• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "허브"에 대한 통합 검색 내용이 794개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
지더블유캐드(ZWCAD) 공인 파트너/채널/공급업체(2025 기준)
ZWCAD 판매업체 (주)지더블유캐드코리아         서울시 강남구 언주로 146길 50 (청담곰 熊 빌딩) 우편번호: 06056 TEL : 02-515-5043 FAX : 02-515-5044 https://www.zwsoft.co.kr/         Platinum Partner       회사명 연락처 홈페이지 주소 (주)구일팔 02-304-9180 www.918soft.co.kr 서울특별시 중랑구 공릉로 8-8, 5층 디씨앤아이티 02-508-5809 dcnit.com 서울특별시 강남구 테헤란로 423 (삼성동) 현대타워 2층 (주)디지탈허브 02-425-2544 www.dhurb.co.kr 서울시 아차산로 17 서울숲 L-Tower 502호 (주)비전엠 / (주)삼경엠 02-711-7470 www.samkyungm.com 서울특별시 용산구 한강대로 43길 8 벽산메가트리움 104동 B1 W Business Center 105호 소프트플래너 02-6949-6710 www.softpln.com 서울시 강서구 마곡중앙로 161-8, C동 509호(마곡동, 두산더랜드파크) 솔루션코리아(주) 070-7712-2431 solutionkorea.co.kr/zwcad 대구광역시 북구 유통단지로 50 크리스탈 빌딩 6층 604호 (주)애니어스시스템즈 02-540-5258 www.anyussystems.com 경기도 안양시 동안구 벌말로 126, 603-2호(관양동, 평촌 오비즈타워) 와이앤에스컴퍼니 02-712-1025 www.ynssoft.co.kr 서울특별시 마포구 백범로 205 펜트라하우스 105동 402호 ㈜은성스퀘어 051-315-6825 http://www.es3.co.kr/ 부산광역시 사상구 모라로 22 부산벤처타워 6층 602호 (우)46918 (주)인트라솔루션 070-7694-1355 http://intrasolution.co.kr/ 대구광역시 달서구 성서공단로11길 62, S7동 833호 (주)직스테크놀로지 02-546-4454 zyx.co.kr 서울특별시 강남구 선릉로 710, 5층(청담동, 청율빌딩) ㈜코세코 02-2645-6358 koseco.co.kr 서울 양천구 목동로1길 34 (신정동) HD솔루션즈㈜ 02-6918-3800 hd-solutions.co.kr 서울특별시 구로구 디지털로 272 한신IT타워 709호         Distributor       회사명 연락처 홈페이지 주소 LS티라유텍 02-3461-6531 ls-thirautech.com 서울 강남구 학동로 5길 7 CK빌딩 4, 6, 7층         Education Distributor       회사명 연락처 홈페이지 주소 HD솔루션즈㈜ 02-6918-3800 hd-solutions.co.kr 서울특별시 구로구 디지털로 272 한신IT타워 709호         EA Distributor       회사명 연락처 홈페이지 주소 (주)블루티엔에스 02-595-7782 www.bluetns.co.kr 서울 서초구 잠원동 9-4 유영빌딩 6층    관련 리스트 - ZW3D 공급업체 명단   #ZWCAD #지더블유캐드 출처 : 지더블유 캐드코리아(202510 기준)  
작성일 : 2025-10-23
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
마이크로소프트, 윈도우 11에 코파일럿 기반 AI 기능 강화하는 업데이트 발표
마이크로소프트가 코파일럿을 통해 윈도우 11 PC에 강력한 AI 경험을 제공하는 대규모 업데이트를 발표하면서, 모든 윈도우 11 PC를 AI PC로 전환하기 위한 노력을 이어갈 것이라고 전했다. 이번 업데이트는 AI 기능을 윈도우 사용 환경에 통합해, 윈도우 11 사용자가 보다 쉽고 직관적으로 AI를 활용할 수 있도록 설계됐다. 마이크로소프트는 AI PC에 필요한 요소를 ▲자연어 문자 및 음성을 기반으로 상호작용하고 사용자를 이해 ▲사용자가 보는 시각적 정보를 같이 인식하고 도움을 추천 ▲사용자 승인 하에 능동적으로 작업 수행 등 세 가지로 제시하고 있다. 윈도우 11은 코파일럿과의 음성 기반 상호작용을 지원한다. 마이크로소프트는 음성 사용 시 코파일럿과의 상호작용 빈도가 문자보다 두 배 이상 높다는 점에 주목하면서, 간편한 음성 기반 접근으로 사용자가 코파일럿과 더욱 깊은 상호작용을 할 수 있도록 지원한다. 윈도우 11 PC의 코파일럿 앱 설정에서 이 기능을 활성화시키면 호출어인 ‘헤이 코파일럿(Hey, Copilot)’으로 코파일럿 보이스(Copilot Voice)를 실행할 수 있다. 사용자가 호출어를 말하면 화면에 마이크 아이콘이 표시되고 인식 신호음이 울리며 대화가 시작된다. 대화 종료는 ‘굿바이(Goodbye)’라는 음성 명령 또는 종료 버튼으로 실행되며, 몇 초간 상호작용이 없는 경우에도 신호음과 함께 자동으로 코파일럿이 대화를 종료한다. 코파일럿 비전(Copilot Vision)도 코파일럿이 제공되는 전 세계 윈도우 11에서 정식 지원된다. 이 기능은 사용자가 데스크톱 화면이나 앱을 공유하면 코파일럿이 화면 콘텐츠를 인식해 관련 인사이트를 제공하고, 질문에 응답하거나 음성으로 가이드를 제공하는 방식으로 작동한다. 게임 탐색, 이력서 작성, 창작 프로젝트 개선 등 다양한 작업에 활용할 수 있다.     또한, 사용자는 ‘쇼 미 하우(Show me how)’라는 음성 명령어를 통해 특정 작업의 수행 절차를 보여주도록 요청할 수 있다. 코파일럿은 앱 내 클릭 위치와 절차를 시각적으로 안내하며, 게임 플레이, 사진 보정, 여행지와 일정에 따른 준비물 검토 등 다양한 작업 환경에서 조언을 제공한다. 코파일럿 비전과의 문자 기반 대화도 가능해진다. 기존에는 음성 기반의 상호작용만 가능했으나, 마이크로소프트는 윈도우 인사이더 프로그램(Windows Insider Program)을 통해 코파일럿 비전과 텍스트 입력 방식으로도 상호작용할 수 있는 기능을 공개할 예정이다. 윈도우 11의 작업 표시줄에는 새로운 ‘애스크 코파일럿(Ask Copilot)’ 기능이 추가된다. 애스크 코파일럿 활성화를 통해 사용자는 코파일럿 비전과 코파일럿 보이스를 한 번의 클릭으로 손쉽게 이용하고, 코파일럿을 PC 사용 경험에 자연스럽게 통합해 지원, 안내, 협업 등 필요한 기능을 언제든지 활용할 수 있다. 새로운 작업 표시줄은 사용자가 더 적은 노력으로 더 많은 것을 성취하도록 돕고, 한층 생산적이고 재미있는 작업 경험을 제공하는 허브로서 기능한다. 사용자는 앱, 파일, 설정 등에 더욱 빠르게 접근함으로써 검색어를 입력하는 즉시 결과를 확인할 수 있다. 지난 5월 웹 기반 작업 수행 기능으로 공개된 코파일럿 액션(Copilot Actions on the web)은 윈도우 내 로컬 파일에서도 직접 작업을 수행할 수 있도록 기능이 확장된다. 이 기능은 윈도우 인사이더의 코파일럿 랩스(Copilot Labs)에서 프리뷰 형태로 제공될 예정이다. 범용 에이전트로서 코파일럿은 PC에 있는 맥락을 기반으로 데스크톱과 웹 애플리케이션과 상호작용하며 사진 정리, PDF 정보 추출 등 작업을 대신 수행한다. 사용자는 자연어로 작업을 지시한 후 다른 업무에 집중하며 작업 진행 상황을 실시간으로 확인하고 어떤 작업이 수행되었는지 검토할 수 있다. 코파일럿은 외부 서비스와의 연동도 지원한다. 사용자가 연결을 승인하면, 원드라이브(OneDrive), 아웃룩(Outlook), 지메일(Gmail) 등 이메일, 연락처, 일정 기반의 주요 플랫폼 서비스를 코파일럿 온 윈도우(Copilot on Windows)에 직접 연동해 활용할 수 있다. 사용자는 “치과 예약 세부 정보 찾아줘”, “이메일 주소 알려줘” 등의 명령어를 통해 캘린더나 이메일에서 필요한 정보를 빠르게 검색할 수 있으며, 원드라이브에 저장된 문서도 함께 확인할 수 있다. 검색 결과는 워드(Word), 엑셀(Excel), 파워포인트(PowerPoint) 등 다양한 형식으로 내보내는 것도 가능하다. 윈도우 설정과도 연동된다. 사용자가 윈도우 PC 설정에 대해 “화면을 더 읽기 쉽게 만들어줘”, “집중을 위해 방해 요소 줄여줘” 등 자연어 명령으로 요청하면, 코파일럿이 관련 설정 페이지로 자동 안내한다. 더 간편하게 작업을 완료할 수 있는 AI 액션 기능도 추가됐다. 매너스(Manus)는 다양한 작업을 수행할 수 있는 범용 AI 에이전트로, 파일 탐색기(File Explorer) 내에서 한 번의 클릭으로 로컬 폴더의 문서를 활용한 웹사이트를 자동 생성할 수 있다. 문서를 선택한 뒤 마우스 오른쪽 버튼을 눌러 ‘매너스로 웹사이트 만들기’를 실행하면, 별도의 업로드나 코딩 없이 몇 분 만에 웹사이트가 제작된다. 이 기능은 현재 비공개 프리뷰 단계에 있으며, 향후 파일 탐색기에서 필모라(Filmora)를 실행해 쉽고 간편하게 영상을 편집할 수 있는 새로운 AI 액션도 공개될 예정이다. 마이크로소프트는 코파일럿+ PC를 대상으로, 클릭 투 두(Click to Do)와 줌(Zoom) 연동 기능을 윈도우 인사이더 프로그램을 통해 도입할 예정이다. 이 기능을 통해 사용자는 화면에 표시된 이메일 주소 위에 마우스를 올리기만 해도, 별도의 앱 전환 없이 줌 미팅을 즉시 예약할 수 있다. 한편, 마이크로소프트는 “윈도우 11은 마이크로소프트의 시큐어 퓨처 이니셔티브(Secure Future Initiative)에 따라 역대 운영체제들 중 가장 안전하다. 특히 윈도우에 에이전트 기능이 도입되면서, 개인정보와 시스템 보호를 위한 방어 체계가 한층 강화됐다”고 소개했다. 코파일럿 액션은 사용자가 모든 실행 권한을 직접 제어할 수 있도록 설계됐다. 이 기능은 기본적으로 비활성화된 상태로 제공되며, 사용자가 직접 활성화 여부를 선택할 수 있다. 모든 실행 과정은 사용자에게 투명하게 공유되며, 민감한 작업 단계에서는 특정 작업을 위해 사용자에게 별도의 승인을 요청할 수 있다. 마이크로소프트는 프리뷰 테스트를 통해 사용자 피드백을 반영하고, 기능의 안전성과 개인정보 보호 수준을 지속적으로 개선해 나갈 계획이다. 마이크로소프트의 유수프 메흐디(Yusuf Mehdi) 최고 소비자 마케팅 책임자는 “이번 업데이트를 통해 마이크로소프트는 모든 윈도우 11 PC를 코파일럿 중심의 AI PC로 전환하는 데 한 걸음 더 나아갔다”며, “매일 사용하는 윈도우 환경에 AI를 통합함으로써 사용자들이 가장 강력한 AI 기술을 보다 쉽게 활용할 수 있도록 했다”고 말했다.
작성일 : 2025-10-17
오라클, 기업의 AI 이니셔티브 가속화 돕는 ‘AI 데이터 플랫폼’ 공개
오라클이 ‘오라클 AI 데이터 플랫폼(Oracle AI Data Platform)’의 정식 출시를 발표했다. 오라클 AI 데이터 플랫폼은 생성형 AI 모델을 기업의 데이터, 애플리케이션, 워크플로와 안전하게 연결할 수 있도록 설계된 포괄적 플랫폼이다. 자동화된 데이터 수집, 시맨틱 강화(semantic enrichment), 벡터 인덱싱에 생성형 AI 도구를 결합해 원시 데이터(raw data)에서 실제 운영 수준(production-grade)의 AI까지 전 과정을 단순화한다. 오라클 AI 데이터 플랫폼은 데이터를 AI에 최적화하고, 오라클 클라우드 인프라스트럭처(OCI), 오라클 자율운영 AI 데이터베이스(Oracle Autonomous AI Database), OCI 생성형 AI(OCI Generative AI) 서비스를 결합해 에이전틱 애플리케이션의 생성과 배포를 가능하게 한다. 기업 고객은 신뢰할 수 있는 실시간 인사이트를 얻을 수 있으며, 반복 업무를 자동화하고, 성장 기회를 발굴하며, 일상적인 워크플로에 지능을 내재화하는 AI 에이전트를 활용할 수 있다. 개발자와 데이터 팀은 엔터프라이즈급 단일 플랫폼에서 이러한 기능을 신속하게 구축하고 확장할 수 있다. 이 플랫폼은 엔비디아 가속 컴퓨팅 인프라를 통합해 고성능 워크로드를 위한 최신 세대 GPU와 라이브러리를 선택할 수 있다. 그 결과 다양한 산업군에서 더욱 신속한 혁신, 높은 생산성, 측정 가능한 비즈니스 성과를 실현할 수 있다. 오라클 AI 데이터 플랫폼은 기업이 데이터와 AI를 효과적으로 활용할 수 있는 기반을 제공한다. 고객은 델타 레이크(Delta Lake) 및 아이스버그(Iceberg)와 같은 오픈 포맷을 활용해 데이터 레이크하우스를 구축하고, 데이터 중복을 줄일 수 있다. 또한 AI 데이터 플랫폼 카탈로그는 모든 데이터와 AI 자산에 대한 통합 뷰와 거버넌스를 제공해 기업의 컴플라이언스 및 신뢰 강화를 지원한다. 카탈로그는 에이전트투에이전트(Agent2Agent : A2A) 및 모델 컨텍스트 프로토콜(MCP) 등 개방형 표준을 폭넓게 지원해 정교한 멀티에이전트 시스템 구성을 가능하게 한다. 더불어 기업 고객을 위한 에이전트 허브(Agent Hub)는 다수의 에이전트를 탐색하는 복잡성을 제거하고, 요청을 해석해 적합한 에이전트를 호출하며, 추천 결과를 제시해 즉각적인 조치를 취할 수 있도록 지원한다. 오라클은 오라클 AI 데이터 플랫폼이 제공하는 기능 및 이점으로 ▲데이터를 인텔리전스로 전환 ▲팀 전반의 혁신 가속 ▲비즈니스 프로세스 자동화 및 확장 ▲엔터프라이즈급 준비 상태 보장 등을 꼽았다. 오라클 AI 데이터 플랫폼은 데이터 레이크하우스와 AI를 하나의 플랫폼에 통합해, 원시 데이터를 실행 가능한 인사이트와 더 스마트한 의사결정으로 전환할 수 있다. 그리고 데이터 엔지니어, 데이터 과학자, AI 개발자를 위한 단일 워크벤치를 제공해 협업과 AI 기반 애플리케이션 제공 속도를 높인다. 이를 통해 단순 분석을 넘어 워크플로를 조율하고, 알림을 자동 생성하며, 비즈니스 성과를 직접 개선하는 AI 에이전트를 통해 효율을 높일 수 있도록 한다. 오라클은 “OCI, 오픈소스 엔진, 업계 선도적 분석 기능, 오라클 자율운영 AI 레이크하우스(Oracle Autonomous AI Lakehouse)의 결합으로 미션 크리티컬 AI 도입에 필요한 규모, 성능, 신뢰성을 제공한다”고 전했다. 제로 ETL(Zero-ETL)과 제로 카피(Zero Copy) 기능을 통해 고객은 재무, HR, 공급망, 마케팅, 영업, 서비스 등 핵심 비즈니스 애플리케이션 데이터는 물론 산업별 애플리케이션 데이터와 기존 엔터프라이즈 데이터베이스에 원활하게 연결할 수 있다. 오라클 AI 데이터 플랫폼은 멀티클라우드 및 하이브리드 크로스-클라우드 오케스트레이션을 지원하여 퍼블릭 클라우드, 온프레미스, 에지 등 모든 소스의 데이터의 연결, 처리, 분석이 가능하다. 또한, 오라클 애플리케이션과 서드파티 환경 전반에서 AI 에이전트가 원활하게 작동할 수 있게 되어 고객이 기업 전반에 걸쳐 AI 기반 혁신을 확장할 수 있다. 오라클은 퓨전(Fusion), 넷스위트(NetSuite)를 포함한 주요 오라클 애플리케이션 제품군 전반과 의료, 소비재, 금융 서비스, 건설 등 산업 전반을 대상으로 사전 통합을 포함한 맞춤형 AI 데이터 플랫폼을 제공할 계획이다. 오라클 퓨전 데이터 인텔리전스(Oracle Fusion Data Intelligence)의 정제되고 풍부하며 AI를 위해 준비된 데이터는 AI 데이터 플랫폼에서 사용 가능하다. 오라클의 T.K. 아난드 총괄부사장은 “오라클 AI 데이터 플랫폼은 고객이 데이터를 AI에 최적화하고, AI를 활용하여 비즈니스 프로세스 전반을 혁신할 수 있도록 돕는다. 이 플랫폼은 데이터를 통합하고 전체적인 AI 라이프사이클을 간소화하여 기업이 신뢰성, 보안성 및 민첩성을 고려하며 AI의 역량을 활용하는 데 있어 가장 포괄적인 기반을 제공한다”고 말했다.
작성일 : 2025-10-15
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
인텔, 아크 프로 B-시리즈 GPU 및 제온 6 프로세서의 AI 추론 벤치마크 결과 소개
인텔은 ML커먼스(MLCommons)가 발표한 최신 MLPerf 추론 v5.1 벤치마크에서 P코어를 탑재한 인텔 제온(Intel Xeon) 및 인텔 아크 프로 B60(Intel Arc Pro B60) 그래픽으로 구성된 인텔 GPU 시스템(코드명 프로젝트 배틀매트릭스)의 추론용 워크스테이션이 달성한 결과를 공개했다. 6가지 주요 벤치마크 테스트 결과, 라마(Llama)4 80B 모델 추론 처리량에서 인텔 아크 프로 B60은 엔비디아 RTX 프로 6000 및 L40S에 비해 각각 최대 1.25배 및 최대 4배의 가격 대비 성능 우위를 보였다. 인텔은 “이는 하이엔드 워크스테이션 및 에지 애플리케이션 전반에 걸쳐 새로운 AI 추론 워크로드를 처리하는 인텔 기반 플랫폼의 성능과 접근 우수성을 보여주는 결과”라고 평가했다. 인텔의 리사 피어스(Lisa Pearce) 소프트웨어, GPU 및 NPU IP 그룹 총괄은 “MLPerf v5.1 벤치마크 결과는 인텔의 GPU 및 AI 전략을 강력히 입증하고 있다. 새로운 추론 최적화 소프트웨어 스택을 탑재한 아크 프로 B-시리즈 GPU는 기업과 개발자가 강력하면서도 설정하기 쉽고, 합리적인 가격에 확장 가능한 추론 워크스테이션으로 AI 분야에서 경쟁력을 높여준다”고 밝혔다.     이전까지는 높은 추론 성능을 제공하면서 데이터 프라이버시 침해에서 자유로운 플랫폼을 우선시하는 전문가들이 독점적인 AI 모델에 의한 과도한 구독 비용 부담 없이 LLM(대형 언어 모델)을 배포하기에 필요한 역량을 갖추기 위한 선택지가 제한적이었다. 새로운 인텔 GPU 시스템은 최신 AI 추론 요구사항을 충족하도록 설계되었으며, 풀스택 하드웨어와 소프트웨어를 결합한 올인원(all-in-one) 추론 플랫폼을 제공한다. 인텔 GPU 시스템은 리눅스 환경을 위한 새로운 컨테이너 기반 설루션을 통해 간소화된 도입과 사용 편의성을 목표로 한다. 또한 멀티 GPU 스케일링 및 PCle P2P 데이터 전송으로 높은 추론 성능을 발휘하도록 최적화되었으며, ECC, SRIOV, 텔레메트리(telemetry) 및 원격 펌웨어 업데이트 등과 같은 엔터프라이즈급 안전성 및 관리 용이성을 갖추고 있다. CPU는 AI 시스템에서 계속해서 중요한 역할을 수행하고 있다. 오케스트레이션 허브로서 CPU는 데이터 전처리, 전송 및 전반적인 시스템 조율을 담당한다. 지난 4년간 인텔은 CPU 기반 AI 성능을 지속적으로 향상시켜왔다. P 코어를 탑재한 인텔 제온 6는 MLPerf 추론 v5.1에서 이전 세대 대비 1.9배의 성능 향상을 달성했다.
작성일 : 2025-09-10
마이크로소프트, ‘AI 트랜스포메이션 위크’ 통해 산업 현장의 에이전틱 AI 혁신 사례 소개
한국마이크로소프트가 9월 중 ‘AI 트랜스포메이션 위크’를 열고, 에이전틱 AI의 현재와 미래를 조망하는 다양한 세션을 진행한다고 밝혔다. ‘에이전틱 AI, 일하는 방식을 혁신하다’라는 부제의 이번 행사는 산업 특성과 기업의 수요에 맞춰 개발된 다양한 AI 에이전트를 기업 시스템에 통합함으로써 일하는 방식과 비즈니스 혁신을 가속화하기 위한 최적의 방법을 소개하기 위해 기획됐다. 국내 주요 기업이 직접 에이전틱 AI를 성공적으로 도입한 사례를 공유하는 웨비나를 시작으로 제조업 특화 세션, 개발자 대상 해커톤과 핸즈온 워크숍 등 에이전틱 AI에 대한 모든 것을 보고, 배우고, 체험할 수 있는 총 6개의 프로그램이 진행될 예정이다. 먼저 9월 19일 개최되는 ‘See the Agentic AI, 일의 판을 바꾸다’ 세션은 온라인 생중계로 진행되며, 사전 신청을 통해 무료로 참가할 수 있다. 이마트, KT, LG전자, SK이노베이션을 포함한 국내 주요 기업이 에이전틱 AI를 전략적으로 업무에 도입하고 비즈니스 혁신을 이뤄낸 경험을 소개하며, AI 에이전트가 실제 기업 현장을 어떻게 변화시킬 수 있는지에 대한 인사이트를 공유할 예정이다. 9월 26일에는 강남 GS타워 아모리스홀에서 제조업 관계자를 위한 산업 특화 세션인 ‘제조업의 미래, Agentic AI로 다시 쓰다’가 열린다. AI 기술의 비약적인 발전이 제조 산업 전반에 새로운 전환점을 만들어가고 있는 만큼, 마이크로소프트는 아모레퍼시픽, 포스코, 한화 등 혁신을 선도하는 국내 제조 기업이 조직 맞춤형 에이전틱 AI를 도입한 사례를 공유한다. 이들은 생산성 향상, 품질 혁신, 공급망 최적화 등 제조 현장의 변화를 이끈 경험을 중심으로 발표를 진행할 예정이다.     이외에도 에이전틱 AI의 기반이 되는 클라우드를 다루는 ‘Ground the Agentic AI’에서는 마이크로소프트 애저(Microsoft Azure)를 기반으로 에이전틱 AI에 최적화된 클라우드 환경을 구축하기 위한 전략을 소개한다. 에이전틱 AI 개발 해커톤인 ‘코파일럿 에이전톤 서울 2025’에서는 마이크로소프트 코파일럿(Microsoft Copilot) 기반 맞춤형 에이전트 개발 과정과 함께 전문가 교육 및 코칭을 제공한다. 또한, 개발자를 위한 핸즈온 워크숍 ‘Code the Agentic AI’에서는 깃허브 코파일럿 에이전트(GitHub Copilot Agent) 모드를 활용한 AI 코딩 기법을 실습해볼 수 있다. 마이크로소프트 런(Microsoft Learn)과 인프런을 통해 제공되는 온디맨드 교육 프로그램인 ‘Learn the Agentic AI’에서는 에이전틱 AI의 기본 개념부터 직무별 활용까지 개인의 기술 수준에 맞춘 온라인 교육 과정을 무료로 수강할 수 있다. 한국마이크로소프트의 조원우 대표는 “AI가 산업 현장과 조직 운영 방식을 근본적으로 재정의하는 전환점에 와 있는 지금, 에이전틱 AI의 잠재력을 현실로 만드는 여정을 시작할 때”라며, “국내 고객 사례와 전문가 세션을 통해 최신 에이전틱 AI를 보고, 배우고, 체험하면서 업무 방식의 혁신과 비즈니스 변화를 직접 경험하는 기회가 되길 바란다”고 말했다.
작성일 : 2025-09-08
데이터 분석 로코드 설루션을 배워보자 Ⅰ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2)   지난 호에서는 로코드 분석 설루션이 필요한 이유에 대해 알아보았다. 또한 데이터 분석이 일반적으로 거치는 과정에 대해서도 살펴 보았는데, 이러한 과정에 파이썬(Python)과 같은 프로그래밍 언어가 활용되는 상황 또한 정리해 보았다. 이번 호에서는 로코드 분석 설루션인 KNIME(나임)에 대해 알아보고, 전력 판매량 예측에 대한 분석 과제를 따라하기 과정을 통해 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   지난 호에서 살펴본 일반적인 데이터 분석 과정은 다음과 같다.   요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   이전에 강조한 바와 같이, 아무리 쉬운 코딩 언어라고 할지라도 데이터 분석을 요청받은 데이터 과학자(data scientist)가 이를 실제 업무에 적용하여 원하는 결과를 빠르고 정확하게 구현해내는 것은 어려운 일이다. 또한 코딩에 능숙한 데이터 과학자라고 해도 깃허브(Github) 및 인터넷 상에 공유된 소스코드를 다운받아 재활용 및 가공하여 사용하는 경우가 많은데, 이때 악성 코드 등에 대한 보안 이슈도 문제가 될 소지가 있다. 사실 데이터 과학자는 수학 및 통계적 지식을 활용하여 빠르게 정확하게 데이터 분석을 하고 싶은 것이고, 이를 위해 효율적인 툴을 사용하고자 한다. 우리는 이러한 현상을 극복해 나가고자 로코드 분석 설루션(low code analytics solution)을 대안으로 검토하였고, 이를 활용하여 데이터 분석을 수행해 나가는 과정을 따라가 보고자 한다. 지난 호에서 유관부서로부터 전력 판매량(electric power sales) 예측에 대한 분석 과제를 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황의 시민 데이터 과학자(citizen data scientist)로 가정하여 주어진 과제 목표를 달성하였다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 이를 처리하기 위해 파이썬으로 코드를 작성한 사례를 공유하였고, 동일한 내용을 로코드 분석 설루션인 KNIME을 활용하여 처리한 사례도 공유하였다.   그림 1   이번 호에서는 KNIME에 대해 알아보고 전력 판매량 예측에 대한 분석과제를 따라하기 과정을 통해 완성해 보도록 하겠다. 우선 구글 제미나이(Google Gemini)에게 KNIME에 대한 역사와 특징에 대해 알려 달라고 해보자.(그림 2~4)   그림 2   그림 3   그림 4   가트너(Gatner)의 피어 인사이트(Peer insight) 리뷰를 확인해 보았는데, 평점(rating)이 상당히 높은 편이고 사용자의 반응도 높다는 것을 확인하였다. 또한 오픈소스 기반 소프트웨어로서 기업에서도 무료로 자유롭게 설치하여 사용할 수 있다는 측면에서(KNIME Analytics Platform) 로코드 분석 설루션으로 선택하기에 부족함이 없다는 것을 확인하였다.   그림 5   현재 KNIME은 데이터 사이언스를 위한 최적의 설루션을 위해 세 가지 서비스를 제공하고 있다. 이번 호에서는 KNIME Analytics Platform을 활용하여 전력 판매량 예측에 대한 분석 과제를 따라해보고자 한다.   그림 6     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
바이브 코딩 지원 멀티 에이전트 코덱스의 사용법
BIM 칼럼니스트 강태욱의 이슈 & 토크   요즘 바이브 코딩(vibe coding)이 열풍이다. 이번 호에서는 오픈AI(OpenAI)가 개발한 바이브 코딩을 지원하는 멀티 에이전트 코덱스(Codex)의 사용법을 간략히 소개한다. 얼마 전 챗GPT(ChatGPT) 프로 버전에 무료로 오픈된 코덱스와 오픈소스 코덱스 버전(CLI)의 사용법을 모두 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. Codex | OpenAI   2025년 4월 중순에 OpenAI o3, o4, Codex가 공개되었다. 멀티 AI 에이전트 기능을 충실히 구현한 영상 데모가 업로드되었고, 특히 자동화 코딩을 지원하는 코덱스가 로컬 컴퓨터에서 실행 가능한 형태로 공개된 점이 인상적이었다.   그림 2. 오픈AI o3, o4, 코덱스 공개 영상   코덱스는 단순한 코드 생성에 그치지 않고 버그 수정, 테스트 실행, 코드 리뷰 제안 등 복잡한 개발 업무를 자동화한다. 각 작업은 사용자의 코드 저장소가 사전 로드된 격리된 클라우드 샌드박스 환경에서 독립적으로 실행되며, 작업의 복잡도에 따라 1분에서 30분 이내에 결과를 제공한다. 또한, 코덱스는 작업 수행 과정에서 생성된 터미널 로그와 테스트 출력 등의 증거를 제공하여, 사용자가 변경 사항을 추적하고 검토할 수 있도록 지원한다.코덱스 코드 및 도구는 깃허브(GitHub)에 공개되었다. Codex Lightweight coding agent that runs : https://github.com/openai/codex 6월 초에는 챗GPT 프로 사용자에게 코덱스 기능이 공개되었다. 코덱스는 챗GPT의 사이드바를 통해 접근할 수 있으며, 사용자는 자연어로 코딩 작업을 지시하거나 기존 코드에 대한 질문을 할 수 있다. 또한 코덱스는 사용자의 개발 환경과 유사하게 구성할 수 있어, 실제 개발 환경과의 통합이 용이하다. 보안 측면에서도 코덱스는 격리된 환경에서 실행되며, 인터넷 접근은 기본적으로 비활성화되어 있다. 필요한 경우 특정 도메인에 대한 접근을 허용할 수 있으며, 이를 통해 외부 리소스를 사용하는 테스트나 패키지 설치 등이 가능하다. 코덱스는 현재 챗GPT 프로/팀/엔터프라이즈 사용자에게 제공되며, 플러스 및 에듀 사용자에게도 점차 확대되고 있다. 또한, 코덱스 CLI(Codex CLI)를 통해 터미널 환경에서도 코덱스의 기능을 활용할 수 있어, 다양한 개발 환경에서의 활용이 가능하다.(openai.com)   챗GPT에서 코덱스 사용법 코덱스를 활용한 전체 사용 과정은 단순한 코드 자동 생성 수준을 넘어, 실제 소프트웨어 개발의 전 과정을 자연어 기반으로 자동화하는 방식으로 개발되어 있다. 코덱스는 현재 깃허브를 기본 연결해 사용하도록 되어 있어, 다음과 같이 필자의 깃허브 프로젝트를 연결해 실습을 진행했음을 밝힌다. https://github.com/mac999/AI_agent_simple_function_ call.git 참고로, 필자는 필자의 깃허브 저장소를 이용하였지만, 독자는 각자 깃허브에 로그인한 후 본인의 프로젝트 개발을 진행할 저장소를 선택해야 한다. 아울러, 바이브 코딩 결과물이 제대로 동작하려면 반드시 챗GPT 등을 이용해 미리 PRD(Product Requirement Document)에 요구사항을 명확히 작성한 후, 이를 바이브 코딩 도구에 입력해 프로젝트와 코드를 생성하도록 하는 것이 좋다.   그림 3. 식사 레스토랑 평가용 앱 개발을 위한 PRD 문서 예시(How to vibe code : 11 vibe coding best practices, https://zapier.com)   프로젝트 시작 : 코드 저장소 구성 및 환경 연결 챗GPT 프로의 왼쪽 메뉴에서 <그림 4>와 같이 코덱스를 실행하면, 연결할 깃허브 계정 및 저장소를 요청한다. 코덱스에서 <그림 4>와 같이 본인의 깃허브 계정을 연결한다.   그림 4     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
언리얼 페스트 2025 서울 개막… UE6 통합 비전과 산업별 활용 전략 제시
에픽게임즈가 8월 25일 서울 코엑스에서 ‘언리얼 페스트 2025 서울’ 행사를 개막했다. 이번 행사는 게임·제조·미디어&엔터테인먼트 등 3개 산업 트랙과 38개 세션을 통해 언리얼 엔진의 최신 기술 및 크리에이터 생태계 전략을 공유하며, 서울을 아시아 개발 허브로 자리매김하게 하는 계기가 됐다. ▲ 에픽게임즈 팀 스위니 CEO ▲ 언리얼 페스트 2025 행사장 전경 기조연설에서 에픽게임즈 팀 스위니 CEO는 차세대 엔진의 청사진을 제시하며 “언리얼 엔진의 강력함과 UEFN(언리얼 에디터 포 포트나이트)의 직관성과 접근성이 결합될 때, 그것이 차세대 언리얼 엔진(UE6)의 힘이 될 것”이라고 언급했다. 또한 제작된 게임·콘텐츠를 플랫폼에 구애받지 않고 배포하며, 나아가 서로 다른 게임 간 상호운용성을 구현하는 것이 목표라고 밝혔다. UEFN 생태계는 출시 2년 만에 급성장했다. 에픽게임즈에 따르면 지금까지 26만 개 이상의 아일랜드가 제작됐으며, 누적 플레이 시간은 112억 시간을 넘어섰다. 이번 행사에서는 AI NPC 제작 도구, Verse 코드 어시스턴트, Scene Graph 베타 등 차세대 툴이 공개됐으며, LEGO·오징어게임·스타워즈 등 글로벌 IP도 포트나이트 크리에이티브에 순차적으로 제공될 예정이다. ▲ 에픽게임즈 코리아 박성철 대표 ▲ 언리얼 페스트 2025 행사장 전경 한편 EGS(에픽게임즈 스토어)의 정책 변화도 소개됐다. 에픽은 일정 매출 구간까지 수수료를 면제하고 이후 88:12 수익 배분 구조를 적용하는 새로운 정책을 예고했으며, 웹샵(Web Shops) 도입과 인앱 리워드(5%) 제공, iOS(EU) 및 Android 진출 계획, 모바일 퍼블리싱 기능 등을 준비 중이다. 지금까지 EGS는 개발자와 퍼블리셔에게 21억 달러 이상을 지급하며 글로벌 유통 플랫폼으로 성장했다. EOS(에픽 온라인 서비스)는 크로스플레이, 매치메이킹, 음성·텍스트 채팅, 업적 등 다양한 기능을 무료로 제공해왔으며, 올해 안에는 콘솔·PC·모바일을 아우르는 소셜 오버레이가 도입될 예정이다. 산업별 트랙에서는 ▲게임 분야(UE6 비전, UEFN·Verse 활용, 국내외 주요 게임사 사례 발표) ▲제조·시뮬레이션 분야(현대오토에버, 삼성중공업, KAI 등 실제 적용 사례) ▲미디어&엔터테인먼트 분야(디지털 휴먼, 애니메이션, 라이브 이벤트 사례) 등이 공유됐다. ▲ 언리얼 페스트 2025 미디어 라운드테이블에 참석한 팀 스위니 에픽게임즈 CEO(가운데)와 박성철 에픽게임즈 코리아 대표(오른쪽) 언리얼 페스트 2025 서울은 엔진·플랫폼·스토어·소셜을 아우르는 에픽 생태계 전략을 총체적으로 조망한 자리였다. UE6 비전, UEFN 확장, EGS 정책 변화, EOS 소셜 강화는 “창작 → 배포 → 수익화 → 커뮤니티”로 이어지는 창작 생태계 순환 구조를 이루는 핵심 축으로 제시됐다. 이번 행사는 내일까지 계속된다.
작성일 : 2025-08-25