉽게 활용해 혁신을 가속화할 수 있도록 하는 데에 중점을 두고 있다. 선다레시 시니어 디렉터는 ▲반복 작업의 자동화 및 대규모 데이터 분석으로 인간 전문가의 역량을 강화하고 ▲기존 워크플로와 도구에 AI 기능을 통합하여, 학습 부담 없이 자연스러운 AI 활용을 도우며 ▲코딩 지식과 관계 없이 모든 사용자가 AI를 구축하고 배포할 수 있는 환경을 제공하는 세 가지 접근법을 통해 AI 도입을 가속화한다는 로드맵을 소개했다. 이 프레임워크를 활용하면 전처리 영역에서는 형상 인식 AI 기술로 부품 분류 및 군집화를 자동화하거나, 자연어 처리(NLP) 기반 코파일럿을 통해 모델 정리부터 전체 해석 설정까지 대화형으로 수행할 수 있다. 솔빙 영역에서는 기존의 시뮬레이션 데이터를 학습해 CAD 또는 메시 단계에서 물리 현상을 빠르게 예측할 수 있고, 시스템 레벨의 시뮬레이션 속도를 높일 수 있다. 후처리 영역에서는 AI가 핫스폿이나 파손 영역을 자동 식별해 결과 분석을 돕는다. 이 프레임워크의 기술적 기반은 분산된 데이터를 연결하는 ‘데이터 패브릭’과 AI 모델을 개발·운영하는 ‘AI 팩토리’의 결합이다. 선다레시 시니어 디렉터는 알테어의 데이터 분석/AI 플랫폼인 래피드마이너(RapidMiner)와 로코드 앱 개발을 지원하는 지멘스 멘딕스(Mendix)를 통해 라이프사이클 인텔리전스를 구현할 수 있다고 설명했다.     엔지니어링 AI의 혁신 동력 에이전틱 AI(Agentic AI), 지식 그래프(Knowledge Graph), 생성형 AI 등 최신 AI 기술이 R&D부터 설계와 제조까지 엔지니어링 전반의 혁신을 가속화하고 있다. 알테어는 이들 기술이 개별적으로도 강력하지만, 서로 결합하면서 데이터 기반의 신속한 의사결정을 지원하고 기존 워크플로를 지능적으로 전환하는 핵심 동력으로 작용한다고 소개했다. AI 에이전트는 사용자를 대신해 특정 목표를 이해하고 자율적으로 판단 및 실행하는 ‘지능형 디지털 대리인’이다. 단순 반복 작업을 자동화하는 것을 넘어서, 여러 에이전트가 협업하는 다중 에이전트 구조를 통해 복잡한 과업을 수행하는 것이 최근의 흐름이다. 엔지니어링 현장에도 공정 상 발생한 문제에 대해 자연어로 질문하면 해결 방법을 제시하거나, 생산 라인의 다운타임 원인을 분석하고 관련 데이터를 종합해 보고하는 등의 AI 에이전트가 도입되고 있다. 알테어는 시각적 워크플로 설계 도구를 통해 이러한 AI 에이전트를 쉽게 구축하고 AI 클라우드 프로세스와 원활하게 연결하는 방법을 제시했다. 지식 그래프는 다양한 출처(소스)에 분산된 데이터를 하나의 의미 계층(semantic layer)으로 통합해서 데이터 간의 숨겨진 관계를 파악하게 하는 기술이다. 이는 AI 모델의 가장 큰 문제점으로 꼽히는 환각(hallucination) 현상을 최소화하고, 장기적인 맥락을 이해하는 메모리로 기능하면서 신뢰성 높은 AI 에이전트를 구현할 수 있게 돕는다. 엔지니어링 분야에서 지식 그래프는 여러 AI 에이전트가 일관된 지식 베이스를 공유하게 해서 협업의 효율을 높이고, 공장 문제 해결 시 여러 데이터베이스에 동적으로 접근하여 질문에 답하는 아키텍처를 구현하는 데 쓰인다.   PLM과 AI의 시너지로 더 큰 혁신도 가능 알테어는 지난 3월 지멘스와의 합병을 완료했다. 제조 기술에 강점을 가진 지멘스와 엔지니어링 및 AI 기술에 집중해 온 알테어의 시너지에 대해, 이번 워크숍에서 한 가지 실마리를 발견할 수 있었다. 알테어는 AI와 PLM(제품 수명주기 관리)의 결합이 제조업의 패러다임을 바꿀 것으로 보았다. 한국알테어 최병희 본부장은 “많은 기업이 PLM 시스템에 제품의 설계부터 생산, 운영까지 대량의 데이터를 축적하고 있지만, 이를 제대로 활용하지 못하고 있다. 이 PLM 데이터를 AI로 분석해 기업의 핵심 자산으로 만들고, 경험에 의존하던 사후 대응 방식의 업무 환경을 미래가 예측하고 문제를 예방하는 예측 기반의 업무 환경으로 혁신할 수 있다”고 소개했다. 지멘스의 PLM 설루션인 팀센터(Teamcenter)가 제품의 모든 역사를 기록한 단일 진실 공급원(single source of truth)이라면, 알테어의 래피드마이너는 코딩 지식이 없이도 AI 모델을 개발할 수 있는 ‘똑똑한 AI 분석가’라고 할 수 있다. 두 설루션을 통합하면 래피드마이너가 팀센터의 데이터를 분석해 숨겨진 패턴과 인사이트를 찾아내고, 이를 바탕으로 미래 예측 모델을 생성할 수 있다. 그리고 이 예측 결과를 다시 팀센터에 전달해 시스템 전체가 똑똑해지는 선순환 구조를 만든다. 최종적으로는 현실을 명확히 이해하고 미래를 예측하는 ‘지능형 디지털 트윈’을 완성할 수 있다는 것이 최병희 본부장의 설명이다. 이 외에 공급망 최적화, 품질 이상의 조기 탐지, 고객 피드백의 반영 등 다양한 분야로 시너지를 확장할 수 있는 가능성도 점칠 수 있다. 최병희 본부장은 “PLM 데이터를 시작으로 ERP, MES, CRM 등 분산된 기업 데이터를 통합하면 더 큰 범위의 업무 혁신이 가능하다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기
현장에서 얻은 것 No. 23   “거인의 어깨 위에 올라서서 더 넓은 세상을 바라보라.” – 아이작 뉴턴 AI라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있었다. 이는 단순히 새로운 기술의 등장이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이었다. 필자는 지난 8개월 동안 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어갔다. 이 시간 동안 AI를 단순한 도구로만 보지 않게 되었는데, 그것은 업무, 창작, 학습, 그리고 삶 전반을 통해 스스로를 끊임없이 자극하는 동반자였다. AI를 맹목적으로 신뢰하기보다는 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다. 필자의 학습법은 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%로 다소 독특했다. 이러한 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이었다. ‘바이브 코딩(vibe coding)’을 통해 비개발자도 개발을 할 수 있다고 광고했지만, 실제로는 한계가 있음을 이해했다. 커서 AI(Cursor AI)로 회사 홈페이지를 만들고, 리플릿(Replit) 프로그램으로 MBTI 판별 프로그램을 바이브 코딩으로 시도하며, 만들고 수정하는 것도 가능했다. 하지만 PLM을 기업에 구축하는 PM으로서 경험한 바로는, 비개발자가 프로그램을 만드는 데에는 한계가 있었다. 취미로 만드는 것은 환영하지만 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험하며, 개발자와의 협업이 더 효율적이라는 자신만의 학습 공식을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순한 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 잘 따라갔지만 둘째 날 노트북 배터리가 나가 낭패를 본 기억도 생생했는데, 이러한 경험조차도 학습 과정의 일부가 되었다. AI 학습은 지식을 머리에 담는 것뿐만 아니라 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨달았다. 실패와 해프닝도 자산이 되어 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 것은 속도가 아니라, 끊임 없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것이었다.  “미래는 예측하는 것이 아니라 상상하는 것이다.” – 앨런 케이   ▲ 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문(Map by 류용효) (클릭하시면 큰 이미지로 볼수 있습니다.)   비개발자가 코드를 배우려 했던 이유 필자가 비개발자로서 코드를 배우기 시작한 동기는 개인적인 필요에서 비롯되었다. PLM 구축 PM으로서 개발자와 같은 언어로 소통하고 싶었고, 프로세스 컨설팅을 수행하며 시스템/프로세스 흐름을 실제 코드 레벨에서 검증하고 싶었다. 또한 콘셉트맵과 AI를 접목하여 아이디어를 프로토타입 코드로 구현하고, 데이터 및 AI 기반으로 확장하고자 했다. 바이브 코딩을 통해 손쉽게 프로토타입을 직접 만들어 아이디어를 빠르게 실험하고 싶었던 것도 큰 동기였다. 일반적인 경우에도 비개발자가 코드를 배우는 다양한 이유가 있었다. 반복적이고 단순한 작업을 효율화하여 업무를 자동화하고, 데이터 구조를 직접 다루어 인사이트를 도출하며 데이터 이해력을 강화하는 것이었다. 개발자와의 협업 과정에서 기술적 언어를 이해하여 소통을 원활하게 하고, 아이디어를 직접 테스트하고 시각화하여 창의적 문제 해결 능력을 키우는 데에도 코딩이 필요했다. 또한 디지털 리터러시와 융합 역량을 확보하여 커리어를 확장하고, AI 툴 활용의 전제 조건인 코드 이해를 통해 AI 시대에 적응하고자 했다. 결론적으로, 비개발자가 코드를 배우는 이유는 개발자가 되기 위해서가 아니라 아이디어를 직접 다루고, 빠르게 실험하며, 더 나은 협업자이자 창의적 문제 해결자가 되기 위함이었다. 개발자와 비개발자의 시선 차이는 명확했는데, 개발자는 ‘코드와 로직을 어떻게 짤까’에 집중하고 성능, 안정성, 기술적 가능성에 관심을 두는 반면, 비개발자는 ‘왜 이게 필요한 걸까’에 집중하며 사용성, 효율, 비즈니스 가치를 중요하게 생각했다. 예를 들어, 같은 CSV 데이터를 보더라도 개발자는 데이터의 구조와 처리 방법을, 비개발자는 그 데이터가 무엇을 말해주고 경영 의사결정에 어떻게 쓰일지에 대한 의미와 활용 방법을 보았다. “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   나만의 바이브 코딩 조합 : 작은 성공에서 배운 것들 AI와 바이브 코딩 시대에 기획자의 새로운 역할이 중요하게 부각되었다. 바이브 코딩은 2025년 2월 안드레이 카르파티가 처음 언급한 개념으로, 코드 작성보다는 ‘원하는 결과물의 느낌(바이브)’을 AI에게 자연어로 설명하여 프로그래밍하는 방식이었다. 이는 코드 작성 능력이 창의력과 기획 능력으로 전환되는 트렌드를 반영했다. 비개발자를 위한 AI 개발 방법론은 문제 정의, PRD(제품 요구 문서) 작성, AI 프롬프팅, 그리고 결과 검증의 단계로 이루어졌다. 기획자는 문제 정의와 사용자 경험에 집중하고, AI와 대화하며 요구사항을 구체화하고 결과물을 정제하며, 빠른 프로토타입으로 아이디어를 시각화하고 개선점을 파악하는 데 주력했다. 필자는 8개월간의 여정 속에서 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 이는 단순히 나열된 여러 갈래의 길이 아니라, 하나의 지도 위에 유기적으로 연결되어 있었다. AI는 단순히 도구가 아니라 이 지도를 함께 그려가는 협력자가 되었다. 필자의 AI 필살기는 다음과 같았다. 커서 AI : 비개발자의 ‘첫 코치’ 역할을 했다. 코딩의 벽을 낮춰주는 동반자로, 복잡한 문법, 오류, 환경 설정의 두려움을 덜어주었다. 커서 AI는 단순한 코드 자동 생성이 아니라 필자의 의도를 코드로 번역하여 작은 실험과 반복을 가능하게 했고, 바이브 코딩 학습을 지원했다. GPT-4 기반의 AI 코드 에디터로 비주얼 스튜디오 코드(VS Code)와 호환되며, 자연어로 코딩하고, 즉각적인 에러 수정, 단계별 설명, 코드 리팩토링 기능을 제공했다. 구글 CLI(Google CLI) : 데이터와 시스템을 다루는 새로운 무기였다. 클릭 대신 명령어로 반복 작업을 자동화하여 속도와 효율성을 극대화했다. 가상머신(VM), 스토리지(Storage), 데이터베이스(DB) 등 클라우드 리소스를 제어하고, 데이터를 핸들링하며, API를 직접 호출하여 서비스 통합을 용이하게 했다. 이는 GUI의 한계를 넘어서는 전문가의 무기가 되었다. 파이썬(Python) : 실전에서 가장 유용한 최소 단위였다. 쉽고 직관적인 문법, 방대한 라이브러리, 빠른 프로토타이핑이 강점이었다. 데이터 읽기/쓰기 한 줄, 간단한 자동화 스크립트 등 작은 코드로도 큰 효과를 낼 수 있었고, CSV 분석 및 시각화, 업무 자동화, AI·ML 모델 실험 등에 활용되었다. 커서 AI와 제미나이(Gemini)가 내장되어 더 쉽게 사용할 수 있었다. 이러한 도구들을 조합하여 데이터 분석 자동화 시나리오와 업무 자동화 봇 구축 시나리오를 구현할 수 있었다. 예를 들어, 커서 AI로 데이터 수집 스크립트를 작성하고, 파이썬으로 데이터 정제 및 시각화를 하며, 구글 CLI로 정기적 실행을 스케줄링했다. 무엇보다 데이터 이해는 코드보다 중요한 사고 프레임이었다. 코딩은 기술 습득이 아니라 사고방식의 확장임을 깨달았다. 데이터 구조를 이해하면 문제 정의력이 달라지고, 기획자로서 문제를 바라보는 시각이 새로워졌다. CSV 한 줄이 어떤 의미를 담고 있는지, 칼럼이 단순한 값이 아니라 업무의 맥락임을 이해하게 되면서, 데이터를 읽는 순간 업무 프로세스가 보이기 시작했다. 이러한 변화된 시각은 단순 결과물이 아닌 흐름과 원인을 질문하게 했고, 개발자와 같은 언어로 협업 및 설계를 가능하게 하며, 데이터 기반의 빠른 실험과 검증으로 이어졌다. 필자는 매일 새로운 프로그램에 도전하는 ‘하루 한 프로그램 도전기’를 통해 작은 성공을 쌓아갔다. 완벽함보다는 경험과 시행착오를 통한 학습을 강조했고, 개발의 본질이 사고의 연습임을 깨달았다. 즉, 코드는 도구일 뿐 핵심은 문제를 정확히 이해하고 구조화하는 능력이며, 실패는 학습이고 작은 성공이 쌓여 성장 곡선을 만든다는 것이었다. 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것을 체감했다. 그러나 바이브 코딩에는 현실적인 문제점도 있었다. 새로운 기능을 추가할 때 기존 기능이 손상되는 회귀 테스트 부재 문제, AI가 전체 맥락을 충분히 기억하지 못해 발생하는 기능 안정성 문제가 있었다. 무한루프나 잘못된 로직 생성, 에러 메시지 오해 등으로 인한 오류 및 디버깅 한계, 그리고 수정 과정에서 토큰/리소스를 과다하게 소비하는 문제도 발생했다. 세션이 바뀌거나 컨텍스트가 길어지면 AI가 이전 코드의 세부 흐름을 잊어버리는 지속성 부족 문제와, AI에 의해 산발적으로 작성된 코드가 구조화가 부족하여 협업 및 유지보수가 어렵다는 한계도 있었다. 이러한 문제를 경험하며 코드를 이해하거나 개발자와 협업하는 것이 필수라는 결론에 도달했다. “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   미래를 향한 다리 : 기획자의 새로운 역할 AI 시대에 기획자의 역할은 크게 확장될 수 있었다. 비개발자의 강점은 데이터 맥락 해석력, 비즈니스 중심 사고, 그리고 맥락적 설명 능력에 있었고, 이는 CSV 데이터 컬럼의 의미와 관계를 명확하게 설명하고, 로직보다 비즈니스 가치와 목적에 집중하며, 기술적 디테일보다 전체적인 흐름과 맥락을 설명하는 커뮤니케이션 역량을 제공했다. 프로세스 컨설턴트에서 프로그램 기획자로의 역량 확장이 필요했다. 컨설팅 경험을 시스템 아키텍처 설계에 적용하고, 업무 분석 능력을 시스템 요구사항으로 전환하며, 사용자 관점과 시스템 관점의 통합을 통해 더 나은 UX(사용자 경험)를 설계하는 것이었다. 현업 부서와 IT 부서 간의 가교 역할을 수행하고, 업무 프로세스 최적화를 통해 비효율 지점을 발견하고, 시스템 병목 현상을 데이터 흐름 관점에서 해결하는 역량이 중요했다. 컨설팅 산출물을 소프트웨어 명세서로 변환하고 워크플로 시뮬레이션으로 최적화를 검증하는 방법이 요구되었다. 기획자는 기술 이해도를 바탕으로 개발팀과의 협상력을 강화하고, 데이터 기반의 의사결정 모델을 구축하며, 비즈니스와 기술을 잇는 통합적 관점을 제시하고, 프로토타입으로 아이디어를 구체화하는 능력을 확보해야 했다. 이를 위한 역량 개발로는 시스템 사고, 기술 리터러시(API, DB 구조, 클라우드 서비스 기본 개념), 애자일 방법론, 그리고 지라(Jira), 피그마(Figma), 미로(Miro)와 같은 협업 도구 활용 능력이 있었다. 기획자와 개발자의 경계를 허물고 함께 문제를 정의하고 해결하는 통합적 협업 체계를 구축하는 것이 중요했다. “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인 AI의 본질은 ‘주체’가 아니라 ‘도움’이었다. AI는 망설임 없이 실행하지만, 그것이 옳은 방향인지 판단하는 것은 인간의 몫이었다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하는 것은 아니며, 잘못된 의존은 인간의 중요한 능력을 잃게 만들 수 있었다. 그래서 필자는 AI의 답변을 최소 세 번 이상 검증했는데, 빠른 실행보다 올바른 방향 설정이 중요했기 때문이었다. AI가 주는 답은 끝이 아니라 출발점이었다. 필자가 AI와 함께한 여정은 자신을 끊임없이 질문하게 했다. AI는 인간을 대체하는 기계가 아니라, 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자였다. 필자가 찾은 필살기는 바로 이것이었다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것이었다. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있었다. AI는 더 이상 선택이 아닌 필수 도구이자 협력자였다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이었다. AI는 재능은 있지만 한계에 부딪힌 사람에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어주었다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 했다. 미래를 향한 첫걸음은 지금 바로 도전하는 것이었다. 바이브 코딩은 기획 의도와 개발 실행 사이의 간극을 해소하고, AI 시대 기획자의 역할 확장과 가능성을 발견하게 해주었다. 업무 자동화로 반복 작업에서 벗어나 창의적 업무에 시간을 활용하고, 데이터 기반의 의사결정과 인사이트 도출 능력을 강화할 수 있었다. 하루 30분, 한 프로그램 만들기로 시작하는 것이 중요했고, 완벽함보다는 시작하는 용기가 중요했다. 하지만 잊지 말아야 할 것은, 바이브 코딩의 장단점을 잘 파악하여 적용해야 한다. 특히 개인적인 사용의 간단한 프로그램은 괜찮으나, 대외적인 서비스를 하는 프로그램 개발의 경우, 반드시 고급 개발자의 코드리뷰를 거쳐서 보안상의 문제, 데이터 유출 등이 없도록 해야 한다. AI는 명확하게 정의된 문제를 푸는 데 능숙하지만, 복잡하고 모호한 비즈니스 요구사항을 해석하여 견고한 시스템을 설계하는 것은 못하는 것을 명심해야 한다. “코딩은 기술이 아닌 사고 프레임의 확장이다.”    ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01