• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "후처리"에 대한 통합 검색 내용이 512개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
유니티 6.2 정식 출시… “합리적이고 효율적인 개발 생태계 확장”
유니티가 유니티 6의 두 번째 업데이트인 ‘유니티 6.2(Unity 6.2)’ 정식 버전을 출시했다. 이번 업데이트는 데이터 중심의 안정성 개선, AI 기반 생산성 극대화, 최신 플랫폼 개발 환경 강화 등 개발자들이 한층 더 합리적이고 효율적으로 창작할 수 있는 생태계 확장에 초점을 뒀다.     먼저, 유니티는 개발자가 유니티 생태계 전반에서의 데이터 수집, 관리, 사용 등을 파악하고 통제할 수 있도록 새로운 ‘개발자 데이터 프레임워크(Developer Data Framework)’를 제공한다. 이 프레임워크는 각 프로젝트 내에서 데이터가 활용되는 방식을 개발자에게 투명하게 보여주고, 세부적으로 직접 제어할 수 있는 기능을 지원한다. 또한 다양한 기기에 걸쳐 프로젝트의 성능과 안정성을 실시간으로 모니터링하는 데 도움을 주는 ‘향상된 진단 기능’을 제공한다. 충돌 및 ANR(Application Not Responding) 등에 대한 문제를 빠르게 진단하고, 심층적인 데이터를 제공함으로써 더 원활한 게임 플레이와 플레이어 유지율 향상에 도움을 준다. 유니티 6.2부터 에디터에 통합된 ‘유니티 AI(Unity AI)’는 번거로운 작업 자동화, 애셋 생성 등 개발 워크플로 간소화 및 가속화를 지원한다. 컨텍스트 기반 ‘어시스턴트(Assistant)’ 기능을 통해 개발자들은 자세한 내용을 설명하지 않고도 프로젝트 애셋을 프롬프트로 드래그하면 게임 오브젝트, 스크립트, 프리팹 등에 대해 신속한 지원을 받을 수 있다. 스크립트나 오류 메시지 등 문제를 더 쉽게 파악하고 해결하는 ‘콘솔 오류 디버그’ 기능도 제공한다. 아울러 오브젝트 생성, 애셋 배치, 신 설정 자동화를 비롯해 스프라이트, 텍스처, 애니메이션, 사운드 등 다양한 플레이스홀더 애셋을 워크플로 내에서 매끄럽게 생성하고 활용할 수 있다. 일정 기준 이상의 광원이나 리지드보디(Rigidbody, 게임 개체의 물리적 속성을 시뮬레이션하는 데 사용되는 구성 요소)가 없는 오브젝트를 손쉽게 검색하고, 이름·레이어·컴포넌트 등을 일괄 수정 및 정리하는 것도 가능하다. 현재 유니티 AI는 베타 버전으로 제공하며, 개발자 커뮤니티 피드백을 바탕으로 더욱 고도화해 나갈 예정이다. 유니티 6.2는 ‘안드로이드 XR 패키지(Android XR package)’를 통해 관련 애플리케이션 제작에 필요한 안정적이고 완성도 높은 기반을 제공한다. 핸드 메시를 시각화해 오클루전에 활용할 수 있으며, URP(Universal Render Pipeline)에서 후처리 효과에 대한 GPU 부하를 줄여 색 보정 및 비네팅과 같은 이미지 효과를 보다 실용적으로 구현할 수 있다. 또한 디스플레이의 주사율을 동적으로 조정하는 기능을 지원해 더욱 매끄러운 성능을 제공한다. 이밖에 ▲맞춤형 에디터 기반 그래프 툴을 구축할 수 있도록 지원하는 API 프레임워크 ‘그래프 툴킷’ ▲자동으로 LOD(Level of Detail)를 생성해 반복 수정 작업을 최소화하는 ‘메시 LOD’ ▲몰입형 XR 및 게임 환경을 위한 사용자 인터페이스(UI)를 직접 렌더링할 수 있는 ‘월드 스페이스 UI’ 등의 기능도 제공한다.
작성일 : 2025-08-20
[케이스 스터디] 올림픽 금메달을 뒷받침한 3D 프린팅 혁신
금속 3D 프린팅으로 경기용 요트의 부품 제작   루제로 티타(Ruggero Tita)와 카테리나 마리아나 반티(Caterina Marianna Banti)는 2024 파리 하계 올림픽의 나크라 17 혼합 멀티헐 요트 경주에서 금메달을 획득했다. 그들의 승리는 기술, 결단력, 그리고 트렌티노 스빌루포(Trentino Sviluppo)라는 트렌토 기반 혁신 기업의 최첨단 기술로 이루어졌다. 이 듀오는 트렌티노 스빌루포와 협력하여 그들의 카타마란(catamaran)을 위해 40개의 맞춤형 3D 프린팅 파트를 설계했으며, 특히 경량 풀리 시스템이 경쟁에서 우위를 점하게 했다. ■ 자료 제공 : 머티리얼라이즈   ▲ 풀리 부품을 금속 3D 프린팅한 빌드 플레이트   도전 과제 : 짧은 올림픽 일정 내 경량 풀리 시스템 재설계 2024 파리 올림픽을 준비할 시간이 1년도 채 남지 않은 상황에서, 티타와 반티는 새로운 설계 클래스 규정에 따라 두 개의 선체(hull)를 가진 요트인 카타마란의 핵심 풀리 시스템을 재설계해야 하는 도전에 직면했다. 이 풀리는 돛의 조정과 보트의 기동성을 위해 필수이며, 바닷물 환경에 내식성을 갖추면서 유지보수가 쉬워야 했다. 기존의 시스템은 10개의 상업용 파트로 구성되어 무겁고 부피가 커 성능을 제한했다. 목표는 컴팩트하고 통합된 맞춤형 파트를 만들어 무게 분산을 최적화하고, 공기역학을 개선하며, 동적 포일링 카타마란의 안정성을 유지하는 것이었다. 또한 이 모든 것을 촉박한 일정 내에 완수해야 했다.   ▲ 티타늄 소재를 사용해 풀리 시스템을 3D 프린팅으로 제작했다.   해결책 : 티타늄 3D 프린팅과 e-Stage for Metal+ 소프트웨어 트렌티노 스빌루포의 적층 제조 R&D 전문가인 치로 말라카르네(Ciro Malacarne)는 공학 학위를 가진 티타와 긴밀히 협력하여 해결책을 개발했다. 가르다 호수에서 센서를 사용하여 하중, 항력, 풍력 데이터를 수집하고, 엔톱(nTop)과 앤시스(Ansys) 소프트웨어를 통해 전산유체역학(CFD) 및 유한요소해석(FEA) 모델로 분석했다. 최적화된 풀리 시스템을 포함한 카타마란의 3D 모델은 CAD 소프트웨어로 제작되었고, 내식성과 프린팅 용이성을 고려해 23등급 티타늄을 선택했다. 결정적인 전환점은 이스테이지 포 메탈+(e-Stage for Metal+) 소프트웨어로, 자동화된 서포트 구조 생성을 통해 후처리 시간을 줄이고 복잡한 설계를 가능하게 했다. 이를 통해 풀리의 부피를 60%, 무게를 50% 줄였으며, 2024년 6월까지 프로토타입을 완성했다.   ▲ 3D 프린팅된 티타늄 풀리 시스템   결과 : 올림픽 금메달과 산업적 영향 재설계된 풀리 시스템은 카타마란의 안정성과 기동성을 향상시켜, 티타와 반티가 2020 도쿄 올림픽에 이어 연속 금메달을 획득하게 했다. 풀리와 트라피즈 클리트(trapeze cleat)를 포함한 혁신적인 파트는 경쟁자들의 주목을 받았으며, 상업용 풀리 시스템 제조업체들로 하여금 설계를 재검토하게 했다. 반티가 전설로 은퇴한 가운데, 티타는 아메리카스컵, 세일GP, 그리고 2028 로스앤젤레스 올림픽에서 계속 경쟁할 계획이며, 이스테이지 포 메탈+로 지원받는 트렌티노 스빌루포의 3D 프린팅 전문 기술이 그의 미래를 뒷받침할 것이다. 이 승리는 적층 제조가 경쟁 요트 경기에 속도, 정밀도, 그리고 우위를 제공하며 혁신을 이루고 있음을 보여준다.     ▲ 최종 완성된 풀리 시스템     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
스트라타시스, ‘그랩캐드 프린트 프로 2025’로 생산 현장의 적층 제조 워크플로 간소화
스트라타시스가 적층 제조(AM) 작업 전반에 걸쳐 시간, 복잡성, 비용을 줄이도록 설계된 프린트 준비 소프트웨어 그랩캐드 프린트 프로의 업데이트 버전인 ‘그랩캐드 프린트 프로 2025(GrabCAD Print Pro 2025)’를 출시했다. 이번 소프트웨어 업데이트에는 트링클(trinckle)이 개발한 설계 자동화 애플리케이션인 픽스처메이트(fixturemate)가 완전 통합되어 고정구(fixture) 설계를 단순화한다. 픽스처메이트를 사용하면 CAD 경험 없이도 단 몇 분 만에 생산 준비가 완료된 고정구를 생성할 수 있다. 새로운 버전은 픽스처메이트의 완전한 통합과 3D 텍스처, 보이드 보디(void body) 생성, 다중 세션 지원과 같은 향상된 기능을 통해 사용자가 부품 기능과 처리량을 더 효과적으로 제어할 수 있다. 또한, 생산 워크플로를 단순화하고 기존 엔지니어링 리소스에 대한 의존도를 줄일 수 있도록 지원한다. 제조업체는 공장의 민첩성을 높이기 위해 적층 제조에 대한 의존도를 높이고 있지만, 여전히 많은 업체가 파편화된 소프트웨어 워크플로와 숙련된 엔지니어링 인력의 필요성에 따른 병목 현상을 겪고 있다. 그랩캐드 프린트 프로 2025는 설계 엔지니어가 아닌 적층 제조 운영자가 고정구 설계 작업을 할 수 있도록 돕는다. 이를 통해 전문 설계 기술을 가진 여러 사용자가 각기 다른 CAD 도구를 사용하던 기존 방식 대신, 그랩캐드 프린트 프로 내에서 독립적으로 고정구를 제작할 수 있게 된다. 이 프로세스를 단순화하면 새로운 고정구를 제작하는 데 걸리는 시간이 며칠에서 몇 시간으로 단축된다.   ▲ 이미지 출처 : 스트라타시스   그랩캐드 프린트 프로의 새 버전은 실제 제조 문제를 해결하는 개방적이고 연결된 설루션을 제공하려는 스트라타시스의 노력을 기반으로 한다. CAD 도구나 라이선스 없이 생산 준비가 완료된 고정구를 제작하여 고정구 설계 시간을 최대 80% 줄일 수 있고, 그랩캐드 프린트 프로에서 직접 3D 텍스처를 적용하여 그립감, 맞춤성, 미관을 향상시키는 동시에 기존 CAD 워크플로의 파일 크기 문제를 해결한다. 삽입 및 보이드 보디 도구를 사용하면 부품 기능을 개선하면서 서포트 재료 및 후처리 공정을 줄일 수 있다. 또한, 여러 프린트 준비 세션을 병렬로 실행하여, 프린트 작업 전반에 걸쳐 설정을 확장하고 야간이나 주말의 가동률을 높인다. 이외에도 스트라타시스의 3D 프린팅 기술뿐 아니라 타사의 PBF(Powder Bed Fusion) 및 SL(Stereolithography) 시스템을 지원하는 단일 플랫폼으로 여러 소프트웨어 라이선스를 통합한다. 스트라타시스의 빅터 거디스(Victor Gerdes) 소프트웨어 부문 부사장은 “그랩캐드 프린트 프로 2025는 워크플로의 장벽을 제거하는 동시에 재료 및 프린터 지원을 확대하는 데 초점을 맞춘 스트라타시스의 적층 제조 플랫폼 접근 방식을 반영한다”면서, “우리는 프린터를 운영하는 사람들에게 더 많은 기능을 제공하는 도구를 통해 인력 부족 및 소프트웨어 복잡성과 같은 실제 제약 조건을 해결하고 있다. 새 버전의 출시를 통해 제조업체는 더 빠르게 움직이는 데 필요한 유연성과 확장성을 확보할 수 있다”고 밝혔다.
작성일 : 2025-07-29
 [무료 교육] MJP 프린터 운용 및 실습 교육 안내
안녕하세요! 쓰리디시스템즈 코리아입니다. ​ 4차 산업혁명의 핵심 기술 중 하나인 3D프린팅은 제조업의 패러다임을 혁신하며 전 세계적으로 빠르게 성장하고 있습니다. ​ 의료, 항공, 자동차, 제조, 건설 등 다양한 산업에서 3D프린팅 기술의 활용이 확대댐에 따라, 기술 수요와 전문 인력의 필요성 또한 크게 증대되고 있습니다. ​ 이에 저희 쓰리디시스템즈는 건국대학교와 협력하여 3D 프린팅 기술에 대한 이론과 실습을 바탕으로 산업 현장에서 활용 가능한 전문 인력을 양성하고자 멀티젯 프린팅(MJP) 교육을 진행합니다. 본 교육을 통해 안전 관리, 장비 셋업, 애플리케이션 설정, 운용, 출력, 후처리 실습 등 전반적인 MJP 프린터의 운용 방법을 습득하실 수 있습니다! ✏️ 교육 일시: 2025년 8월 ~ 11월 ???? 교육 대상: - ​MJP 3D프린팅 직무에 관심 있는 자 - MJP 3D프린팅 산업에 종사하고 있는 재직자 및 관련 업계 종사를 원하는 자 ???? 교육 과정: 총 4회차 - (기초 과정) MJP 방식 원리와 운용 / 온라인 - (심화 과정) MJP 운용 실습 / 온&오프라인 상세 교육 아젠다 및 신청하기는 하기의 페이지에서 확인 부탁 드립니다. ☑️ 링크: 2025년 쓰리디시스템즈와 함께하는 MJP 프린터 운용 및 실습 교육 | 3D Systems
작성일 : 2025-07-21
정보통신산업진흥원, 2025년 3D 프린팅 전문인력 양성교육 진행
과학기술정보통신부와 정보통신산업진흥원은 미래 제조 패러다임 전환의 핵심 기술인 3D 프린팅 산업 발전을 위해 ‘2025년 3D 프린팅 전문인력 양성교육’을 실시한다고 밝혔다. 이번 교육 과정은 3D 프린팅 산업 성장 및 신시장 창출을 위해 양 기관이 기획한 프로그램으로, 3D 프린팅 분야의 인재 양성을 목표로 한다. 교육 부문은 전주기 플라스틱, 전주기 메탈, 전문 소프트웨어, 의료기기, 주얼리, 항공우주 등 산업 현장 적용 부문이 운영된다. 교육 대상은 3D 프린팅 관련 구직자, 예비 창업자, 기업재직자 등이며, 국비 100% 지원으로 진행된다. 전주기 플라스틱 부문은 3D 모델링·3D 프린팅·전문 후가공 등으로 세분화된 커리큘럼을 제공한다. 신청 기간은 오는 10월 24일까지며, 2회차 프로그램은 10월 13일, 3회차 프로그램은 10월 27일 각각 개강을 앞두고 있다. 전주기 메탈 부문은 3D 모델링·3D 프린팅·후처리 등으로 세분화된 커리큘럼을 제공한다. 신청 기간은 오는 9월 19일까지며, 2회차 프로그램은 7월 28일, 3회차 프로그램은 9월 15일 각각 개강을 앞두고 있다. 전문 소프트웨어 부문은 3D 프린팅 산업 현장에서 활용되는 소프트웨어를 다루는 과정이다. 지브러시, 솔리드웍스, 라이노, 3D 스캐닝/역설계, 매직스, 미믹스, 3-매틱 등 7가지 커리큘럼, 5일 과정으로 구성돼 있으며, 오는 7월 14일에 교육을 시작한다. 분야별 산업 현장에 적용될 기술 교육 프로그램은 항공우주·주얼리·의료기기 등 분야로 구성됐다. 해당 부문은 항공우주 8월 18일, 의료기기 8월 18일, 주얼리 10월 13일부터 25일 과정으로 각각 수강이 가능하다. 정보통신산업진흥원은 3D 프린팅 전문인력 양성교육을 통해 3D 프린팅 중고급 인력을 배출하는 것을 목표로 하고 있으며, 관련 기업의 기술력 향상 지원을 비롯해 국가의 3D 프린팅 기술 경쟁력 확보의 초석이 될 것으로 기대하고 있다. 한편, 정부는 매년 ‘3D 프린팅 산업 진흥 시행계획’을 발표하며, 3D 프린팅 산업 성장을 이끌고 있다. 교육 수료 시 정보통신산업진흥원에서 발행되는 수료증도 지급될 예정이며 우수학생 포상, 공모전 개최, 시상식도 진행된다. 참여 신청은 3D 프린팅혁신성장센터의 교육신청란을 통해 온라인으로 제출하면 되며, 이외에도 교육과 관련한 내용을 확인할 수 있다.
작성일 : 2025-07-04
[케이스 스터디] 산업 제조 전문 기업 뵐링거 그룹의 금속 3D 프린팅 혁신
서포트 구조 최적화로 설계 자유도 확장 및 지속 가능한 제조 실현   머티리얼라이즈는 독일의 산업 제조 전문 기업인 뵐링거 그룹(BÖLLINGER GROUP)과 협력하여 금속 3D 프린팅에서 서포트 구조(support structures)를 획기적으로 줄이는 성과를 달성했다. 머티리얼라이즈의 최신 케이스 스터디에 따르면, 뵐링거 그룹은 머티리얼라이즈 소프트웨어를 활용해 재료 사용량, 생산 시간, 후처리 비용을 대폭 절감하며 항공우주, 자동차, 의료기기 산업에 새로운 표준을 제시했다. ■ 자료 제공 : 머티리얼라이즈     첨단 제조 기술에 투자하는 산업 제조 전문 기업 뵐링거 그룹은 독일에 본사를 둔 산업 제조 전문 기업으로, 80년 이상의 역사 동안 정밀 기계 가공, 공구 제작, 특수 강철 구조물 생산에서 세계적인 명성을 쌓아왔다. 공식 웹사이트에 따르면 이 회사는 항공우주, 에너지, 기계 엔지니어링 분야에서 고품질 설루션을 제공하며, 특히 금속 3D 프린팅과 같은 첨단 제조 기술에 적극 투자하고 있다. 뵐링거 그룹은 혁신과 지속 가능성을 핵심 가치로 삼아, 복잡한 부품 제작과 맞춤형 생산에서 업계 선두를 달리고 있다.   문제점 : 서포트 구조의 비효율성 금속 3D 프린팅, 특히 LPBF 공정에서는 복잡한 형상의 부품을 안정적으로 제작하기 위해 서포트 구조가 필수이다. 그러나 서포트 구조는 다음과 같은 문제를 가져오기도 한다. 재료 낭비 : 최종 제품에 포함되지 않는 서포트 구조는 고가의 금속 분말(티타늄, 알루미늄 합금 등)을 소모한다. 생산 시간 증가 : 서포트 구조의 프린팅과 제거 공정이 제작 시간을 연장한다. 후처리 비용 : 서포트 구조 제거를 위한 기계 가공, 연마 등의 추가 공정이 비용을 증가시킨다. 이러한 비효율은 전체 생산 비용의 20~50%를 차지하며, 특히 소량 맞춤 생산에서 경제성을 떨어뜨린다.   뵐링거 그룹의 혁신 : 머티리얼라이즈 소프트웨어 활용 뵐링거 그룹은 머티리얼라이즈의 소프트웨어 설루션, 특히 매직스(Materialise Magics)와 이스테이지 포 메탈+(e-Stage for Metal+)를 활용해 서포트 구조를 최소화하는 첨단 접근법을 구현했다. 주요 기술 요소는 다음과 같다. 부품 오리엔테이션 최적화 : 머티리얼라이즈 소프트웨어를 사용해 프린팅 방향을 조정함으로써, 중력 및 열 응력으로 인한 변형을 최소화하여 서포트 구조의 필요성을 줄였다. 래티스 구조 설계 : 부품 내부에 경량화된 래티스(lattice) 및 다공성 구조를 설계해 자체 강성을 강화했고, 서포트 구조 없이도 안정적인 프린팅을 가능하게 했다. 시뮬레이션 기반 설계 : 머티리얼라이즈의 시뮬레이션 도구는 프린팅 공정의 열적·기계적 응력을 예측하고 설계를 최적화함으로써, 서포트 구조의 사용량을 최대 60%까지 줄였다. 자동화된 서포트 생성 : 머티리얼라이즈의 이스테이지 포 메탈+는 최소한의 서포트 구조를 자동 생성하여 재료 사용과 후처리 작업을 줄였다.     성과 : 비용 절감과 효율성 향상 뵐링거 그룹은 머티리얼라이즈 소프트웨어를 적용해 다음과 같은 성과를 달성했다. 서포트 구조 사용량 60% 감소 : 최적화된 설계로 불필요한 서포트 구조가 대폭 줄어들었다. 데이터 준비 시간 50% 단축 : 설계 및 시뮬레이션 공정이 간소화되어 생산 준비 속도가 향상되었다. 복잡한 부품 서포트 85% 감소 : 복잡한 기하학적 부품의 서포트 구조가 기존 대비 85% 줄어들어 효율이 높아졌다. 후처리 시간 45% 단축 : 서포트 구조의 제거 공정이 간소화되어 전체 생산 주기가 단축되었다. 대형 부품 제작 : 18kg 크랭크케이스를 성공적으로 제작함으로써, 머티리얼라이즈 소프트웨어의 스케일링 가능성을 입증했다. 생산 용량 증가 : 단일 프린팅 패널에서 부품 수를 8개에서 12개로 늘려 단위당 1000 유로의 비용 절감을 달성했다. 작업 환경 개선 : 분말 잔여물이 줄어들어 작업장의 공기질과 안전성이 향상되었다. 이러한 성과는 뵐링거 그룹이 항공 우주 부품, 자동차 프로토타입, 의료기기 제작에서 경쟁력을 강화하는 데 기여했다.   산업적 시사점 뵐링거 그룹과 머티리얼라이즈의 협력은 금속 3D 프린팅의 경제성과 접근성을 크게 높였다. 항공 우주 산업에서는 경량화된 고강도 부품의 제작으로 연료 효율을 높였으며, 의료기기 분야에서는 환자 맞춤형 임플란트 생산이 간소화되었다. 자동차 산업에서는 고성능 부품의 신속한 프로토타이핑이 가능해졌다. 또한, 분말 잔여물 감소는 작업 환경의 안전성을 높이고, 재료 낭비 감소는 환경 지속 가능성에 기여한다. 머티리얼라이즈의 기술 책임자는 “뵐링거 그룹은 머티리얼라이즈의 기술을 통해 설계 자유도를 확장하고 지속 가능한 제조를 실현했다. 이 협력은 적층제조(AM)의 한계를 넘어서는 모범 사례”라고 전했다.   맺음말 : 적층제조의 미래 뵐링거 그룹의 사례는 머티리얼라이즈 소프트웨어가 금속 3D 프린팅의 상용화를 가속화하는 데 핵심 역할을 한다는 점을 보여준다. 서포트 구조 감소는 재료 낭비를 줄이고 에너지 효율적인 생산 공정을 구현하여 탄소 배출 저감 목표에도 부합한다. 머티리얼라이즈는 이 기술을 자사 플랫폼에 통합해 더 많은 고객에게 제공하며, 뵐링거 그룹과 같은 파트너를 통해 다양한 산업 응용 사례를 확대할 계획이다. 이 협력은 금속 3D 프린팅의 새로운 표준을 제시하며 적층제조의 미래를 밝게 하고 있다.       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04
고성능 멀티피직스 플랫폼, Cadence Fidelity CFD
주요 디지털 트윈 소프트웨어   고성능 멀티피직스 플랫폼, Cadence Fidelity CFD   ■ 개발 : Cadence, www.cadence.com ■ 자료 제공 : 나인플러스아이티, 02-867-8633, www.npit.co.kr 1. Millennium M1 Millennium M1은 기존 전산 유체 역학(CFD) 시뮬레이션의 한계를 뛰어넘는 차세대 턴키 CFD 솔루션으로, 업계에 새로운 기준을 제시한다. Cadence(케이던스)의 Fidelity LES Solver(일명 CharLES)와 고성능 GPU 기반 HPC(고성능 컴퓨팅)를 결합한 이 플랫폼은 LES(대형 와류 시뮬레이션)를 중심으로 대규모 시뮬레이션을 압도적인 속도와 정확성으로 수행한다. Millennium M1은 단순히 빠른 성능을 넘어, 고품질 데이터를 신속히 생성하고 생성형 AI를 활용한 설계 최적화 및 디지털 트윈 구축을 가능하게 한다. 며칠이 소요되던 작업을 몇 시간 내로 단축할 뿐 아니라, 항공우주, 자동차, 터보기계 등 다양한 산업에 적용 가능한 실질적이고 혁신적인 해법을 제공한다. 초고속 처리 능력과 Fidelity LES Solver의 정밀한 물리 해석이 결합된 Millennium M1은 혁신적인 설계와 엔지니어링의 패러다임을 바꿀 게임 체인저로, 기술 혁신의 새로운 기준을 제시할 것이다. 2. 주요 기능 및 특징 ■ 안정성과 정확성을 겸비한 해석 기술 : CharLES 솔버의 비선형 안정화 방식은 수치적 진동을 효과적으로 억제하며, 메시 크기를 줄여도 높은 정확도와 안정성을 유지한다. ■ 압도적인 계산 성능 : GPU 기반 LES 솔버와 전용 하드웨어의 조합으로, GPU 1개당 최대 1,000개의 CPU 코어에 상응하는 처리 성능을 제공한다. ■ 업계 최초 Turn-Key CFD 솔루션 : GPU 기반 솔버와 확장 가능한 HPC를 결합하여 별도의 복잡한 시스템 설정 없이 즉시 사용 가능하며, 빠르고 효율적인 데이터 생성을 지원한다. ■ AI 디지털 트윈 구현 : 고품질 데이터를 바탕으로 생성형 AI를 활용해 디지털 트윈을 신속하게 구현한다. ■ 다상 흐름 예측 : Volume-of-Fluid(VOF) 기법과 라그랑주 입자 추적법으로, 다양한 유동 영역에서 액체 및 미세 물방울 등의 복잡한 거동을 정확히 모델링할 수 있다. 3. 도입 효과 ■ 설계-검증 프로세스 단축 : 기존 몇 일이 소요되던 LES 시뮬레이션을 몇 시간 내로 단축해, 더 많은 설계-검증 프로세스를 시도할 수 있다. ■ 높은 신뢰성과 효율성 : 메시 크기가 작아도 안정적이고 정확한 결과를 제공하며, 후처리 작업부담을 크게 줄여준다. ■ 혁신적인 설계 최적화 : 생성형 AI와 디지털 트윈 기술을 활용해, 효율적인 설계로 제품 개발을 지원한다. ■ 경제적 이점 : 별도 시스템 구축이 필요 없는 턴키(Turn-Key) 솔루션으로, 운영 비용을 효과적으로 절감 할 수 있다.   4. 주요 고객 사이트 ■ 자동차(Automotive) : 전기차 주행 거리와 내연기관 차량 연비에 영향을 미치는 공기역학을 풍동 수준의 정확도로 예측하며, 빠른 분석을 제공한다. ■ 항공우주(Aerospace) : 복잡한 형상과 유동 조건에서 항력 변화와 에어포일 실속 현상을 정밀하게 분석하여, 높은 설계 신뢰성을 보여준다. ■ 에너지 및 터보 머신(Energy & Turbomachinery) : 난류 연소와 열 전달을 정확히 예측하며, 열 플럭스 및 Conjugate Heat Transfer 분석으로 에너지 효율성을 극대화한다.       상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-10
[포커스] DN솔루션즈, 금속 3D 프린터 'DLX 시리즈'로 제조 혁신 선도한다
지난 4월 2일부터 5일까지 부산 벡스코와 경남 창원 DN솔루션즈 본사에서 열린 '제15회 DN솔루션즈 국제공작기계 전시회(DIMF 2025)'는 국내외 제조 업계의 이목을 집중시켰다. DN솔루션즈는 이번 전시회를 통해 첨단 공작기계와 자동화 설루션, 그리고 적층제조(Additive Manufacturing : AM)의 새로운 기술을 선보이며, 제조 혁신의 새로운 방향을 제시했다. ■ 박경수 기자   ▲ DIMF 2025가 열린 지난 4월 2일 부산 BEXCO 전시장   금속 적층제조의 미래, 새로운 DLX 시리즈 공개 DIMF는 DN솔루션즈가 1997년부터 격년으로 개최하는 자체 전시회로, 올해로 15회를 맞아 ‘공작기계 가공 공정 전반을 위한 오토메이션 플랫폼’을 주제로 열렸다. 총 50여 종의 첨단 공작기계와 자동화 설루션이 전시되어 관심을 모았는데, 국내외 고객 1000여 명을 포함한 5000여 명의 관람객이 다녀갔다. 이번 전시회의 하이라이트는 DN솔루션즈가 고성능 산업용 ‘금속 3D 프린터’로 알려진 LPBF(Laser Powder Bed Fusion) 방식의 금속 적층 장비 ‘DLX 시리즈(DLX 325, DLX 450)’를 최초로 공개한 것이다. 이 기술은 금속 적층제조 방식 중 발전된 기술이자 활용도가 높은 공법으로, 현재 금속 적층 시장의 약 80%를 차지하고 있다. DLX 450은 알루미늄 합금, 인코넬, 타이타늄 등 분말 소재를 활용해 최대 450×450×450mm 크기의 정밀 부품 제작이 가능하다. DLX 시리즈는 3D 프린팅 장비와 함께 적층제조 전반의 과정을 지원하는 맞춤형 소프트웨어를 함께 제공한다. DN솔루션즈 김원종 대표는 “DN솔루션즈는 지금까지 반세기 동안 전 세계에 총 29만대의 공작기계를 판매했다”며, “우리는 이 같은 고객의 신뢰를 바탕으로, 전통적인 공작기계를 넘어 오토메이션 플랫폼이나 금속 적층 장비처럼 수요 산업의 전반을 혁신할 수 있는 설루션을 제시하고자 한다”고 밝혔다.   ▲ DN솔루션즈 김원종 대표가 적층제조로 제작된 부품을 설명하고 있다.   글로벌 시장 공략을 위한 전략적 투자 이들 소프트웨어는 ▲적층제조를 적용할 수 있는 부품을 찾아내고 ▲부품당 비용을 계산하며 ▲적층 시 필요한 최적 서포트를 설계하고 ▲신규 소재 공정을 개발하는 등의 기능을 통해 고객의 생산성과 효율성을 극대화하는 데 초점을 맞췄다. 또한 DN솔루션즈는 적층제조 방식으로 제작된 복합가공기용 ‘밀링 스핀들 캡’ 부품도 전시해 관심을 모았다. 이 샘플은 적층제조 특화 설계를 통해 기존 방식 대비 약 20%의 성능 개선 효과를 보였다. 한편 DN솔루션즈는 금속 적층제조 분야의 글로벌 시장 공략을 위해 독일에 ‘적층제조 솔루션 센터(ASC)’를 새롭게 설립했다. 이 센터는 최적 부품 선정, 맞춤형 설계(DfAM), 공정 개발 및 생산·서비스까지 전 주기를 아우르는 시스템을 구축하여 유럽 시장을 적극 공략한다는 계획이다. 또한 인도의 금속 적층제조 장비·설루션 전문 기업인 인텍(INTECH Additive Solutions)과 전략적 투자 및 파트너십 계약을 체결하며, 아시아 시장에서도 입지 강화에 나섰다. DN솔루션즈 김원종 대표는 “인텍과의 투자 협력을 통해 금속 절삭뿐만 아니라 금속 적층제조까지 포함해 장비, 공정 기술, 소프트웨어 전반의 설루션을 제공할 수 있게 되었다”며, “자동차, 항공우주, 의료기술, 전기전자 등 시장에서 복잡한 형상과 내부 구조, 소재 효율성을 요구하는 분야나, 반도체 산업 공급 업체를 포함한 다양한 제조업 고객의 성공을 지원할 수 있을 것으로 기대한다”고 말했다.   ▲ 제15회 DN솔루션즈 국제 공작기계 전시회(DIMF 2025) 현장 모습   파트너십을 통한 성장과 전문성 강화 이번 파트너십으로 DN솔루션즈의 금속 절삭 가공 분야의 전문성과 인텍의 금속 적층제조를 위한 360도 종합 솔루션의 결합이 가능해졌다. 특히 DN솔루션즈는 금속 적층 분야에서 가장 활용도가 높고 발전된 기술인 레이저 파우더 베드 퓨전(LPBF) 기술을 추가하며 제품 포트폴리오를 확대할 수 있게 되었다. LPBF 기술은 금속 적층제조 시장의 약 80%를 차지하며, 금속 분말을 얇게 도포한 후 레이저를 이용하여 금속 분말을 선택적으로 응용 및 융합하여 적층하는 방식으로 작동한다. 적층을 위한 플랫폼이 아래로 이동하면서 추가 금속 분말이 도포되고 다시 용융(Melting) 및 융합(Fusion)하는 과정을 반복적으로 수행하여 점진적으로 최종 형상이 만들어지게 된다. DN솔루션즈 김원종 대표는 “금속 적층 방식은 가공 후 조립 과정을 단축하고, 절삭으로 구현이 불가능한 형상을 만들 수 있어 무한한 혁신 가능성이 있다”며, “2030년까지 금속 적층제조와 절삭 가공의 시너지를 극대화하겠다”고 밝혔다.   인터뷰 : DN솔루션즈 적층제조 부문 부사장 비노 순타라쿠마란 박사     이번에 발표한 내용을 조금 더 자세히 설명한다면 적층제조, 자동화, 소프트웨어 세 가지를 하드웨어적으로 통합하여 고객 산업 제조를 가능하게 한다. 소프트웨어는 이를 연결하고, 서비스는 고객 여정 전반을 지원하는 것이 우리의 미션이다. 단순한 장비 공급을 넘어 통합 제조 플랫폼으로 진화하며, 고객의 제조 프로세스를 처음부터 끝까지 지원한다는 전략이다.   적층제조 기술이 절삭가공과 어떻게 시너지를 내고 있는지 시장에서는 고품질과 표준화를 기대한다. 우리는 절삭가공과 적층제조를 연결하는 프로세스 체인을 가능하게 하는 장비를 개발하고 있다. 기존 강점인 절삭가공 기술과의 하이브리드 제조 체인 구축을 통해 생산성과 품질을 동시에 향상시키는 전략을 추진 중이다.   DLX 시리즈의 소프트웨어는 어떤 기능을 제공하는지 현재 알고리즘 기반 소프트웨어를 운영하고 있고, 향후 프린팅에 적합한 데이터 판단 기능이 포함된 AI 기반의 소프트웨어로 진화해 나갈 계획이다.   후처리 공정이 어렵다고 이야기했는데, 어떤 점이 특히 어려운지 후처리는 전문 지식이 없이는 어렵다. 그래서 우리는 이를 쉽게 알려주고, 자동화할 수 있는 소프트웨어를 함께 제공한다. 적층제조 확산의 걸림돌인 후공정 난이도를 극복하기 위한 소프트웨어 자동화 설루션 개발이 핵심 전략이다.   내부적으로 레퍼런스 사례가 있다면 NX2000 장비를 도입해 내부 설계자가 기존 부품을 통합해 효율성을 20% 이상 향상시켰다. 이처럼 적층제조 도입이 성능 향상과 부품 최적화로 이어지는 검증된 성과가 있으며, 실질적 레퍼런스를 통해 시장 신뢰도를 확보해 나가고 있다.   글로벌 시장 진출 전략은 무엇인지 우리는 유럽, 미국, 한국에 팀을 운영 중이며 글로벌 확장 준비를 마쳤다. 가격 경쟁력과 다양한 애플리케이션 적응력을 갖추고 있다.   한국 제조업이 적층제조 시장에서 어떤 가능성을 가지고 있는지 한국은 반도체, 자동차 등 제조 강국이다. 적층제조는 이노베이션을 위한 핵심 기술이기 때문에, 곧 시장이 열릴 것이라 확신한다. 제조 인프라가 강한 한국은 적층제조 확산의 최적지이며, DN솔루션즈는 국내 산업에 이를 선도하는 포지셔닝을 유지해 나갈 계획이다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅳ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (19)   터보 기계는 흐르는 유체와 회전하는 요소 사이에서 에너지 전달이 일어나는 기계에 초점을 맞춘 기계공학의 한 분야이다. 이러한 장치는 많은 산업 분야에서 중추적인 역할을 한다. 이번 호에서는 터보 기계의 시뮬레이션을 위한 솔버의 선택과 설정, 후처리 및 분석, 최적화 등의 과정을 살펴본다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   로터-스테이터 인터페이스 성능을 결정하고 잠재적인 문제를 식별하는 데 필수인 터보 기계의 회전 및 고정 구성 요소 간의 상호 작용을 모델링하는 방법에는 여러 가지가 있다. 다음에 설명된 방법은 동적 영역과 정적 영역 간의 정확한 흐름 전달을 보장하기 위해 로터-회전자 인터페이스를 올바르게 모델링하는 데에 사용된다.  혼합 평면 접근법 : 이 방법은 인터페이스 전반의 유동 특성을 평균화하여 회전 영역과 고정 영역 사이의 인터페이스를 모델링하는 데 사용되는 계산적으로 효율적인 정상 상태 근사치이다. 이 방법은 이들 영역 사이의 흐름을 효과적으로 ‘혼합’하여 안정된 인터페이스 조건을 제공하므로, 로터 블레이드가 고정자 베인을 통과할 때 발생하는 실제 불안정한 현상을 해결하지 않아 시뮬레이션을 단순화한다. 도메인 스케일링 방법 : 이 불안정 기법은 도메인의 물리적 치수를 스케일링하여 로터와 고정자 사이의 상대적인 움직임을 시뮬레이션하는 것이다. 다양한 회전 속도의 효과를 모델링하거나 전체 지오메트리를 명시적으로 모델링하지 않고 정수가 아닌 블레이드 수 비율을 맞추기 위해 자주 사용된다. 이 방법은 로터/스테이터 인터페이스 전체에 동일한 메시 주기성을 적용하여 양쪽에서 일관된 흐름 특성을 보장한다. 위상 지연 방법 : 이 방법은 주기성을 가정하고 도메인의 여러 세그먼트 간에 위상 변이를 적용하여 불안정한 회전자-회전자 상호 작용을 시뮬레이션할 수 있다. 이 방법을 사용하면 전체 도메인의 불안정한 동작을 표현하면서 지오메트리의 일부를 시뮬레이션할 수 있으므로 계산 비용을 줄일 수 있다. 위상 지연 방식은 반복 패턴이나 주기적 대칭이 있는 경우에 특히 유용하다. 회전 기준 프레임(RRF) : RRF 방법은 로터와 함께 회전하는 기준 프레임에서 유동 방정식을 푸는 방식이다. 이 방법은 로터 동작의 물리적 시뮬레이션 없이도 구성 요소 회전으로 인한 흐름 효과를 시뮬레이션한다. 이 방법은 정상 및 비정상 시뮬레이션 모두에 사용할 수 있다. 정상 시뮬레이션에 사용할 경우 회전하는 부품과 정지된 부품 간의 통신을 위한 인터페이스 처리가 필요한 경우가 많으며, 이때 혼합 평면 접근법을 적용할 수 있다. 슬라이딩 메시 방법 : 이 기법은 과도 시뮬레이션에 사용되며 로터와 고정자 사이의 시간에 따라 변화하는 상호작용을 캡처할 수 있다. 로터 도메인의 메시가 고정자 도메인의 고정 메시와 관련하여 움직이거나 미끄러지므로 실제 회전 및 관련 불안정 유동 현상을 시뮬레이션할 수 있다. 다중 참조 프레임(MRF) : MRF는 회전하는 영역의 흐름을 평균화하는 정상 상태 접근 방식이다. 그러나 이 방법을 사용하면 시뮬레이션 도메인의 여러 영역이 서로 다른 기준 프레임에 있을 수 있다. 따라서 회전자 도메인은 회전하는 기준 프레임에 설정하고 고정자 도메인은 고정된 상태로 유지할 수 있다. 고정 회전자 접근법 : 로터와 스테이터 위치가 서로에 대해 고정되어 있는 정상 상태 근사치로, 시간의 스냅샷을 시뮬레이션한다. 슬라이딩 메시 방식보다 계산 비용이 저렴하지만 실제 과도 효과를 포착할 수 없다.   그림 1. 특정 경우와 일반적인 경우의 로터-스테이터 처리 순서도   <그림 1>의 순서도는 특정 유동 특성에 따라 정상 상태 계산에서 로터-스테이터 인터페이스 처리를 선택하기 위한 의사 결정 프로세스를 제공한다. 시뮬레이션에 회전하는 임펠러와 고정된 볼류트 케이스 사이의 상호작용이 포함된 경우, 상세한 국소 유동 변화를 포착하고 계면 전체의 질량, 운동량 및 에너지 보존을 국소적으로 보장하기 위해 국소 보수적 결합을 권장한다. 다음으로, 계면 근처에 충격파가 존재하여 유동장에 강한 영향을 미칠 수 있는 고구배 유동 특성인 경우 1D 또는 2D 비반사 경계 조건이 제안된다. 이러한 조건은 시뮬레이션 결과를 손상시킬 수 있는 경계에서 충격파의 인위적인 반사를 최소화하도록 설계되었다. 마지막으로, 인터페이스 근처에 충격파가 없는 경우 전체 비일치 혼합 평면 또는 보수적 결합 방법을 사용하는 것이 좋다. 완전 비일치 혼합면 방법은 계면 전체의 유동 특성을 평균화하므로 회전자-회전자 상호 작용의 상세한 시간 정확도 캡처가 중요하지 않은 경우에 적합하다. 보수적 결합 접근법은 메시 적합성 없이 인터페이스 전체에서 질량, 운동량 및 에너지를 보존해야 하는 시나리오에 이상적이며, 따라서 회전자 메시와 고정자 메시 간의 어느 정도의 정렬 불일치 또는 비적합성을 수용할 수 있다. <표 1>에는 안정된 시뮬레이션에 사용할 수 있는 다양한 로터-스테이터 인터페이스 처리 방법이 요약되어 있다.   표 1. 회전자-고정자 인터페이스 처리 방법     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-03-06