• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "형상"에 대한 통합 검색 내용이 2,402개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
크레오 파라메트릭 12.0의 부품 모델링 개선 사항
제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (2)   PTC는 2025년 4월 크레오 파라메트릭(Creo Parametric) 12 버전을 새롭게 출시했다. 이번 버전은 현업 사용자들의 피드백을 반영하여 설계, 시뮬레이션, 제조, MBD(모델 기반 정의), 복합재 설계 등 다양한 영역에서 기능을 개선하여 생산성과 사용성이 향상되었다. 이번 호에서는 크레오 파라메트릭 12 버전에서 부품 모델링(part modeling) 부문의 주요 개선 사항을 살펴보자.   ■ 김성철 디지테크 기술지원팀의 이사로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   스케치 개선 크레오 파라메트릭 12에서는 스케치 선 중점 메뉴가 새롭게 추가되고 팔레트에 다양한 레이스트랙 형태가 포함되었다. 스케치에서 선 중점 기능으로 선택한 점을 중심으로 대칭 선을 쉽게 생성할 수 있다.스케치(Sketch) → 선(Line) → 선 중점(Line Mid-point)을 클릭하고 중심 점을 배치하며 점을 기준으로 대칭선을 빠르게 생성할 수 있다.     또한 스케치 팔레트에 다양한 치구 구조와 축 생성을 포함하는 추가 레이스트랙 형태를 지원하여, 필요한 단면을 더 빠르게 스케치할 수 있다.     스케처 투영 및 오프셋 기능 개선 스케치 투영 및 오프셋 도구의 복합 커브 작업 워크플로가 개선되어 보다 유연하게 스케치 작업을 진행할 수 있다. 생성된 복합 커브의 개별 세그먼트에 대한 선택과 편집 작업을 지원하며, 스케치 투영에서 다른 도구로 전환할 때 기존에 생성된 형상이 그대로 유지된 상태로 추가 작업을 진행할 수 있다.     스케처(Sketcher) → 투영(Project) 혹은 스케처(Sketcher) → 오프셋(Offset)을 클릭한다. 또한 복합 커브의 세그먼트 ID가 이전보다 더 안정적으로 관리된다. 체인 대체 및 재정의 작업 이후에도 해당 형상의 세그먼트가 그대로 유지되어 안정적으로 참조 편집을 진행할 수 있다.   서피스 근사화 크레오 파라메트릭 12 버전에는 다중 서피스를 하나의 근사화된 서피스로 통합하는 새로운 기능이 추가되었다.     이 기능을 활용하면 복수의 서피스 패치를 단일 서피스로 변환하여, 서피스 수를 줄이고 모델을 단순화할 수 있다. 특히 오프셋한 서피스와 같이 불규칙하거나 왜곡된 형상이나 모델링 과정에서 발생한 특이점을 효과적으로 보정하는 데 유용하다. 이를 통해 서피스 품질을 향상시키고 후속 모델링 작업의 안정성과 효율성을 높일 수 있다. 모델(Model) → 편집(Editing) → 서피스 근사화(Approximate Surfaces)를 클릭한다.     근사화할 서피스 참조로 개별 서피스를 다중 선택하고 부착, 연결, 연결 처리 등의 옵션을 선택하여 근사 서피스로 생성할 수 있다.     부착 유형에 따라 다음 세 가지 첨부 옵션 중에서 선택할 수 있다. 대체(Replace) : 참조 서피스를 새로 생성된 서피스로 교체, 위의 사용 사례를 가장 잘 지원하는 기본 첨부 복사 및 트림(Copy and Trim) : 근사화된 서피스를 새 퀼트로 생성, 원본 서피스는 유지 트림되지 않은 서피스 복사(Copy Untrimmed) : 경계에서 트림되지 않은 새 퀼트로 근사화된 서피스를 생성, 원본 서피스는 유지     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
ZW3D 2026 : 사용자 경험 혁신하는 3D CAD/CAE/CAM 소프트웨어
개발 : ZWSOFT 주요 특징 : 기계/제조 분야에 특화된 3D CAD/CAE/CAM 소프트웨어, 제품 설계를 위한 특화 기능을 바탕으로 설계 엔지니어링 과정의 효율을 향상, 기계 및 장비 분야에 필요한 대용량 파일 처리 속도 향상, 스마트 구속을 통한 설계 자동화, 2D CAD와 싱크로나이즈를 통해 2D & 3D 설계 협업 최적화 등 공급 : 지더블유캐드코리아   설계 자동화와 도면 연동으로 통합 워크플로 실현 복잡하고 유기적으로 연결된 설계-제조 환경에서 엔지니어는 단순한 모델링을 넘어 변화에 즉각 반응하는 데이터 흐름과 반복 작업 없는 설계, 그리고 설계 의도와 도면 간의 일관성을 요구받고 있다. ZW3D 2026은 이러한 현실적 과제를 해결하기 위해 기존의 단순한 설계 도구에서 벗어나, 설계(CAD) – 검증(CAE) – 제조(CAM) 프로세스의 연속성을 가지기 위해 통합된 플랫폼으로 탈바꿈하고 있다. 이번 ZW3D 2026 버전에서 주목할 만한 점은, 설계자가 수동으로 반복하던 구속 조건 설정을 자동화하고, 제품 설계에 필요한 조립 구조를 클릭 몇 번으로 생성할 수 있도록 자동화 프로세스로 최적화한 부분이다. 여기에 20만개의 부품에 이르는 대용량 어셈블리 환경에서도 안정적인 렌더링과 임포트(import) 속도를 제공하며, 3D 모델의 변경 사항이 DWG 기반의 2D 도면에 실시간으로 반영되는 싱크로나이즈(synchronize)를 통해 설계 일관성과 도면의 정확성을 동시에 확보할 수 있게 되었다. 이러한 기능적 업데이트는 단지 속도 차원에서의 효율화가 아니며, 설계 변경이 잦은 제품 개발 프로세스에서 데이터간 발생되는 오류를 줄이고, 반복 작업 시간을 줄이며 무엇보다 유기적인 설계 협업 관계를 끝까지 유지시킬 수 있는 기반을 제공한다. ZW3D 2026은 2D CAD 전용 소프트웨어인 ZWCAD와 3D CAD/CAE/CAM 소프트웨어인 ZW3D 간의 플랫폼을 통합하여 활용할 수 있는 통로를 구축한 첫 번째 설루션이다. 아직까지도 실제 현업에서 많이 사용하는 *.dwg나 *.dxf와 같은 2D 확장자를 3D 데이터와 연결함으로써 보다 빠른 제조 도면을 생산할 수 있기 때문에, 더욱 최적화된 2D & 3D 통합을 이뤄낸 설루션이 될 것이다. 이를 통해 설계 데이터와 사용자 액션 간의 실시간 연결성이 확보되고, 반복 작업은 자동화되며, 엔지니어는 복잡한 제품 설계를 보다 스마트하고 빠르게 완성할 수 있는 환경을 갖추게 되었다.     신기능 : 설계 워크플로를 혁신하는 생산성 향상 기능 ZW3D 2026은 설계자와 엔지니어의 생산성을 높이기 위해 다양한 신규 기능을 도입했다.   새로운 엔지니어링 기능(마운팅 보스, 립/홈, 스냅 후크) 기계·제품 설계에 요구되는 '마운팅 보스, 립/홈, 스냅 후크’ 등 다양하고 실용적인 엔지니어링 기능이 추가되었다. 마운팅 보스는 플라스틱 및 금속 부품의 고정 구조 설계에 최적화되었으며, 립 기능은 구조적 강성을 강화하는 데 유용하다. 스냅후크 기능은 부품 간 결합을 간소화하며, 특히 플라스틱 사출 성형 설계에서 정밀한 조립이 가능하도록 지원한다. 이러한 기능은 표준화된 템플릿과 함께 제공되어 설계 초기 단계에서부터 시간을 절약할 수 있다.     새로운 슬롯 기능과 나사산 기능의 향상(지능형 구속 조건 추론) 슬롯 및 나사산 생성 기능도 대폭 강화되었다. 이전까지는 사용자가 직접 프로파일을 생성해야 하는 과정이 필요했지만, 새롭게 도입된 슬롯 기능을 통해 복잡한 형상의 슬롯(직사각형, 곡선, 도브테일 등)을 간단한 클릭으로 생성할 수 있다. 그리고, 지능형 구속 조건 추론을 통해 슬롯의 위치와 방향을 자동으로 최적화한다.     나사산 기능 또한 ISO, DIN, ANSI 등 다양한 표준 프로파일을 지원하며, 지능형 추론 알고리즘을 통해 나사산의 피치와 깊이를 자동 조정한다. 이를 통해 나사산 모델링 시간이 약 35% 단축되었으며, 설계 정확도가 향상되었다.     압축 파일 열기(압축 파일에서 직접 임포트) ZW3D 2026은 ZIP, RAR 등 압축 파일에서 설계 데이터를 직접 임포트할 수 있는 기능을 새롭게 추가했다. 이를 통해 사용자는 별도의 압축 해제 과정 없이 대용량 데이터를 신속히 불러와 작업을 시작할 수 있다. 특히, 외부 협력업체와 공유되는 대규모 데이터셋을 효율적으로 처리하며, 데이터 로딩 시간이 기존 대비 약 40% 단축되었다. 이 기능은 복잡한 프로젝트 환경에서 즉시 작업이 가능하다는 점에서 워크플로 간소화에 큰 기여를 한다.     향상된 기능 : 더 빠르고 스마트하게 ZW3D 2026은 기존 기능의 성능을 개선하여 사용자 경험을 한층 강화했다.   판금 변환(원 클릭으로 시트메탈 설계 워크플로 혁신)     소비자 제품의 복잡한 판금 설계는 산업 스타일의 시각적인 니즈를 충족하기 위해 빈번한 설계 변경을 요구하며, 이는 후속 엔지니어링 작업을 복잡하게 만들고 수동 변환 과정에서 시간 소모와 오류를 일으킨다. 판금 모듈에 새롭게 추가된 ‘판금 변환’ 기능은 단 한 번의 클릭으로 복잡한 솔리드 모델이나 외부 판금 부품을 즉시 편집 가능한 판금 형상으로 변환하며, 자동으로 굽힘 영역을 수집하고 정의한다. 새롭게 추가된 벤트, 컷아웃, 루버, 엠보싱과 같은 기능을 활용하여 복잡한 판금 구조 생성을 간소화할 수 있으며, 실제 사례에서 가전제품 케이스 설계 시간을 최대 50% 단축했다.   스마트한 구속 조건 추론 스마트 구속 조건 추론 기능은 어셈블리 설계 과정에서 컴포넌트 선택 시 적합한 구속 조건을 자동으로 추천한다. 자주 사용하는 조건은 시스템이 학습하여 제안하고, 여러 부품을 한 번에 그룹 구속 설정하는 것도 가능하다. 개선된 알고리즘은 과구속 문제를 최소화하며, 구속 조건 충돌 관리자 탭을 통해 문제가 발생한 부품을 직관적으로 확인하고 수정할 수 있다. 이 기능은 최대 20만 부품으로 구성된 대규모 어셈블리에서도 안정적인 성능을 제공하며, 구속 설정 시간을 약 30% 줄였다.     설계 효율 향상(대용량 파일 처리 및 다중 솔리드 도면 작업 속도 향상) 수천~수만 개 부품으로 구성된 대용량 어셈블리 데이터에서도 불러오기/렌더링/저장 속도가 향상되었다. ZW3D 2026은 최적화된 데이터 처리 엔진을 통해 최대 20만 부품의 어셈블리 파일 로딩 속도를 이전 버전 대비 약 50% 단축했다. 또한, 다중 솔리드 도면 작업 시 렌더링 및 편집 속도가 약 40% 개선되어, 복잡한 설계 데이터의 수정과 검토가 더욱 원활해졌다. 이는 중장비, 산업 설비, 금형 설계 등 대규모 프로젝트에서 특히 효과적이다.   자동 도면 생성으로 2D 도면 워크플로 혁신 비표준 장비 설계 프로젝트에서는 수천~수만 개의 2D 도면 생성이 전체 프로젝트 주기의 최대 30%를 차지하며, 이는 설계 프로세스의 주요 병목 지점이다. ZW3D 2026은 자체 Z3RRW 확장자 기반의 자동 도면 생성 기능과 주석 기능을 통해 이러한 문제를 해결한다. 엔지니어는 단일 템플릿 설정만으로 치수와 공정 테이블을 일괄 생성할 수 있으며, 3D 모델 변경 시 해당 2D 도면이 자동으로 갱신되어 수작업을 최소화한다. 실제 사례에서 사출 성형 프로젝트의 도면 업데이트 시간이 4시간에서 3분으로 단축되었고, 15만 개 부품의 공장 레이아웃 프로젝트에서는 최적화된 투영 엔진으로 도면 뷰 생성 시간이 5분에서 1분으로 줄어들었다. 이로써 복잡한 워크플로에서도 도면 출력의 정확성과 일관성을 유지하며, 생산성을 높일 수 있다.     핵심 신기능 : 2D 싱크로나이즈(2D/3D 도면 시트 연동) ZW3D 2026의 핵심 기능인 2D 싱크로나이즈(2D Synchronize)는 2D 도면과 3D 도면 간의 실시간 동기화를 지원한다. 이 기능은 3D 모델(참조 파트)의 변경 사항을 2D 도면에 자동으로 동기화하고 변경된 치수가 연동된 도면에 자동 적용되도록 한다. ZWCAD에서 데이터 연동을 하려면 ‘치수’ 메뉴에서 ‘관련된 DWG/DXF’ 옵션을 활성화하여 생성된 2D 및 3D 도면에 연동성을 부여하고 ‘DWG/DXF로 동기화’ 버튼을 클릭하면, 연동된 DWG/DXF 도면에 변경 사항이 즉시 반영된다. 즉, DWG/DXF 파일로 다시 내보내지 않고도 설계 변경 사항과 주석이 실시간으로 업데이트되어 재작업 프로세스를 줄이고 작업 효율이 향상된다. 이를 통해 설계 일관성을 유지하면서 수정 작업 시간을 약 60% 절감할 수 있다. 또한, 협업 환경에서 다수의 설계자가 동시에 2D 및 3D 데이터를 수정하더라도 충돌을 최소화하며, 2D/3D 설계 데이터 공유를 지원하여 협업 효율을 높였다.     ZW3D 2026은 기존 사용자들이 겪던 불편을 해소하고, 최신 설계 트렌드를 반영한 지능적이고 실용적인 기능 개선에 중점을 두었다. 압축 파일 직접 열기, 원클릭 판금 변환, 스마트 구속 조건 추론, 자동 도면 생성, 그리고 2D 싱크로나이즈를 통한 2D/3D 실시간 연동은 설계 환경의 유연성과 효율을 높인다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
그래피 코스닥 상장… “형상기억 3D 프린팅 기술로 세계 디지털 치과 교정 시장 선도”
디지털 덴티스트리 기업인 그래피가 코스닥 시장에 공식 상장했다고 밝혔다. 형상기억 기능을 적용한 투명 교정장치와 치과용 3D 프린팅 레진 소재를 독자 개발한 그래피는 이번 상장에 대해 “글로벌 디지털 치과 시장 확대를 위한 새로운 도약의 분기점”이라고 평가했다. 그래피는 사람의 체온인 약 36.5℃에서 활성화되는 형상기억 투명교정장치(SMA : Shape Memory Aligner)를 개발해 상용화했다. 환자가 장치를 착용했을 때 체온만으로 최적의 교정력이 발현되도록 설계되어, 기존 열성형 방식 대비 더욱 정밀하고 예측 가능한 치아 이동을 구현할 수 있는 것이 특징이다. 이를 통해 그래피는 디지털 덴탈 소재 시장에서 경쟁력을 키우고 있다. 그래피는 “이번 상장을 앞두고 업계와 투자자들의 높은 관심을 입증했다. 이는 그래피의 독보적인 기술력과 글로벌 확장 가능성에 대한 시장의 기대를 반영한 결과”라고 전했다. 상장을 통해 확보한 자금은 ▲해외 시장 진출 가속화 ▲차세대 디지털 덴탈 소재 연구개발 ▲대규모 생산 인프라 확충에 투자될 예정이다.  그래피는 유럽, 미국, 아시아 등 주요 글로벌 교정 시장에서의 임상 적용과 파트너십 확대를 통해 글로벌 점유율을 높여나간다는 전략을 밝혔다. 또한, 자사의 형상기억 교정장치가 향후 글로벌 디지털 덴탈 시장의 핵심 성장 동력이 될 것이며, 교정 산업 전반의 패러다임 전환을 이끌 중요한 전환점이라고 의미를 부여했다. 그래피는 디지털 기반의 맞춤형 치료, 환자 친화적 장치, 완전한 3D 프린팅 제작이라는 요소가 결합하면서 교정 치료의 효율과 환자의 만족도가 크게 향상될 것으로 기대하고 있다. 그래피의 심운섭 대표는 “코스닥 상장은 그래피가 세계 시장에서 기술 혁신을 주도하기 위한 출발점”이라며, “형상기억 투명 교정장치와 디지털 덴탈 소재 분야에서 글로벌 넘버 원 기업으로 도약하겠다”고 밝혔다.  한편, 그래피의 공모가는 1만 5000원으로 책정됐으며, 청약증거금은 1623억원이다.
작성일 : 2025-08-26
3D CAD 데이터 경량화 및 디지털 트윈 포맷 변환 솔루션, DXE Traslator 
3D CAD 데이터 경량화 및 디지털 트윈 포맷 변환 솔루션, DXE Traslator    ■ 개발 및 자료제공 : 팀솔루션, www.timsolution.io   최근 많은 기업에서 디지털 전환 과정에서의 3D 모델링 과정에 초기비용 부담과 편집 등의 활용이 어려운 한계를 겪고 있다. 이러한 문제를 해결하기 위해서 팀솔루션은 3D CAD의 구조를 편집하는 솔루션을 출시했다. 이러한 솔루션을 이용하여 조선선박, 자동차, 반도체, 기계설비 등 제조산업의 고객사들은 초기 디지털 트윈 환경을 구현하는데 과도한 비용을 투자하지 않아도 되고, 실시간 데이터를 역동적으로 볼 수 있으며, 도입 이후 장기적 유지보수에도 효율적인 디지털 트윈 솔루션을 구현할 수 있다. 1. 제품의 주요 특징  팀솔루션의 주요 제품인 DXE Translator(딕시 트랜스레이터)의 가장 큰 특징은 고객이 이미 보유하고 있는 기업 자산인 3D CAD 데이터를 활용한다는 것이다. 이를 통해서 고객은 디지털 트윈 진입 장벽을 낮추는 동시에 정밀도 높은 디지털 트윈 구현이 가능하다. 2. 주요 기능 DXE Translator는 30여종의 3D CAD 데이터를 5가지 범용적 디지털 트윈 포맷으로 변환하는 한편, 3D CAD의 외형 추출, 구조 경량화, mesh 등의 형상경량화를 노코딩 환경으로 지원한다. 이는 전문지식을 갖춘 프로그래머가 아니더라도 3D 모델과 디지털 트윈에 대한 손쉬운 학습과 유지보수를 가능하게 한다. 3. 도입 효과 DXE Translator는 3D CAD 데이터의 구조 중에서 필요한 데이터만 추출하는 동시에 외형은 그대로 유지하여 방법을 채택했는데 이 덕분에 고객은 이 디지털 트윈 자산과 3D CAD 데이터를 여러번 재사용하는 것이 가능하다. 결국 고객은 프로젝트 단위별, 혹은 부서별 예산 지출이 아닌 전사적 디지털 전환 예산 사용을 통해 장기적이고 효율적인 디지털 트윈 운영이 가능하다. 4. 주요 고객 사이트 현대중공업, 한국조선해양, 현대자동차 등    상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-08-24
크레오 파라메트릭 12의 개선된 인터페이스 기능
제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (1)   이번 호에서는 크레오 파라메트릭 12(Creo Parametric 12)에서 개선된 인터페이스에 대해 알아보자.   ■ 박수민 디지테크 기술지원팀의 과장으로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   크레오 파라메트릭 12에서는 설계 작업의 효율과 편의성을 높여주는 다양한 인터페이스 개선이 이루어졌다. 대표적으로, 새로 추가된 기능이나 도구가 자동으로 강조 표시되어 사용자가 새로운 기능을 쉽게 파악할 수 있다. 또한, 레이어 트리의 컨텍스트 명령이 현대적으로 바뀌어 자주 사용하는 명령을 더 빠르게 실행할 수 있고, 서피스 선택 방법도 세션 내에서 유지되어 반복 작업이 훨씬 편리해졌다. 모델 트리와 설계 트리의 통합으로 복잡한 모델도 한눈에 관리할 수 있다. 이러한 기능 개선을 통해 설계자는 반복적인 작업 시간을 줄이고, 실수를 예방하며, 새로운 기능도 놓치지 않고 활용할 수 있게 되었다. 앞으로 각 기능이 실제로 어떻게 설계 작업을 더 쉽고 효율적으로 만들어주는지 하나씩 자세히 알아보자.   새 기능 강조 표시       크레오 파라메트릭 12의 ‘새 기능 강조 표시’는 사용자가 최신 업데이트에서 추가된 피처, 도구, 옵션을 쉽게 알아볼 수 있도록 도와주는 기능이다. 홈(Home) 탭의 ‘새 기능 강조 표시(Highlight New)’ 버튼을 통해 이 기능을 켜거나 끌 수 있으며, 활성화하면 새로 추가된 요소에 파란색 플래그나 강조 효과가 표시된다. 드롭다운 메뉴에서 강조 표시 스타일도 선택할 수 있어, 본인에게 잘 보이는 방식으로 설정할 수 있다. 이 기능을 활용하면 업데이트 이후 어떤 부분이 새롭게 바뀌었는지 한눈에 파악할 수 있어, 새로운 기능을 놓치지 않고 빠르게 익히고 설계 작업에 바로 적용할 수 있다.   레이어 트리에 대한 현대화된 컨텍스트 명령     레이어 트리의 컨텍스트 명령이 더 현대적으로 개선되었다. 이제 레이어나 피처를 선택하면 바로 미니 도구 모음이 나타나 자주 쓰는 명령을 빠르게 실행할 수 있다. 또한, 이 도구 모음은 사용자가 원하는 대로 일부 기능을 직접 설정할 수도 있다. 덕분에 레이어 관리가 더 직관적이고 간편해져 설계 작업의 효율이 크게 높아진다.   개선된 서피스 선택 방법 유지     개선된 서피스 선택 방법 유지 기능은 사용자가 직접 선택한 서피스 선택 방식(예 : 상자, 올가미, 추적 등)을 세션 내에서 계속 유지해주는 기능이다. 이전에는 여러 작업을 하다 보면 시스템이 자동으로 선택 방식을 바꿔버려서, 다시 원하는 방식으로 수동 전환해야 하는 번거로움이 있었다. 이제는 한 번 선택한 방법이 계속 저장되어, 반복 작업 시 매번 다시 설정할 필요 없이 원하는 방식으로 서피스를 빠르고 일관되게 선택할 수 있다. 이로 인해 설계 과정에서 불필요한 클릭과 시간 낭비를 줄이고, 작업 효율이 높아진다.   그래픽 내 도구모음의 새로운 디스플레이 옵션       그래픽 내 도구 모음에 ‘탄젠트 모서리(Tangent Edges)’라는 새로운 디스플레이 옵션이 추가되었다. 이 옵션을 통해 탄젠트 서피스 사이의 모서리를 보이게 하거나 숨길 수 있어, 설계 시 모서리 표시를 보다 세밀하게 조절할 수 있다. 선택하면 기존에 사용하던 탄젠트 모서리 표시 스타일로 모서리가 나타나고, 선택하지 않으면 탄젠트 모서리가 숨겨진다. 이 기능은 모든 모서리 표시 유형에 적용되며, 솔리드와 퀼트 형상 모두에 영향을 준다. 이전에는 탄젠트 모서리 표시를 따로 조절하기 어려웠지만, 이번 추가로 시각적 확인과 설계 검토가 훨씬 편리해졌다. 따라서 복잡한 표면 간 경계 파악이 쉬워져 작업 정확도와 효율성이 향상된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
프로세스 자동화Ⅰ - 구조 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (6)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 토크 암(torque arm)의 설계 최적화를 위해 히즈에서 심센터 3D(Simcenter 3D) 솔버를 연계하여 시뮬레이션 자동화 워크플로를 구성하고 최적화를 진행하는 예제를 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■  이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   그림 1   <그림 1>은 실제 토크 암 제품 이미지와 적용된 위치 및 구조적 특성을 보여주는 예시로, 이 최적화 사례에서 다룬 실제 제품 및 설계 환경을 이해하는 데 참고하길 바란다. 이번 예제에서는 질량 최소화 및 구조적 제약 조건 만족이라는 실제 공학 설계 과제를 효율적으로 수행하는 데 히즈의 성능과 활용성을 살펴 볼 것이다. 이 사례에서 설계 최적화의 목표는 토크 암의 질량을 최소화하는 것이다. 단, 구조적 제약 조건을 반드시 만족해야 하는데, 이 때 구조적 무결성(structural integrity)을 유지하기 위해 응력 수준이 재료의 항복 응력(yield stress)을 넘지 않아야 하는 조건을 만족해야 한다. 이를 위해 설계 상에서 사전에 선정한 치수 변수를 범위 내에서 조정하게 된다. 최적화 설계 프로세스는 심센터 3D와 히즈 MDO를 활용하여 자동화된 워크플로 방식으로 진행된다. 즉, 심센터 3D에서 나스트란(Nastran) 솔버를 이용한 구조 해석 결과를 히즈가 자동으로 처리하고, 해당 결과를 평가하여 최적의 설계안을 찾는 방식이다.   프로세스 자동화(Process Automation) 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시, 설계 및 분석 프로세스는 여러 소프트웨어 환경에서 이루어진다. 이런 환경에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 직접 인터페이스 포털(Direct Interface Portal)이 필요하다. 히즈에서는 여러 공학 분야에서 흔히 사용하는 CAD 및 CAE 툴(아바쿠스, 앤시스, 카티아, 솔리드웍스, 매트랩, LS-다이나, 심센터, 파이썬 등)을 모두 지원하므로, 사용자는 기존에 보유한 다양한 소프트웨어를 그대로 활용하면서 히즈를 이용하여 최적화 작업을 자동화할 수 있다. 히즈가 제공하는 직접 인터페이스 포털 중 일부를 <그림 2>에 나타내었다. 포털을 사용하여 <그림 3>과 같이 구성하면 사용자가 수동으로 결과를 처리하고 데이터를 전환하는 번거로운 작업을 하지 않아도 된다. 이는 시간 소모 및 인적 오류 가능성을 줄이고, 작업 흐름을 더 효율적이고 빠르게 만든다. 워크플로의 자동화가 가능하기 때문에, 결과적으로 여러 분야의 시뮬레이션 모델이나 분석을 보다 빠르고 신뢰도 높게 수행하여 더 나은 설계 및 최적화 결과를 도출할 수 있다.   그림 2   그림 3   최적화 문제 정의   그림 4   설계 목적은 <그림 4>에 나타낸 토크 암의 질량을 최소화하는 것이다. 주어진 하중 조건은 25kN이며, 이 때 구조물이 교차 방향에서 받는 최대 응력이 항복 강도를 초과하지 않아야 한다.(최대 700MPa) 또한 최대 변형량이 4mm를 초과하지 않는다는 제약 조건도 함께 고려한다. 최적화에 적용할 주요 치수 변수는 <그림 5>와 같으며, 특히 두께(Thickness of Extrude)를 변수(T1)로 설정하여 최적화 문제를 규정했다.   그림 5     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
[포커스] AI와 클라우드로 뻗어나가는 NX, 제품 개발의 혁신을 뒷받침한다
지멘스 디지털 인더스트리 소프트웨어는 7월 9일 ‘NX 데이(NX Day)’ 행사를 진행했다. 이 자리에서는 지멘스의 제품 개발 설루션인 NX 및 NX X의 최신 업데이트가 소개됐다. 특히 AI 코파일럿, 소니와 협력을 통한 몰입형 엔지니어링, 제조를 위한 설계 기술, CAD와 통합된 시뮬레이션 등 지난 7월에 발표된 주요 기능에 초점을 맞춰 디지털 트윈 구현을 위한 NX의 발전된 내용을 소개했다. 지멘스는 향상된 NX가 클라우드 기반의 협업과 지속 가능한 설계까지 지원하면서 제품 개발 전반의 효율과 품질을 높일 수 있게 돕는다고 전했다. ■ 정수진 편집장   제품 개발의 포괄적인 가치 제공을 추구 지멘스 디지털 인더스트리 소프트웨어의 안지훈 본부장은 NX 데이의 환영사에서 “기술이 더욱 스마트해지고 연결성이 복잡해지는 시대적 변화에 발맞춰, 지멘스는 고객이 제품 개발 및 제조 전반에서 더 빠르고 효율적으로 혁신을 이룰 수 있도록 지원하는 방안을 끊임없이 고민하고 있다”고 전했다. 지멘스는 올해 설계 전문성을 강화하기 위해 NX와 솔리드 엣지(Solid Edge)를 ‘디자인센터(Designcenter)’라는 단일 브랜드 아래 묶었다. 디자인센터는 지멘스의 통합 제품 포트폴리오인 ‘엑셀러레이터(Siemens Xcelerator)’의 일부로서, 시뮬레이션 및 테스트 설루션인 심센터(Simcenter), 제품 수명주기 관리(PLM) 설루션인 팀센터(Teamcenter), 운영 관리 설루션인 옵센터(Opcenter)에 이어 제품 설계 관련 기술을 아우르는 브랜드가 될 전망이다. 안지훈 본부장은 디자인센터가 제공하는 핵심 가치로 ▲합리적인 가격과 폭넓은 라인업을 통한 확장성 ▲설계, 해석(CAE), 제조(CAM)를 아우르는 포괄적인 기능 ▲히스토리 기반 및 동기식 기술 등 다양한 모델링 방식을 목적에 맞춰 제공하는 유연성을 꼽았다. NX는 인공지능(AI), 클라우드, 디지털 트윈, 디지털 스레드라는 네 가지 핵심 기술을 녹여 낸 엑셀러레이터의 일부로서, 단순한 3D 모델링을 넘어 AI 기반 자동화 등 시장이 요구하는 복합적인 기능을 갖춘 3D CAD를 지향한다는 것이 지멘스의 설명이다.    ▲ NX의 AI 기능 개발은 제품 개발을 위한 실용성에 초점을 맞추고 있다.   AI·클라우드·VR과 결합한 제품 개발의 미래 제시 NX는 6개월 단위로 새로운 버전을 출시하는 ‘지속적 릴리스(Continuous Release)’ 전략을 채택하고 있다. 핵심은 고객의 요구 사항을 빠르게 반영하면서, 과거의 데이터도 최신 버전에서 호환되도록 하여 안정성을 보장하는 것이다. 또한, 정식 출시 3개월 전 새로운 기능을 미리 체험하고 피드백을 제공할 수 있는 EAP(Early Adopter Program)를 운영하며 고객과의 소통을 강화하고 있다. 지멘스 디지털 인더스트리 소프트웨어의 고창환 본부장은 “NX는 기구 설계의 효율이라는 기본에 충실한 MCAD 설루션”이라면서, 동시에 지멘스의 다양한 기술과 결합해 포괄적인 포트폴리오를 제공한다고 소개했다. 여기에는 팀센터 기반의 데이터 관리 및 협업, 멘토그래픽스(현 지멘스 EDA)의 기술을 반영한 MCADECAD 통합, AI 설계 자동화 및 클라우드 기반 설루션, 최근 지멘스가 인수한 알테어를 포함하는 심센터의 해석 기술 연동, 공장 자동화(PLC) 설루션과 연결한 가상 시운전 등이 포함된다. 또한, 고창환 본부장은 고객의 요구 사항을 반영해 NX에 탑재된 최신 기술을 다섯 가지로 나누어 소개했다. 협업 엔지니어링 : 클라우드 기반 설루션인 NX X는 사용자가 언제 어디서든 ID 로그인만으로 NX를 사용할 수 있는 환경을 제공한다. 특히 라이브 셰어(Live Share) 기능을 통해 여러 설계자가 하나의 부품에 대해 동시에 작업하면서 실시간으로 변경 사항을 공유하는 협업이 가능해졌다. 다분야 설계 : ‘시프트 레프트(Shift Left)’ 개념을 도입해 설계자가 해석 전문가의 도움 없이도 NX 내에서 직접 간단한 구조 및 유동 해석을 수행할 수 있다. 복셀(voxel) 방식을 이용해 메시가 필요 없는(meshless) 해석 기술로 설계 변경에 따른 영향을 즉시 평가하여 개발 초기에 완성도를 높일 수 있다. 몰입형 환경 : 지멘스와 소니가 협력해 개발한 VR 헤드셋과 NX를 연동하면, 복잡한 데이터 변환 없이 설계 데이터를 가상현실에서 체험할 수 있다. VR 환경에서 간섭 체크, 단면 보기, 마크업 등 설계 검토 작업을 수행할 수 있으며, 여러 사용자가 동시 접속하는 가상 회의도 지원한다. 나아가 엔비디아 옴니버스(NVIDIA Omniverse) 기반의 팀센터 XR (Teamcenter XR)을 통해 더욱 사실적인 메타버스 환경을 제공한다. 인공지능 : NX의 AI는 ▲사용자 패턴을 학습해 다음 명령을 추천하는 적응형 AI(adaptive AI) ▲유사 형상을 자동 검색하거나 최적 설계를 제안하는 보조 AI(assistive AI) ▲자연어 명령에 기반한 모델링 추천과 요구 사양에 맞는 형상의 직접 생성을 지향하는 생성형 AI(additive AI) 등 3단계로 발전하고 있다. 지멘스는 제품 개발에서 직접 효과를 구현할 수 있는 실용적인 AI를 추구한다. 친환경 : 설계자가 재료, 형상, 제조 공정을 선택하면 예상되는 이산화탄소 배출량과 에너지 소비량, 재활용 효과 등을 리포트로 바로 확인할 수 있어 지속 가능한 제품 개발을 지원한다.   ▲ SaaS 설루션으로 제품 개발부터 협업까지 속도와 효율을 높인다는 것이 지멘스의 전략이다.   클라우드 기반의 SaaS(서비스형 소프트웨어)는 빠르게 변하는 기술 환경에서 제품 개발의 속도와 효율을 높이기 위한 새로운 기술로 여겨진다. 안지훈 본부장은 NX를 구독 기반의 SaaS 모델로 전환한 NX X는 인터넷만 연결되면 언제 어디서든 사용할 수 있으며, IT 인프라 투자나 복잡한 설치 과정에 대한 고민을 덜 수 있다고 전했다. NX X는 클라우드에서 NX의 핵심 기능을 제공하는 ‘NX X 에센셜(NX X Essential)’과 클라우드 저장/협업 공간인 ‘팀센터 셰어(Teamcenter Share)’의 결합으로 이뤄진다. NX X 에센셜은 CAD/CAE/CAM의 핵심 기능을 추린 웹 브라우저 기반 설루션이다. 동기식 기술이 적용된 다이렉트 모델링을 지원해 웹 환경에서 직관적인 형상 편집과 간단한 어셈블리 작업이 가능하다. 2.5축 CAM 프로그래밍과 G-코드 자동 생성 기능으로 웹에서 간단한 가공 경로를 생성 및 검증할 수 있으며, 응력, 처짐, 고유 진동수 등 단품에 대한 간단한 구조 해석을 태블릿이나 웹 브라우저에서 수행할 수 있다. 팀센터 셰어는 팀을 생성하고 내외부 관계자를 초대해 데이터를 안전하게 공유할 수 있는 클라우드 기반의 협업 허브이다. 사용자당 200GB의 보안 클라우드 저장소를 무료로 제공하고, 웹 기반 뷰어를 통해 다양한 포맷의 3D 모델을 별도의 프로그램 설치 없이 직접 확인하거나 마크업과 의견 교환을 통해 신속한 의사결정을 지원한다. 데이터는 권한 기반의 링크로 공유해 보안을 유지하며, 로컬 폴더나 파일 서버와 데이터를 동기화하여 항상 최신 정보를 클라우드에 보관할 수 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[포커스] 3D 프린팅, 제조 혁신 이끌 생산 기술 될까…현실의 벽과 돌파구는?
3D 프린팅이 폭발적인 관심을 받은 이후 거품이 꺼지고, 지금은 산업 분야를 중심으로 실질적인 기술 활용에 대한 고민과 노력이 이어지고 있다. ‘적층제조(Additive Manufacturing)’라는 용어는 절삭가공이나 주조 등과 다른 방식의 생산기술로서 3D 프린팅을 정의하는 개념이다. 3D프린팅연구조합은 지난 7월 2일~4일 일산 킨텍스에서 진행된 ‘제1회 국제 적층제조 기술 전시회 및 콘퍼런스(AM KOREA 2025)’를 통해 산업 분야에서 3D 프린팅 기술의 가능성을 짚는 기회를 마련했다. ■ 정수진 편집장     비용·소재·생산성의 한계를 극복해야 전시회 기간 중 치러진 ‘AM KOREA 2025 콘퍼런스’에서는 이틀에 걸쳐 최신 3D 프린팅 기술과 산업 분야에서의 활용 방안에 대한 논의가 이뤄졌다. 특히 현대자동차, LG전자, 한화에어로스페이스, 두산에너빌리티 등 국내 주요 제조기업에서 현실적인 고민과 노력을 소개했다. 콘퍼런스 첫째 날인 7월 3일 현대자동차 조영철 책임은 3D 프린팅 기술이 상당히 성숙했음에도 불구하고, 자동차 산업에서는 ‘2차 캐즘(Chasm)’ 단계에 접어들면서 본격 적용되기에는 몇 가지 한계가 있다고 짚었다. 가장 큰 장벽은 기존 제조 공정에 비해 여전히 제조 원가가 높고 생산성이 낮아 대량 생산에 쓰이기 어렵다는 것이다. 또한, 균일한 물성과 품질을 확보하기 어렵고, 특정 요구 조건을 만족하는 소재가 없다는 점도 해결해야 할 과제이다. 조영철 책임은 “이런 한계를 극복해야 3D 프린팅이 프로토타입 제작 수준을 넘어서 생산 기술로 자리잡을 수 있을 것”이라고 보았다. LG전자 박인백 팀장은 다품종 대량 생산 체제에서 고부가가치 산업과 달리 높은 소재 비용이 3D 프린팅의 양산 적용에서 걸림돌로 작용한다고 보았다. 또한, 반복되는 움직임이나 찢어짐을 견딜 수 있는 고무 같은 특수 소재가 부족한 소재 물성의 한계와 복잡한 부품을 3D 프린팅으로 제작할 경우 제작 시간과 비용이 높아지는 점도 꼽았다. 박인백 팀장은 “이 때문에 3D 프린팅을 실제 양산에 바로 적용하기는 어렵고, 현재 LG전자에서는 주로 개발 단계에서 3D 프린팅을 활용하고 있다”고 전했다.   비용 절감과 가치 창출을 위한 기술 개발이 돌파구 이런 한계를 넘어서 3D 프린팅이 제조산업에서 자리를 잡을 수 있는 가능성에 대해서도 제조기업들은 다방면의 노력을 기울이고 있다. 조영철 책임은 원가 허들을 극복하는 것과 함께 경량화를 통한 탄소 중립 대응, 파트 간 연결 방식 등 전후방 기술의 확보 등으로 3D 프린팅의 새로운 가치를 창출하는 것이 중요하다고 전망했다. 그리고 “물리적 서포트가 필요 없는 바인더젯(Binder Jet) 기술의 자동차 산업 적용 가능성을 찾고 있으며, 소프트웨어 중심 자동차(SDV)의 열 관리를 위한 다공성 구조물 제작이나 소량 생산되는 CS(고객 서비스) 부품의 무금형 양산 등에 3D 프린팅을 적용하는 방안을 연구 중이다. 이런 기술은 자동차 산업을 넘어 다양한 산업에 범용으로 적용할 수 있어 확장성이 높을 것으로 본다”고 전했다. LG전자는 3D 프린팅의 돌파구로 ‘무금형 양산’ 전략에 집중하고 있다. 금형 제작 비용이 부담스러운 소량의 비기능성 부품이나 서비스 부품에 적용해 비용을 절감할 수 있다는 것이다. 또한, LG전자는 신제품을 개발하는 과정에서 목업을 대체해 시간과 비용을 줄이거나, 생산 라인에서 쓰는 지그(jig) 제작에도 3D 프린팅을 활용하고 있다. 박인백 팀장은 “LG전자는 적층제조 특화 설계(DfAM)로 소재 비용을 줄이고 있으며, 3D 프린팅 소재와 장비를 직접 개발하여 원가 경쟁력을 확보하는 데 주력하고 있다”고 설명했다.     다양한 적층제조 설루션 및 기술 개발 내용 소개 이외에도 이번 AM KOREA 콘퍼런스에서는 ▲노스이스턴 대학교의 아흐메드 A. 부스나이나 교수가 나노 스케일의 반도체 제작을 위한 3D 프린팅 기술 개발 내용을 소개했고 ▲방위사업청의 도윤희 과장이 K-방산의 성장 과정·성과·육성 방향을 소개하면서 보안을 위해 3D 프린팅 장비의 국산화에 관심을 가져야 한다고 짚었다. ▲트루얼 테크놀로지의 루크 장 대표는 파우더 기반 적층제조에 기반한 고수율 및 저비용 제조 기술 연구 내용을 ▲한국재료연구원의 송상우 센터장은 와이어 기반 적층제조 기술을 활용한 SMR(소형 모듈형 원자로) 부품 제조 전략을 소개했다. ▲성균관대학교 백상열 교수는 지능형 생체 점착을 위한 4D 프린팅 기반 멀티스케일 소프트 로봇 기술을 소개했다. 콘퍼런스 둘째 날에는 ▲콜리브리움 애디티브의 첵한탄 이사의 ‘GE 에어로스페이스의 적층제조 산업화 경험’ ▲게퍼텍 세바스티안 렉 이사의 ‘WAAM(와이어 아크 적층제조) 기술의 대량 생산 산업 응용 전환’ ▲한화에어로스페이스 손인수 센터장의 ‘적층제조를 활용한 항공엔진의 국내외 개발 현황과 도전’ ▲두산에너빌리티 박재석 팀장의 ‘적층제조 기술은 첨단 제조산업을 어떻게 혁신하는가’ 등의 발표가 진행됐다. 3D프린팅연구조합의 이조원 이사장은 콘퍼런스의 개회사를 통해 국내 적층제조 산업의 위기를 경고했다. 그는 “한국의 기술 경쟁력이 하락하여 중국에 대한 기술 종속마저 우려되는 수준이다. 적층제조가 생산 기술의 중요한 전환점으로 여겨지고 있지만, 그 가능성을 실현하기 위해서는 정부의 정책적 관심과 함께 학계의 R&D 성과가 기업으로 이어지는 선순환 구조를 만들 필요가 있다”고 짚었다. 그러면서 이번 콘퍼런스가 국가 생존을 위한 기술 발전의 계기가 되기를 바란다고 전했다. 한편, 킨텍스 제1전시장에서 진행된 적층제조 기술 전시회에서는 성형 기법과 소재, 적층 크기와 정밀도 등에서 다양한 3D 프린팅 기술이 선보였으며, 한계를 극복하고 생산 분야에서 자리잡기 위한 노력이 진행되고 있음을 알 수 있었다. 전시회에서는 제조산업에서 3D 프린팅이 기존 생산 기술로 만들기 어려운 형상을 적은 시간과 비용으로 만들 수 있다는 점과 함께, 특정 분야에서는 프로토타입에서 나아가 실제로 쓰일 수 있는 부품 및 제품을 만들 수 있는 수준으로 3D 프린팅 기술이 성장했다는 부분이 강조됐다. 전시회 참가 업체들은 “3D 프린팅 기술이 지금 시점에서 기존의 생산 기술을 완벽히 대체할 수 있는 수준은 아니다”라면서도, 기술 한계를 극복하고 특화된 시장을 발굴하면서 제조 현장에 자리를 잡을 수 있을 것으로 기대하는 모습이었다.       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04