• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "확장성"에 대한 통합 검색 내용이 1,847개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
IBM, AI 가속기 ‘스파이어 엑셀러레이터’ 정식 출시
IBM은 자사의 메인프레임 시스템 IBM z17 및 IBM 리눅스원 5(IBM LinuxONE 5)에 적용 가능한 인공지능(AI) 가속기 ‘스파이어 엑셀러레이터(Spyre Accelerator)’를 정식 출시한다고 밝혔다. 스파이어 엑셀러레이터는 생성형 및 에이전트 기반 AI 업무를 지원하는 빠른 추론 기능을 제공하며, 핵심 업무의 보안과 복원력을 최우선으로 고려해 설계되었다. 12월 초부터는 파워11(Power11) 서버용 제품도 제공될 예정이다. 오늘날 IT 환경은 기존의 논리 기반 업무 흐름에서 에이전트 기반 AI 추론 중심으로 전환되고 있으며, AI 에이전트는 저지연(low-latency) 추론과 실시간 시스템 반응성을 요구한다. 기업은 처리량의 저하없이 가장 까다로운 엔터프라이즈 업무와 AI 모델을 동시에 처리할 수 있는 메인프레임과 서버 인프라를 필요로 한다. IBM은 이러한 수요에 대응하기 위해서 생성형 및 에이전트 기반 AI를 지원하면서도 핵심 데이터, 거래, 애플리케이션의 보안과 복원력을 유지할 수 있는 AI 추론 전용 하드웨어가 필수적이라고 판단했다. 스파이어 엑셀러레이터는 기업이 중요한 데이터를 사내 시스템(온프레미스, on-premise) 내에서 안전하게 관리할 수 있도록 설계되었으며, 운영 효율성과 에너지 절감 효과도 함께 제공한다.     스파이어 엑셀러레이터는 IBM 리서치 AI 하드웨어 센터의 혁신 기술과 IBM 인프라 사업부의 개발 역량이 결합된 결과물이다. 시제품으로 개발된 이후 IBM 요크타운 하이츠 연구소의 클러스터 구축과 올버니대학교 산하 ‘신흥 인공지능 시스템 센터(Center for Emerging Artificial Intelligence Systems)’와의 협업을 통해 빠른 반복 개발 과정을 거쳐 완성도를 높였다. 이렇게 기술적 완성도를 높여 온 시제품 칩은 현재는 IBM Z, 리눅스원, 파워 시스템에 적용 가능한 기업용 제품으로 진화했다. 현재 스파이어 엑셀러레이터는 32개의 개별 가속 코어와 256억 개의 트랜지스터를 탑재한 상용 시스템온칩(SoC, system-on-a-chip) 형태로 완성되었다. 5나노미터 공정 기술을 기반으로 제작된 각 제품은 75와트(Watt) PCIe 카드에 장착되며, IBM Z 및 리눅스원 시스템에는 최대 48개, IBM 파워 시스템에는 최대 16개까지 클러스터 구성이 가능하다. IBM 고객들은 스파이어 엑셀러레이터를 통해 빠르고 안전한 처리 성능과 사내 시스템 기반의 AI 가속 기능을 활용할 수 있다. 이는 기업이 IBM Z, 리눅스원, 파워 시스템 상에서 데이터를 안전하게 유지하면서도 AI를 대규모로 적용할 수 있게 되었음을 의미한다. 특히, IBM Z 및 리눅스원 시스템에서는 텔럼 II(Telum II) 프로세서와 함께 사용되어 보안성, 저지연성, 높은 거래 처리 성능을 제공한다. 이를 통해 고도화된 사기 탐지, 유통 자동화 등 예측 기반 업무에 다중 AI 모델을 적용할 수 있다. IBM 파워 기반 서버에서는 AI 서비스 카탈로그를 통해 기업 업무 흐름에 맞춘 종합적인 AI 활용이 가능하다. 고객은 해당 서비스를 한 번의 클릭으로 설치할 수 있으며, 온칩 가속기(MMA)와 결합된 파워용 스파이어 엑셀러레이터는 생성형 AI를 위한 데이터 변환을 가속화해 심층적인 프로세스 통합을 위한 높은 처리량을 제공한다. 또한 128개 토큰 길이의 프롬프트 입력을 지원하며, 이를 통해 시간당 800만 건 이상의 대규모 문서를 지식 베이스에 통합할 수 있다. 이러한 성능은 IBM의 소프트웨어 스택, 보안성, 확장성, 에너지 효율성과 결합되어, 기업이 생성형 AI 프레임워크를 기존 업무에 통합해 나가는 여정을 효과적으로 지원한다. IBM 인프라 사업부 최고운영책임자(COO)이자 시스템즈 사업부 총괄 배리 베이커(Barry Baker) 사장은 “스파이어 엑셀러레이터를 통해 IBM 시스템은 생성형 및 에이전트 기반 AI를 포함한 다중 모델 AI를 지원할 수 있는 역량을 갖추게 됐다. 이 기술 혁신은 고객이 AI 기반 핵심 업무를 보안성과 복원력, 효율성을 저해하지 않고 확장할 수 있도록 돕는 동시에, 기업 데이터의 가치를 효과적으로 끌어낼 수 있도록 지원한다”고 말했다. IBM 반도체 및 하이브리드 클라우드 부문 무케시 카레(Mukesh Khare) 부사장은 “IBM은 2019년 AI 리서치 하드웨어 센터를 설립해, 생성형 AI와 대규모 언어 모델(LLM)이 본격적으로 확산되기 이전부터 AI의 연산 수요 증가에 대응해 왔다. 최근 고도화된 AI 역량에 대한 수요가 높아지는 가운데, 해당 센터에서 개발된 첫 번째 칩이 상용화 단계에 진입해 자랑스럽다”면서, “이번 스파이어 칩의 정식 출시로 IBM 메인프레임 및 서버 고객에게 향상된 성능과 생산성을 제공할 수 있게 되었다”고 설명했다.
작성일 : 2025-10-28
HPE, 에릭슨과 협력해 듀얼모드 5G 코어 설루션 검증
HPE는 에릭슨과 협력해 통신 서비스 사업자가 멀티벤더 인프라 스택을 구축하는 과정에서 직면하는 핵심 과제를 해결하기 위한 공동 검증 랩 설립을 발표했다. 이번 협력은 클라우드 네이티브 기반의 AI 지원 듀얼모드 5G 코어 설루션의 검증을 통해, 새로운 서비스 도입 과정의 복잡성을 관리하면서도 고성능·확장성·효율성을 갖춘 네트워크를 구축해야 하는 증가하는 수요에 대응한다. HPE와 에릭슨은 이를 기반으로 통신사들이 운영을 간소화하고 혁신을 가속화하며, 초연결 시대의 요구사항을 충족할 수 있도록 지원할 계획이다. 공동 검증 랩은 상호운용성 테스트를 수행하고 검증된 설루션이 통신사의 요구사항을 충족하는지 확인하는 테스트 환경으로 활용된다. 이 스택은 에릭슨의 듀얼모드 5G 코어 설루션과 HPE 프로라이언트 컴퓨트(HPE ProLiant Compute) Gen12 서버, 앱스트라 데이터센터 디렉터(Apstra Data Center Director) 기반으로 관리되는 HPE 주니퍼 네트워킹(HPE Juniper Networking) 패브릭, 그리고 레드햇 오픈시프트(Red Hat OpenShift)로 구성된다. ▲‘에릭슨 듀얼 모드 5G 코어’는 5G와 4G 네트워크를 모두 지원하는 설루션으로, 효율적인 확장 및 미래 대비 네트워크 구축을 원하는 통신사의 복잡성과 운영 비용을 절감한다. ▲‘HPE 프로라이언트 DL360 및 DL380 Gen12 서버’는 인텔 제온 6 프로세서를 탑재해 AMF, UPF, SMF 등 네트워크 집약적 텔코 CNF(Containerized Core Network Functions)를 위한 최적의 성능을 제공한다. 또한 칩에서 클라우드까지 보안을 구현한 HPE Integrated Lights Out(iLO) 7을 통해 모든 계층에서 내장형 보안을 제공한다. ▲‘HPE 주니퍼 네트워킹 고성능 패브릭’은 QFX 시리즈 스위치와 앱스트라 데이터센터 디렉터를 기반으로 인텐트 기반 자동화(Intent-based Automation)와 AIOps 기반 보증 기능을 통해 운영 효율을 강화하고 비용을 절감한다. ▲‘레드햇 오픈시프트’는 공통 클라우드 네이티브 텔코 플랫폼으로서, 통신사가 새로운 서비스를 빠르게 개발·배포·확장할 수 있는 민첩성을 제공한다. 이를 통해 시장 출시 시간을 단축하고 기존 배포 주기를 개선하며, 코어에서 에지까지 일관되고 자동화된 운영 경험을 제공해 복잡한 네트워크 기능 배포 및 관리를 간소화한다.     스웨덴 에릭슨 본사 인근에 위치한 이번 검증 랩은 2025년 말 가동을 시작할 예정이다. 또한 실제 고객 테스트와 피드백을 통해 검증을 진행하고, 2026년 상반기에는 통합 설루션의 상용 검증을 완료해 시장 출시 속도를 높이고 라이프사이클 관리 효율을 강화할 계획이다. HPE의 페르난도 카스트로 크리스틴(Fernando Castro Cristin) 텔코 인프라 사업부 부사장 겸 총괄은 “HPE는 에릭슨과의 전략적 파트너십을 바탕으로 통신사가 5G 및 AI 중심의 경제에서 성공할 수 있도록 혁신적인 기술 설루션을 제공하는 데 주력하고 있다”면서, “에릭슨의 클라우드 네이티브 듀얼모드 5G 코어와 레드햇 오픈시프트를 검증된 차세대 HPE 컴퓨트 인프라 및 HPE 주니퍼 네트워킹 패브릭과 통합함으로써, HPE는 통신사가 신속한 서비스 배포와 수요 기반 확장, 트래픽 변동에 대한 유연한 대응, 예측 가능한 라이프사이클 관리, 그리고 빠르게 진화하는 기술 환경에 적응할 수 있는 새로운 통합 설루션을 개발하고 있다”고 말했다. 에릭슨의 크리슈나 프라사드 칼루리(Krishna Prasad Kalluri) 코어 네트웍스 설루션 및 포트폴리오 부문 총괄은 “에릭슨은 5G 및 코어 네트워크 분야의 글로벌 리더로서, 통신사가 클라우드 네이티브 네트워크로 전환하는 여정을 간소화할 수 있도록 개방성과 혁신을 지속적으로 추진하고 있다”며, “HPE와의 협력 및 공동 검증 랩 설립은 멀티벤더 인프라 환경에서 클라우드 네이티브 5G 코어 설루션 개발을 한층 더 발전시키는 중요한 계기가 될 것”이라고 밝혔다.
작성일 : 2025-10-20
오라클, OCI 전용 리전25 통해 소버린 AI 및 클라우드 서비스 배포 지원
오라클은 더 많은 기업이 퍼블릭 클라우드의 민첩성, 경제성 및 확장성을 누릴 수 있도록 오라클 클라우드 인프라스트럭처(OCI) 전용 리전25(Dedicated Region25)를 출시했다고 발표했다. 기업은 OCI 전용 리전25를 통해 단 몇 주 내에 최소 3개의 랙으로 구성된 풀스택 OCI 환경을 구축할 수 있으며, 공간 제약이 있는 환경에서도 손쉽게 전용 리전을 배포할 수 있다. 지난 2020년 처음 출시된 OCI 전용 리전(OCI Dedicated Region)은 대규모 하이퍼스케일 폼팩터에서 더욱 유연한 배포 형태로 발전해 왔다. 현재 전 세계적으로 60개 이상의 OCI 전용 리전과 오라클 알로이(Oracle Alloy) 리전이 운영 중이거나 계획되어 있으며, 고객은 성능, 거버넌스, 퍼블릭 OCI 환경의 호환성을 저해하지 않으면서 자사 비즈니스 규모에 최적화된 배포 모델을 선택할 수 있다.     OCI 전용 리전25는 OCI의 분산형 클라우드 제품군에 속하며, 모듈형 인프라와 간소화된 서비스 설계를 갖춘 엔터프라이즈급 소버린 클라우드를 통해 공공 및 민간 조직이 민첩성을 높이고 제품 출시 기간을 단축하도록 지원한다. 오라클은 “200개 이상의 AI 및 클라우드 서비스가 내장된 완전한 퍼블릭 클라우드 리전을 3개 랙만으로 구축 가능하고, 하이퍼스케일 수준까지 확장 가능하며, 고객 데이터센터 내에서 안전하게 운영할 수 있도록 지원한다”고 소개했다. 이에 따라 시공간적 제약 혹은 규제 관련 제약으로 전용 클라우드 리전 운영이 어려웠던 고객도 혁신을 가속화하고 새로운 비즈니스 모델을 구현할 수 있게 된다는 것이 오라클의 설명이다. 기존의 전용 클라우드 리전은 많은 조직의 전면적 클라우드 전환에 걸림돌이 되었다. OCI 전용 리전25는 ▲고도화된 네트워크 중심의 모듈형 확장성 ▲하이퍼컨버지드 표준 인프라 ▲통합 다계층(multi-layered) 보안 ▲SaaS, AI를 포함한 퍼블릭 클라우드 수준의 서비스 제공 ▲데이터 주권 요건 지원 ▲오라클 운영 클라우드 리전 등의 이점을 제공하여 클라우드 전환의 방해요소를 제거한다. OCI 전용 리전25는 최소 3개 랙으로 시작해 다운타임이나 재설계 없이 네트워크 확장 랙을 추가함으로써 하이퍼스케일까지 원활하게 확장할 수 있다. 그리고 오라클의 표준화된 고밀도 컴퓨팅 및 스토리지 랙을 활용해 데이터센터 공간 및 전력 사용을 절감할 수 있다. 고객은 더 높은 신뢰성, 빠른 복구 시간, 최대 가동 시간을 확보할 수 있으며, 복잡한 운영 부담 없이 컴팩트한 규모로 운영 가능하다. OCI 전용 리전25는 물리, 가상 전 계층에 걸친 다중적 보안 장치로 데이터와 워크로드를 보호해 높은 수준의 보안, 프라이버시, 규제 요건을 충족할 수 있도록 한다. 통합 다계층 보안 기능으로는 생체인식 잠금(biometric-locked) 랙, 암호화된 소프트웨어 정의 네트워크 패브릭 등이 포함된다. 또한 200개 이상의 OCI AI 및 클라우드 서비스를 고객 환경에서 직접 제공함으로써 데이터 주권 및 데이터 지역성 요건을 충족하면서도 퍼블릭 OCI와 동일한 운영 환경을 구현할 수 있다. 이외에도 정부 및 공공기관이 전체 오라클 클라우드 스택을 자체 환경에 배포하고 데이터 및 시스템에 대한 완전한 통제권을 유지할 수 있도록 함으로써 엄격한 수준의 데이터 주권, 프라이버시, 보안, 규제 요건을 충족할 수 있도록 지원한다. OCI 전용 리전25는 오라클이 직접 운영하는 완전한 클라우드 운영 서비스 형태로 제공되므로, 고객은 인프라 관리가 아닌 혁신에 집중할 수 있다. 스콧 트와들 OCI 제품 및 산업 담당 수석 부사장은 “기업은 가장 큰 가치 창출이 가능한 곳에서 AI와 클라우드 서비스를 자유롭게 구동하길 원하며, 소버린 AI(sovereign AI)에 대한 관심이 높아짐에 따라 데이터의 위치와 데이터 통제에 대한 요건이 엄격해져 이러한 요구 사항이 더욱 강화되고 있다”면서, “OCI 전용 리전25의 출시로 오라클은 사실상 모든 데이터센터로 오라클 클라우드의 역량을 확장할 수 있게 되었다. 이 새로운 배포 옵션은 탁월한 유연성, 운영 단순성 및 엔터프라이즈급 데이터 주권을 제공해 전용 클라우드의 기준을 새롭게 정의하고, 고객이 미래 혁신을 대비할 수 있도록 돕는다”고 말했다.
작성일 : 2025-10-20
오라클-AMD, 차세대 AI 확장성 지원 위한 파트너십 확대
오라클과 AMD는 고객이 AI 역량과 이니셔티브를 대규모로 확장할 수 있도록 지원하기 위한 양사의 오랜 다세대 협력 관계를 확대한다고 발표했다. 수년간의 공동 기술 혁신을 바탕으로, 오라클 클라우드 인프라스트럭처(OCI)는 AMD 인스팅트(AMD Instinct) MI450 시리즈 GPU 기반의 최초 공개형 AI 슈퍼클러스터의 출시 파트너가 될 예정이다. 초기 배포는 2026년 3분기부터 5만 개의 GPU로 시작되며, 2027년 이후까지 더욱 규모가 확대될 계획이다. 이번 발표는 2024년 AMD 인스팅트 MI300X 기반 셰이프(shape) 출시를 시작으로 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트(OCI Compute)의 정식 출시까지 이어지는 오라클과 AMD의 전략적 협업의 연장선상에 있다.  양사는 최종 고객에게 OCI 상의 AMD 인스팅트 GPU 플랫폼을 제공하기 위해 꾸준히 협업해 왔다. 이 플랫폼은 제타스케일 OCI 슈퍼클러스터(zettascale OCI Supercluster)에서 제공될 예정이다. 대규모 AI 컴퓨팅 수요가 급격히 증가함에 따라, 차세대 AI 모델은 기존 AI 클러스터의 한계를 뛰어넘고 있다. 이러한 워크로드의 훈련 및 운영을 위해서는 극한의 확장성과 효율성을 갖춘 유연하고 개방적인 컴퓨팅 설루션이 필요하다. OCI가 새롭게 선보일 AI 슈퍼클러스터는 AMD ‘헬리오스(Helios)’ 랙 설계를 기반으로 하며, 여기에는 ▲AMD 인스팅트 MI450 시리즈 GPU ▲차세대 AMD 에픽 CPU(코드명 베니스) ▲차세대 AMD 펜산도(Pensando) 고급 네트워킹 기능(코드명 불카노)가 포함된다. 수직적으로 최적화된 이 랙 스케일 아키텍처는 대규모 AI 모델의 훈련 및 추론을 위한 최대 성능, 탁월한 확장성, 우수한 에너지 효율성을 제공하도록 설계됐다. 마헤쉬 티아가라얀 OCI 총괄 부사장은 “오라클의 고객들은 전 세계에서 가장 혁신적인 AI 애플리케이션을 구축하고 있으며, 이를 위해서는 강력하고 확장 가능한 고성능의 인프라가 필수적이다. 최신 AMD 프로세서 기술, OCI의 안전하고 유연한 플랫폼, 오라클 액셀러론(Oracle Acceleron) 기반 고급 네트워킹의 결합으로 고객은 확신을 갖고 혁신 영역을 넓혀갈 수 있다. 에픽부터 AMD 인스팅트 가속기까지, 10년 이상 이어진 AMD와의 협력을 바탕으로 오라클은 탁월한 가격 대비 성능, 개방적이고 안전하며 확장가능한 클라우드 기반을 지속적으로 제공하여 차세대 AI 시대의 요구에 부응하고 있다”고 말했다. AMD의 포레스트 노로드(Forrest Norrod) 데이터센터 설루션 비즈니스 그룹 총괄 부사장 겸 총괄 매니저는 “AMD와 오라클은 계속해서 클라우드 분야의 AI 혁신에 앞장서고 있다. AMD 인스팅트 GPU, 에픽 CPU, 그리고 첨단 AMD 펜산도 네트워킹 기술을 통해 오라클 고객들은 차세대 AI 훈련, 미세 조정 및 배포를 위한 강력한 역량을 확보할 수 있다. AMD와 오라클은 대규모 AI 데이터센터 환경에 최적화된 개방적이고 안전한 시스템으로 AI 발전을 가속화하고 있다”고 말했다. AMD 인스팅트 MI450 시리즈 GPU 기반 셰이프는 고성능의 유연한 클라우드 배포 옵션과 광범위한 오픈소스 지원을 제공하도록 설계되었다. 이는 최신 언어 모델, 생성형 AI 및 고성능 컴퓨팅 워크로드를 실행하는 고객에게 맞춤형 기반을 제공한다. OCI상의 AMD 인스팅트 MI450 시리즈 GPU는 AI 훈련 모델을 위한 메모리 대역폭을 확장해 고객이 더욱 신속하게 결과를 달성하고, 복잡한 워크로드를 처리하며, 모델 분할 필요성을 줄일 수 있도록 지원한다. AMD 인스팅트 MI450 시리즈 GPU는 개당 최대 432GB의 HBM4 메모리와 20TB/s의 메모리 대역폭을 제공하여, 이전 세대 대비 50% 더 큰 규모 모델의 훈련 및 추론을 인메모리에서 수행할 수 있다. AMD의 최적화된 헬리오스 랙 설계는 고밀도 액체 냉각 방식의 72-GPU 랙을 통해 성능 밀도, 비용 및 에너지 효율이 최적화된 대규모 운영을 가능하게 한다. 헬리오스는 UALoE(Universal Accelerator Link over Ethernet) 스케일업 연결성과 이더넷 기반의 UEC(Ultra Ethernet Consortium) 표준에 부합하는 스케일아웃 네트워킹을 통합하여 포드 및 랙 간 지연을 최소화하고 처리량을 극대화한다. 차세대 AMD 에픽 CPU로 구성된 아키텍처는 작업 오케스트레이션 및 데이터 처리를 가속화하여 고객이 클러스터 활용도를 극대화하고 대규모 워크플로를 간소화할 수 있도록 지원한다. 또한, 에픽 CPU는 기밀 컴퓨팅 기능과 내장형 보안 기능을 제공하여 민감한 AI 워크로드의 종단간 보안을 개선한다. 또한, DPU 가속 융합 네트워킹은 대규모 AI 및 클라우드 인프라의 성능 향상과 보안 태세 강화를 위해 라인레이트(Line-Rate) 데이터 수집을 지원한다. 프로그래밍 가능한 AMD 펜산도 DPU 기술을 기반으로 구축된 DPU 가속 융합 네트워킹은 데이터센터에서 차세대 AI 훈련, 추론 및 클라우드 워크로드를 실행하는 데 필요한 보안성과 성능을 제공한다. AI를 위한 스케일아웃 네트워킹은 미래 지향적 개방형 네트워킹 패브릭을 통해 고객이 초고속 분산 훈련(distributed training)과 최적화된 집합 통신(collective communication)을 활용할 수 있도록 지원한다. 각 GPU에는 최대 3개의 800Gbps AMD 펜산도 ‘불카노’ AI-NIC를 장착할 수 있어, 손실 없는 고속의 프로그래밍 가능한 연결성을 제공하고, RoCE 및 UEC 표준을 지원한다. 혁신적인 UALink 및 UALoE 패브릭은 고객이 워크로드를 효율적으로 확장하고, 메모리 병목 현상을 줄이며, 수 조 파라미터 단위의 대규모 모델을 통합 관리할 수 있도록 지원한다. 확장 가능한 아키텍처는 CPU를 경유하지 않고 홉(hop)과 지연시간을 최소화하며, UALoE 패브릭을 통해 전송되는 UALink 프로토콜을 통해 랙 내 GPU 간 직접적이고 하드웨어 일관성 있는 네트워킹 및 메모리 공유를 가능하게 한다. UALink는 AI 가속기를 위해 특별히 설계된 개방형 고속 상호연결 표준으로 광범위한 산업 생태계의 지원을 받는다. 이를 통해 고객은 개방형 표준 기반 인프라에서 까다로운 AI 워크로드를 실행하는 데 필요한 유연성, 확장성 및 안정성을 확보할 수 있다. 한편, OCI는 대규모 AI 구축, 훈련 및 추론을 수행하는 고객에게 더 많은 선택권을 제공하기 위해 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트의 정식 출시를 발표했다. 이 제품은 최대 13만 1072개의 GPU로 확장 가능한 제타스케일 OCI 슈퍼클러스터에서 이용 가능하다. AMD 인스팅트 MI355X 기반 셰이프는 탁월한 가치, 클라우드 유연성 및 오픈소스 호환성을 위해 설계되었다.
작성일 : 2025-10-17
Arm, 향상된 AI 경험 제공 위해 메타와 전략적 파트너십 강화
Arm은 메타(Meta)와 AI 소프트웨어부터 데이터센터 인프라에 이르는 컴퓨팅의 전 영역에서 AI 효율성을 확장하기 위해 전략적 파트너십을 강화했다고 밝혔다. 양사는 이번 협력을 통해 전 세계 수십억 명의 사용자에게 한층 향상된 AI 경험을 제공할 계획이다. 온디바이스 인텔리전스를 지원하는 밀리와트급 저전력 디바이스부터 최첨단 AI 모델 학습을 담당하는 메가와트급 대규모 시스템까지, 메타의 글로벌 플랫폼을 구동하는 전 영역의 컴퓨팅 환경에서 AI 성능을 최적화하겠다는 것이다. 이번 전략적 파트너십 강화는 양사가 다년간 지속해온 하드웨어 및 소프트웨어 공동 설계 협력을 기반으로 한다. Arm의 전력 효율적 AI 컴퓨팅 기술력과 메타의 AI 제품, 인프라, 오픈소스 기술 혁신을 결합해 성능과 효율성을 대폭 향상시키는 것을 목표로 한다. 페이스북과 인스타그램 등 메타 앱 제품군 전반의 검색 및 개인화를 지원하는 메타의 AI 기반 순위 및 추천 시스템은 x86 시스템 대비 고성능, 저전력 소비를 제공하기 위해 Arm 네오버스(Neoverse) 기반 데이터센터 플랫폼을 활용할 예정이다. 네오버스는 메타가 인프라 전반에 걸쳐 전력 대비 성능 효율을 달성할 수 있도록 지원하며, 하이퍼스케일 환경에서 Arm 컴퓨팅의 효율과 확장성을 강화한다. 양사는 컴파일러와 라이브러리부터 주요 AI 프레임워크에 이르기까지 메타의 AI 인프라 소프트웨어 스택을 Arm 아키텍처에 최적화하기 위해 긴밀히 협력했다. 여기에는 Facebook GENeral Matrix Multiplication(FBGEMM) 및 파이토치(PyTorch)와 같은 오픈소스 구성 요소의 공통 튜닝을 포함되며, Arm의 벡터 확장 기능과 성능 라이브러리를 활용해 추론 효율과 처리량에서 측정 가능한 향상을 이뤘다. 이러한 최적화는 오픈 소스 커뮤니티에 제공되어 글로벌 AI 에코시스템 전반에 영향력을 확대하고 있다. 이번 파트너십은 파이토치 머신러닝 프레임워크, ExecuTorch 엣지 추론 런타임 엔진, vLLM 데이터센터 추론 엔진 전반에 걸쳐 AI 소프트웨어 최적화를 한층 강화한다. 특히 Arm KlediAi로 최적화된 ExecuTorch 기반을 고도화해 수십억 대의 기기에서 효율성을 높이고, 모델 배포를 더욱 간소화함으로써 에지에서 클라우드까지 AI 애플리케이션 성능을 가속화할 예정이다. 이러한 오픈소스 기술 프로젝트는 메타 AI 전략의 핵심으로, 추천 시스템부터 대화형 인텔리전스에 이르기까지 다양한 AI 개발과 배포를 가능하게 한다. 양사는 앞으로도 오픈소스 프로젝트에 대한 최적화를 지속 확장해 전 세계 수백만명의 개발자가 Arm 기반 환경에서 더욱 효율적인 AI를 구축하고 배포할 수 있도록 지원할 계획이다. 메타의 산토시 야나르단(Santosh Janardhan) 인프라 부문 대표는 “플랫폼 경험부터 우리가 만드는 디바이스에 이르기까지, AI는 사람들이 연결하고 창조하는 방식을 변화시키고 있다”면서, “Arm과의 파트너십을 통해 메타 애플리케이션 및 기술을 사용하는 30억 명이 넘는 사용자에게 혁신을 효율적으로 제공할 수 있게 됐다”고 밝혔다. Arm의 르네 하스(Rene Haas) CEO는 “차세대 AI 시대는 대규모 효율성을 실현하는 것이 핵심이 될 것”이라며, “메타와의 협력을 통해 Arm의 전력대비 성능 우위와 메타의 AI 혁신 역량을 결합해 밀리와트급부터 메가와트급까지 모든 영역에서 더욱 스마트하고 효율적인 인텔리전스를 구현할 것”이라고 말했다.
작성일 : 2025-10-17
오라클, 대규모 클라우드 AI 클러스터 ‘OCI 제타스케일10’ 공개
오라클이 클라우드 환경 내의 대규모 AI 슈퍼컴퓨터인 ‘오라클 클라우드 인프라스트럭처(OCI) 제타스케일10(Zettascale10)’을 발표했다. OCI 제타스케일10은 여러 데이터센터에 걸쳐 수십만 개의 엔비디아 GPU를 연결하여 멀티 기가와트급 클러스터를 형성하며, 최대 16 제타플롭스(zettaFLOPS)에 이르는 성능을 제공한다. OCI 제타스케일10은 스타게이트의 일환으로 미국 텍사스주 애빌린에서 오픈AI(OpenAI)와 협력하여 구축한 대표 슈퍼클러스터를 구성하는 기반 패브릭이다. 차세대 오라클 액셀러론 RoCE(Oracle Acceleron RoCE) 네트워킹 아키텍처를 기반으로 구축된 OCI 제타스케일10은 엔비디아 AI 인프라로 구동된다. 오라클은 강화된 확장성, 클러스터 전반에 걸친 초저지연 GPU-GPU 통신, 가격 대비 높은 성능, 향상된 클러스터 활용도, 대규모 AI 워크로드에 필요한 안정성을 제공한다는 점을 내세운다. OCI 제타스케일10은 2024년 9월 출시된 첫 번째 제타스케일 클라우드 컴퓨팅 클러스터의 차세대 모델이다. OCI 제타스케일10 클러스터는 대규모 기가와트급 데이터센터 캠퍼스에 배치되며, 2킬로미터 반경 내에서 밀도를 높여 대규모 AI 학습 워크로드에 최적화된 GPU-GPU 지연 성능을 제공한다. 이 아키텍처는 오픈AI와 협력하여 애빌린 소재 스타게이트 사이트에 구축 중에 있다. OCI는 고객에게 OCI 제타스케일10의 멀티기가와트 규모 배포를 제공할 계획이다. 초기에는 최대 80만 개의 엔비디아GPU를 탑재한 OCI 제타스케일10 클러스터 배포를 목표로 한다. 이는 예측 가능한 성능과 강력한 비용 효율을 제공하며, 오라클 액셀러론의 초저지연 RoCEv2 네트워킹으로 높은 GPU-GPU 대역폭을 구현한다. OCI는 현재 OCI 제타스케일10 주문을 접수 중이라고 전했다. 이 제품은 2026년 하반기 출시 예정으로, 최대 80만 개의 엔비디아 AI 인프라 GPU 플랫폼을 기반으로 제공될 예정이다. 오라클의 마헤쉬 티아가라얀 OCI 총괄 부사장은 “OCI 제타스케일10을 통해 우리는 OCI의 혁신적인 오라클 액셀러론 RoCE 네트워크 아키텍처를 차세대 엔비디아 AI 인프라와 결합해 전례 없는 규모에서 멀티기가와트급 AI 용량을 제공한다. 고객은 성능 단위당 전력 소비를 줄이면서 높은 안정성을 달성해 가장 큰 규모의 AI 모델을 실제 운영 환경에 구축, 훈련 및 배포할 수 있다. 또한 강력한 데이터 및 AI 주권 제어 기능을 통해 오라클의 분산형 클라우드 전반에서 자유롭게 운영할 수 있다”고 말했다. 오픈AI의 피터 호셸레(Peter Hoeschele) 인프라 및 산업 컴퓨팅 부문 부사장은 “OCI 제타스케일10 네트워크 및 클러스터 패브릭은 오라클과 함께 구축한 슈퍼클러스터인 텍사스주 애빌린에 위치한 대표 스타게이트 사이트에서 최초로 개발 및 배포되었다. 고도로 확장 가능한 맞춤형 RoCE 설계는 기가와트 규모에서 패브릭 전체 성능을 극대화하면서도 대부분의 전력을 컴퓨팅에 집중시켜 준다. 오라클과 협력하여 애빌린 사이트를 비롯한 스타게이트 프로젝트 전반을 전개해 나갈 수 있어 매우 기쁘게 생각한다”고 말했다.
작성일 : 2025-10-16
인텔, 팬서 레이크 아키텍처 공개하면서 18A 공정 기반의 AI PC 플랫폼 제시
인텔은 차세대 클라이언트 프로세서인 인텔 코어 울트라 시리즈 3(코드명 팬서 레이크)의 아키텍처 세부 사항을 공개했다. 2025년 말 출시 예정인 팬서 레이크는 미국에서 개발 및 제조되며, 진보된 반도체 공정인 인텔 18A로 제작된 인텔의 첫 번째 제품이 될 것으로 보인다. 인텔 코어 울트라 시리즈 3 프로세서는 인텔 18A 기반으로 제조된 클라이언트 시스템 온 칩(SoC)으로, 다양한 소비자 및 상업용 AI PC, 게이밍 기기, 에지 설루션을 구동할 예정이다. 팬서 레이크는 확장 가능한 멀티 칩렛 아키텍처를 도입하여 파트너사들에게 폼 팩터, 세그먼트, 가격대 전반에 걸쳐 향상된 유연성을 제공한다. 인텔이 소개한 팬서 레이크의 주요 특징은 ▲루나 레이크 수준의 전력 효율과 애로우 레이크 급 성능 ▲최대 16개의 새로운 P-코어 및 E-코어로 이전 세대 대비 50% 이상 향상된 CPU 성능 제공 ▲최대 12개의 Xe 코어를 탑재한 새로운 인텔 아크 GPU로, 이전 세대 대비 50% 이상 향상된 그래픽 성능 제공 ▲최대 180 플랫폼 TOPS(초당 수 조의 연산)를 지원하는 차세대 AI 가속화를 위한 균형 잡힌 XPU 설계 등이다.     인텔은 팬서 레이크를 PC뿐 아니라 로봇 공학을 포함한 에지 애플리케이션으로 확장할 계획이다. 새로운 인텔 로봇 공학 AI 소프트웨어 제품군과 레퍼런스 보드는 정교한 AI 기능을 갖춘 고객이 팬서 레이크를 제어 및 AI /인식 모두에 활용하여 비용 효율적인 로봇을 신속하게 혁신하고 개발할 수 있도록 지원한다.  팬서 레이크는 2025년 대량 생산을 시작하며, 첫 번째 SKU는 연말 이전에 출하될 예정이다. 또한 2026년 1월부터 폭넓게 시장에 공급될 예정이다.  한편, 인텔은 또한 2026년 상반기에 출시될 예정인 인텔 18A 기반 서버 프로세서인 제온 6+(코드명 클리어워터 포레스트)를 미리 공개했다. 팬서 레이크와 클리어워터 포레스트는 물론 인텔 18A 공정으로 제조된 여러 세대의 제품들은 모두 애리조나주 챈들러에 위치한 인텔의 공장인 팹 52에서 생산된다. 인텔의 차세대 E-코어 프로세서인 인텔 제온 6+는 인텔이 지금까지 개발한 가장 효율적인 서버 프로세서로, 인텔 18A 공정으로 제작된다. 인텔은 2026년 상반기에 제온 6+를 출시할 계획이다.  제온 6+의 주요 특징은 ▲최대 288개의 E-코어 지원 ▲전 세대 대비 사이클당 명령어 처리량(IPC) 17% 향상 ▲밀도, 처리량 및 전력 효율의 개선 등이다. 클리어워터 포레스트는 하이퍼스케일 데이터센터, 클라우드 제공업체 및 통신사를 위해 설계되어 조직이 워크로드를 확장하고 에너지 비용을 절감하며 더 지능적인 서비스를 제공할 수 있도록 지원한다.  인텔 18A는 미국에서 개발 및 제조된 최초의 2나노미터급 노드로, 인텔 3 대비 와트당 성능이 최대 15% 향상되고 칩 밀도가 30% 개선되었다. 이 공정은 미국 오리건 주 공장에서 개발 및 제조 검증 과정을 거쳐 초기 생산을 시작했으며, 현재 애리조나 주에서 대량 생산을 향해 가속화되고 있다. 인텔은 향후 출시될 자사의 클라이언트 및 서버 제품에서 최소 3세대에 인텔 18A 공정을 활용할 계획이다. 인텔 18A는 10년 만에 선보이는 인텔의 새로운 트랜지스터 아키텍처 리본FET(RibbonFET)를 적용해, 더 큰 확장성과 효율적인 스위칭을 통해 성능과 에너지 효율을 높인다. 그리고 새로운 백사이드 전원 공급 시스템인 파워비아(PowerVia)를 통해 전력 흐름과 신호 전달을 개선한다. 인텔의 첨단 패키징 및 3D 칩 적층 기술인 포베로스(Foveros)는 여러 칩렛을 적층 및 통합하여 고급 시스템 온 칩(SoC) 설계로 구현함으로써 시스템 수준에서 유연성, 확장성 및 성능을 제공한다.  인텔의 립부 탄(Lip-Bu Tan) CEO는 “우리는 향후 수십 년간 미래를 형성할 반도체 기술의 큰 도약으로 가능해진 흥미진진한 컴퓨팅의 새 시대에 접어들고 있다”며, “차세대 컴퓨팅 플랫폼은 선도적인 공정 기술, 제조 역량 및 첨단 패키징 기술과 결합되어 새로운 인텔을 구축하는 과정에서 전사적 혁신의 촉매가 될 것이다. 미국은 항상 인텔의 최첨단 연구개발, 제품 설계 및 제조의 본거지였다. 미국내 운영을 확대하고 시장에 새로운 혁신을 선보이면서 이러한 유산을 계승해 나가게 되어 자랑스럽게 생각한다”고 말했다.
작성일 : 2025-10-10
델, 텔레콤 업계와 엔터프라이즈 에지 구축에 최적화된 서버 신제품 공개
델 테크놀로지스가 오픈랜(Open RAN) 및 클라우드랜(Cloud RAN)에 적합한 최적의 성능과 연결성을 제공함으로써 에지 및 통신 인프라 혁신을 견인하는 서버 신제품 ‘델 파워엣지 XR8720t(Dell PowerEdge XR8720t)’를 공개했다. 전통적으로 클라우드랜 및 고도화된 에지 컴퓨팅을 구축하기 위해서는 여러 대의 서버를 설치해야 했기 때문에 높은 비용, 운영상의 복잡성, 공간 부족, 전력 수요 등이 걸림돌로 지적됐다. 이러한 비효율성과 확장성의 제한으로 차세대 애플리케이션에 필요한 실시간 성능 요구 사항을 충족하기 어려웠다. 델 파워엣지 XR8720t는 단일 서버 기반 클라우드랜 설루션으로, 인프라를 간소화하고 성능과 효율을 강화하며, 최신 네트워크 및 에지 구축 환경에서 총소유비용(TCO)을 절감하도록 돕는다.      파워엣지 XR8720t 컴퓨팅 슬레드는 델 파워엣지 XR8000 플랫폼과 통합되며, 까다로운 환경에서의 인프라 구축에 걸림돌이 되는 성능 문제를 해결하게끔 설계됐다. 향상된 처리 능력과 확장된 연결성을 통해 고성능 애플리케이션을 강력하게 지원할 수 있다.  파워엣지 XR8720t는 클라우드와 기존 RAN 아키텍처 간의 성능 격차를 해소하며, 이전 세대 대비 두 배 이상의 처리 성능을 제공한다. 컴팩트한 2U 구성에서 최대 72코어와 24개의 SFP28 연결 포트를 지원한다. 단일 서버 통합으로 다중 서버 아키텍처 대비 구축 시간, 유지보수 및 운영의 복잡성을 낮췄다.  XR8720t는 인텔 vRAN 부스트(Intel vRAN Boost)와 인텔 이더넷(Intel Ethernet) E830-XXVDA8F 네트워킹 기술이 통합된 인텔 제온 6 SoC(Intel Xeon 6 SoC)로 구동된다. 정밀한 네트워크 타이밍 동기화를 위해 PTP, PTM 및 SyncE를 지원하며, 하드웨어 기반 타이밍 팔로어를 탑재했다. 까다로운 클라우드랜 워크로드에 필요한 처리 성능, 포트 밀도(24x SFP28) 및 네트워크 대역폭(600GbE)을 제공하며, 공간 제약이 있는 셀 사이트 구축을 위해 설계된 430mm 깊이의 컴팩트한 사이즈가 특징이다. CPU 기반 워크로드에 AI 기능을 활용하여 에이전틱 AI, 실시간 분석 및 머신러닝과 같은 고급 에지 AI 사용 사례를 지원한다. 유연한 구성으로 필요에 따라 GPU 지원도 가능하여 AI 잠재력을 더욱 확장시킬 수 있다. 극한 환경을 위해 설계된 XR8720t는 영하 5℃에서부터 영상 55℃까지 작동하며, 모듈식 설계로 손쉬운 유지보수 및 업그레이드가 가능하다. 네트워크 장비 구축 시스템(NEBS) 레벨 3 준수 서버로, 전면 접근형 I/O를 통해 가동 중단 시간 및 운영 복잡성을 줄인다. 통신, 에지, 군용 애플리케이션을 위한 확장된 내구성과 신뢰성을 갖췄으며, 지능형 냉각 설계로 비좁은 공간에서도 최적의 냉각 성능을 구현한다. 통신 사업자들은 이 설루션을 활용해 성능 집약적 애플리케이션을 효과적으로 운영하는 동시에 비용을 절감하며, 에지에서 AI를 수월하게 구동시킬 수 있다. 텔레콤뿐 아니라, 리테일, 국방, 제조 등 다양한 분야의 기업들이 AI, 머신러닝 및 기타 컴퓨팅 집약적 워크로드와 높은 수준의 동기화가 요구되는 정밀한 작업을 수행할 수 있다. 한국 델 테크놀로지스의 김경진 총괄사장은 “델 테크놀로지스는 통신 및 에지 인프라 혁신에 지속적으로 기여하고 있다”고 말하며, “고객들은 델 파워엣지 XR7620t를 활용해 구축하기 까다로운 오픈랜이나 클라우드랜 인프라를 단순화하고, 더 강력하고 효율적이며 AI에 최적화된 네트워크를 완성시킬 수 있을 것으로 기대한다”고 덧붙였다.
작성일 : 2025-10-01
고충실도 제트 유동 시뮬레이션으로 항공우주 산업 혁신
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (26)   이번 호에서는 고속 제트 유동 시뮬레이션에서 마주하게 되는 주요 도전 과제를 설명한다. 또한 피델리티 LES 솔버(Fidelity LES Solver)의 기능을 소개하고, 이를 활용한 사례 연구를 통해 그 잠재력을 강조하고자 한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   초고속 제트 유동을 시뮬레이션하는 것은 기술적으로 매우 도전적인 과제이자 유체역학 분야의 흥미로운 최전선이다. 특히 초음속 및 극초음속 비행 기술이 발전함에 따라, 이러한 극한 속도에서의 복잡한 유동 거동을 이해하는 것은 점점 더 중요해지고 있다. 마하 1 이상의 속도에서는 공기역학적 힘의 성질이 크게 변하며, 충격파가 발생한다. 이 충격파는 특정한 유동 패턴을 만들어내며, 이는 항공기의 성능, 안정성 및 기동성에 큰 영향을 미칠 수 있다. 비행 속도가 마하 3을 넘어 특히 스크램제트 엔진이 작동하는 구간에 이르면, 마찰 및 압축으로 인해 발생하는 온도 변화가 섭씨 1500도 이상에 달할 수 있다. 이러한 극한의 열 환경은 설계 시 제대로 고려되지 않으면 재료 피로와 파손을 초래할 수 있다. 하지만 피델리티 LES 솔버(구 Cascade CharLES)와 같은 전산 유체역학(CFD) 도구의 발전으로, 연구자는 이제 고속 비행의 물리 현상을 과거에는 불가능했던 수준의 정밀도로 탐구할 수 있게 되었다. 그러나 이러한 극한 조건을 정확히 시뮬레이션하려면 무엇이 필요할까? 수많은 시뮬레이션 과제를 어떻게 해결할 수 있을까?     고속 제트 유동 시뮬레이션의 도전 과제 고속 제트 유동을 시뮬레이션하는 것은 온도, 압력, 난류 간의 복잡한 상호작용으로 인해 상당한 어려움을 동반한다. 높은 레이놀즈 수에서는 난류가 매우 불규칙하게 변하기 때문에, 정확한 결과를 얻기 위해서는 강력한 알고리즘과 고성능 컴퓨팅 자원이 필수이다. 가장 큰 과제 중 하나는 압축성 효과를 포착하는 것이다. 고속 유동에서는 밀도 변화 및 충격파와의 상호작용이 유동의 거동을 극적으로 변화시키므로, 이를 정확히 모델링하는 것이 매우 중요하다. 또한 고속 제트 내부의 복잡한 유동 구조를 고려할 때 효과적인 난류 모델링이 필수이며, 정확성과 계산 효율 간의 균형을 찾는 것은 여전히 큰 도전 과제이다. 또 다른 핵심 요소는 열 전달과 수치적 안정성이다. 급격한 온도 구배(gradient)는 경계 조건의 정교한 정의를 요구하며, 그렇지 않으면 시뮬레이션 내에서 반사 오류(artifact)가 발생할 수 있다. 고해상도 수치 기법은 이러한 구배를 포착하는 데 필수이지만, 그만큼 계산 비용도 증가한다. 소음 예측 역시 중요한 과제이다. 제트 소음을 정확하게 예측하려면 유동 시뮬레이션과 함께 공력음향 모델을 통합하여, 다양한 환경에서의 음파 전파를 효과적으로 재현해야 한다. 여기에 연료 분사를 포함하면 혼합(mixing) 모델링이 추가로 필요하며, 이는 전체 제트 성능에 영향을 주는 핵심 요소로 작용한다. 또한, 실험 데이터와의 검증 문제도 간과할 수 없다. 실험적 기준이 제한적인 경우가 많기 때문에 시뮬레이션은 불완전한 데이터와 상이한 가정을 기반으로 진행되어야 하며, 이는 결과 검증을 어렵게 만든다. 이러한 모든 문제는 정교한 전산 도구와 안정적인 고성능 컴퓨팅 인프라가 필수임을 보여준다. 이를 통해 고속 제트 유동 시뮬레이션의 정확도와 효율을 동시에 향상시킬 수 있다.   해결책 : 피델리티 LES 솔버 피델리티 LES 솔버는 극초음속 및 초음속 유동 시뮬레이션을 위해 개발된 고충실도 전산 유체 역학(CFD) 분석 도구이다. 이 도구는 Large Eddy Simulation(LES)을 고속 항공우주 분야에 확장하여, 극한 유동 환경에서의 고유한 과제를 해결하도록 설계되었다. 고급 수치 기법, 고품질 격자 생성, 뛰어난 병렬 확장성을 결합하여 복잡한 유동을 정밀하게 예측할 수 있다. 다면체 격자 생성(polyhedral mesh generation) : 고급 클리핑 보로노이 다이어그램(clipped Voronoi diagrams)을 활용하여 복잡한 형상에서도 강력하고 효율적인 격자 생성을 지원한다. 이를 통해 정밀하고 확장 가능한 시뮬레이션이 가능하다. 확장성(scalability) : CPU 및 GPU 기반 고성능 컴퓨팅 환경 모두에서 원활하게 작동하도록 설계되어, 고해상도 결과를 빠르고 효율적으로 제공한다. 예측 중심 고충실도 시뮬레이션 : 최신 알고리즘을 통해 충격파 상호작용부터 음향파 전파에 이르기까지 고속 제트 유동의 복잡한 물리 현상을 정밀하게 재현할 수 있다.   사례 연구 : 비선형 음향파형 분석 피델리티 LES 솔버의 성능을 입증하기 위해, 고속 제트 유동을 시뮬레이션하고 그 음향 특성을 분석하는 사례 연구가 수행되었다. 이 연구의 주요 목적은 출구 마하수 3(Mach 3)의 제트 노즐에서 방출된 비선형 음향파형의 전파 현상을 분석하고, 그 결과를 실험 데이터와 비교·검증하는 데 있었다.   ▲ 고속 제트 유동에서의 누적 비선형 음향파형 왜곡 분석     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
HP Z2 미니 G1a 리뷰 : 초소형 워크스테이션의 AI·3D 실전 성능
워크스테이션은 콤팩트한 외형 속에 데스크톱급 성능을 담아낸 전문가용 시스템이다. 단순한 소형 PC와 달리, 3D·영상·AI·엔지니어링 등 고성능이 필요한 크리에이터와 전문 작업자를 위해 설계된 것이 특징이다. 이번 리뷰에서는 실제 소프트웨어 워크플로와 AI·LLM 테스트까지 다양한 관점에서 심층 평가를 진행했다.   ▲ HP Z2 미니 G1a   하드웨어 및 설치 환경 HP Z2 미니 G1a(HP Z2 Mini G1a)의 가장 큰 강점 중 하나는 강력한 하드웨어 스펙이다. AMD 라이젠 AI 맥스+ 프로 395(AMD Ryzen AI Max+ PRO 395) 프로세서(16코어 32스레드, 3.00GHz), 최대 128GB LPDDR5X 메모리, 8TB NVMe SSD, 그리고 16GB VRAM을 탑재한 라데온 8060S(Radeon 8060S) 통합 그래픽 등, 동급 소형 워크스테이션에서는 보기 힘든 구성을 갖췄다. 특히 메모리는 최대 128GB까지 확장 가능하며, 이 중 최대 96GB를 그래픽 자원에 독점 할당할 수 있다. 듀얼 NVMe 및 RAID 지원으로 대용량 데이터 처리와 안정성을 확보했으며, 50TOPS에 달하는 NPU 성능 덕분에 AI 추론 등 최신 워크로드도 소화할 수 있다. 테스트는 윈도우 11 프로 기반, 64GB RAM과 16GB 라데온 8060S, 듀얼 NVMe SSD가 장착된 구성으로 진행됐다.   ▲ HP Z2 미니 G1a의 하드웨어 스펙   전문 소프트웨어 워크플로 직접 HP Z2 미니 G1a를 사용해 본 첫 인상은 “미니 사이즈에서 이 정도 성능이라니?”였다. 크기는 작지만, 성능은 결코 작지 않았다. 시네마 4D(Cinema 4D)로 복잡한 3D 신을 제작하고, 지브러시(ZBrush)에서 대형 폴리곤 모델링과 서브툴 멀티 작업을 해 보니 작업 흐름이 부드럽고, 장시간 동작에도 다운이나 랙 없이 꾸준한 성능으로 작업할 수 있었다. 시네벤치(Cinebench), 시네마 4D, 지브러시, 애프터 이펙트(After Effects), AI 생성형 이미지·영상, LLM 실행 등 전 영역에서 성능 저하를 체가하기 어려웠다. 시네마 4D에서는 수십만~수백만 폴리곤에 달하는 대형 3D 신 파일을 불러오고, 뷰포트 내 실시간 조작이나 배치 렌더링, 애니메이션 키프레임 작업에서 CPU 기반 멀티스레드 성능이 큰 장점을 발휘했다. 시네벤치 2024 멀티코어 점수는 1832점으로, 애플의 M1 울트라보다 높은 수치를 달성해 전문 사용자에게 매력적인 대안이 될 것으로 보인다.   ▲ 시네마 4D에서 테스트   애프터 이펙트 환경에서는 GPU 가속 지원이 부족한 점에도 불구하고, 강력한 CPU 성능 덕분에 고해상도(4K) 다중 레이어 영상 합성, 이펙트, 복수 트랙 편집에서도 랙이나 끊김 없이 작업을 이어갈 수 있었다. 시네마 4D, 지브러시, 콤피UI(ComfyUI) 등과의 멀티태스킹 환경에서도 리소스 병목 없이 쾌적하게 여러 프로그램을 병행 실행하는 것이 가능했다.   ▲ 애프터 이펙트에서 테스트   아이언캐드 대형 어셈블리 테스트 엔지니어링 현장에서 요구되는 대형 어셈블리 작업을 검증하기 위해 동료와 함께 아이언캐드(IronCAD)로 2만여 개(2만 1800개)에 달하는 파트가 포함된 820MB 대용량 CAD 파일을 로딩해 테스트를 진행했다. 이 워크플로는 최근 산업·기계 설계 현장에서 자주 마주치는 극한 환경을 그대로 반영한 조건이었다. 테스트 결과, HP Z2 마니 G1a의 평균 FPS는 약 19로 측정됐다. 이는 노트북용 RTX2060 GPU가 내는 실제 CAD 작업 성능과 동등한 수준에 해당한다. 고용량 모델의 빠른 불러오기, 실시간 3D 뷰 조작, 개별 파트 속성 편집 작업에서 큰 병목이나 지연 없이 효율적인 사용 경험을 확인했다. 대형 파일임에도 불구하고 시스템 자원 부족이나 다운 없이 멀티태스킹 환경에서도 안정적으로 작업이 이어지는 점이 인상적이었다.   ▲ 아이언캐드에서 테스트   AI 및 LLM 활용 AI 작업이나 LLM 실행에서도 강점이 명확했다. 콤피UI에서 Wan2.2, Video-wan2_2_14B_t2v 같은 고사양 텍스트-비디오 생성 모델도 무리 없이 돌릴 수 있었고, LM 스튜디오(LM Studio)와 올라마(Ollama) 기반의 대형 LLM 역시 빠른 추론 속도를 보여줬다. NPU(50TOPS)의 연산 가속과 64GB RAM의 넉넉함 덕분에, AI 모델 로컬 실행/추론에서 항상 안정적인 환경이 보장된다는 느낌이다. 오픈소스 AI 이미지 생성이나 텍스트-비디오 워크플로도 CPU-메모리 조합만으로 병목 없이 부드럽게 동작했다. 쿠다(CUDA)를 지원하지 않는 환경의 한계로 일부 오픈소스 AI 툴은 실행에 제약이 있었으나, CPU와 NPU 조합만으로도 로컬 기반 AI 이미지 생성 및 텍스트-비디오 워크플로에서 동급 대비 빠르고 매끄러운 결과를 보였다.    ▲ 콤피UI에서 테스트   LLM 분야에서는 LM 스튜디오와 올라마를 이용해 7B~33B 규모의 다양한 대형 언어 모델을 구동했다. 64GB RAM과 50TOPS NPU의 지원 덕분에 GPT-3.5, 라마 2(Llama 2) 등 대용량 파라미터 기반의 모델도 실제 업무에서 실시간 질문-응답, 코드 자동완성, 문서 요약 등에 무리 없이 활용 가능했다.   ▲ LLM 테스트   통합 메모리 아키텍처 효과 Z2 미니 G1a의 최고 강점은 UMA(통합 메모리 아키텍처)에 있다. 이 기술은 시스템 메모리(RAM)의 상당 부분을 GPU 연산에 직접 할당해, 기존 분리형 GPU VRAM 성능의 한계를 극복한다. 실제로 탑재된 메모리(64GB~128GB 중 구매 옵션에 따라 선택)를 GPU에 최대 96GB까지 독점적으로 할당할 수 있으며, 복잡한 3D·그래픽 집약적 프로젝트 처리와 생성형 AI·LLM 등의 작업에서 병목 없이 고효율 워크플로를 경험할 수 있었다.   실사용·테스트를 위한 리뷰 환경 제품 리뷰 당시 64GB RAM 탑재 모델을 기준으로, 기본 설정에서는 16~32GB를 GPU에 할당해 일반 CAD·3D·AI 작업을 진행했다. 또한 고해상도 3D 렌더나 생성형 AI 영상 작업에서는 BIOS/소프트웨어에서 48~50GB까지 VRAM 할당을 수동 조정해 본 결과, 대형 프로젝트 파일에서 뷰포트 프레임 저하나 메모리 부족 경고 없이 안정적인 작업 환경을 제공했다. 반대로 GPU에 할당하는 메모리를 늘리면 고용량 데이터 병목이 해결되고, 3D 뷰포트 FPS나 AI 추론 속도 및 이미지 품질·정확도가 확실히 향상되는 것이 일관되게 확인되었다. 실제 기업 환경에서는 128GB 모델을 쓰면 최대 96GB까지 VRAM 할당이 가능하므로 GPU 메모리 병목이 무의미해지고, 기존 미니PC와는 비교할 수 없는 확장성과 작업 안전성을 확보할 수 있다.   아쉬운 점 첫째, 테스트용으로 받았던 장비에서는 HDMI 단자의 부재로 미니 DP로 모니터를 연결해야 했는데, 이는 테스트했던 데모 제품의 기본 옵션에 해당한다. 하지만 HP Z2 미니 G1a는 기업용/구매 시 고객 요구에 따라 HDMI 포트를 포함한 맞춤형 Flex I/O 슬롯 옵션 구성이 가능하다고 한다. 실제로 HP 공식 문서 및 판매 페이지에 따르면, 썬더볼트4(Thunderbolt4), USB-C, 미니 DP 외에도 HDMI를 Flex IO 슬롯에 추가할 수 있으므로, 다수의 모니터·TV·AV 장비로 연결해 사용하는 환경에서도 문제없이 세팅할 수 있다. 둘째, GPU가 AMD 라데온 기반이기 때문에 엔비디아 CUDA를 필요로 하는 GPU 가속 작업(예 : Redshift GPU 렌더러, 딥러닝 프레임워크)은 아예 테스트 자체가 불가능하다. AI, 3D, 영상 워크플로에서 CUDA 생태계를 사용하는 환경에서는 제품 선택 전 미리 확인이 필요하다. 셋째, 고부하 작업 시 팬 소음이 다소 발생할 수 있으므로 조용한 사무실 환경이라면 쿼이엇 모드 설정이 필요하다.   결론 및 추천 HP Z2 미니 G1a 워크스테이션은 한정된 공간에서 고성능이 필요한 크리에이티브 및 AI 전문가, 엔지니어, 디지털 아티스트에게 탁월한 선택지가 될 수 있다. 실제로 써보면, 공간 제약이 있는 환경에서도 3D 모델링, 영상 편집, 생성형 AI, LLM 추론 등 고사양 멀티태스킹을 안정적으로 병행할 수 있었고, 기업용 보안, ISV 인증, 최신 네트워크까지 갖췄다. 다양한 작업을 동시에 손쉽게 처리할 수 있다는 점에서 미니 데스크톱 중에서도 실전 현장에 ‘매우 쓸 만한’ 최상위 선택지라고 생각이 든다. 비록 CUDA 미지원 및 HDMI 포트 부재라는 한계가 있지만, CPU·메모리 중심의 워크플로에선 동급 최고 수준의 안정성과 성능을 보여준다. 최신 AI 및 LLM, 3D·영상·컴포지팅 등 멀티태스킹이 잦은 전문 분야라면 이 제품이 오랜 기간 든든한 실전 파트너가 될 것이다. 견적 상담 문의하기 >> https://www.hp.com/kr-ko/shop/hp-workstation-amd-app   ■ 배현수 부장 마루인터내셔널(맥슨 한국총판) 기술지원팀, AI 크리에이터, 모션그래픽 디자이너     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01