• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "해석"에 대한 통합 검색 내용이 5,074개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
한국산업지능화협회, ‘중견기업 디지털혁신형 사업전환 교육’ 개최
한국산업지능화협회는 10월 17일 서울 위플레이스 강남교육장에서 중견기업을 대상으로 ‘디지털혁신형 사업전환 교육’을 개최했다고 밝혔다. 이번 교육은 중견기업 핵심인재 육성 아카데미의 일환으로, 산업 구조 변화에 대응해 디지털 기술을 기반으로 한 기존 사업 고도화 역량을 강화하기 위해 마련됐다. 교육은 ▲산업전환 정책 동향과 구조적 사업전환의 필요성 ▲국내외 중견기업의 전환 성공사례를 중심으로 진행됐으며, ▲디자인 씽킹을 활용한 기존사업 재해석 ▲가치사슬 재편 ▲디지털 프로세스 개선 등 실무 중심의 전략을 중점적으로 다루었다. 이어 디지털 전환 수준 진단 워크숍을 통해 자가진단 툴을 활용한 조직 내 디지털 준비도 점검과 변화 인식 진단이 이뤄졌고, 데이터 기반 신사업 기획 세션에서는 참가자들이 자사 상황에 맞는 시장 탐색, 고객 분석, MVP 기획 등을 구체화해보는 실습도 진행했다. 또한 AI·IoT·RPA 등 기술 공급기업의 협력 사례와 정부 연계사업 활용방안이 공유되었으며, 참가자들은 자사 중심의 사업전환 전략을 수립하고 전문가의 1:1 피드백을 통해 실질적인 개선 방향을 모색했다.     한국산업지능화협회 추현호 센터장은 “이번 교육이 중견기업이 디지털 기술을 활용해 기존 사업을 고도화하고, 새로운 성장 방향을 모색하는 데 실질적 도움이 되었기를 바란다”며, “협회는 앞으로도 현장 중심의 교육과 연계를 통해 중견기업의 디지털혁신 역량 강화를 지속 지원하겠다”고 밝혔다. 한편 협회는 이번 교육에 이어 오는 10월 23일 ‘산업일자리전환 우수기업 벤치마킹’, 10월 24일 ‘중견DX 커넥티드 데이’를 개최해 중견기업 간 디지털 혁신성과 공유와 협력 네트워킹을 이어갈 예정이라고 전했다.
작성일 : 2025-10-17
오라클, 기업의 AI 이니셔티브 가속화 돕는 ‘AI 데이터 플랫폼’ 공개
오라클이 ‘오라클 AI 데이터 플랫폼(Oracle AI Data Platform)’의 정식 출시를 발표했다. 오라클 AI 데이터 플랫폼은 생성형 AI 모델을 기업의 데이터, 애플리케이션, 워크플로와 안전하게 연결할 수 있도록 설계된 포괄적 플랫폼이다. 자동화된 데이터 수집, 시맨틱 강화(semantic enrichment), 벡터 인덱싱에 생성형 AI 도구를 결합해 원시 데이터(raw data)에서 실제 운영 수준(production-grade)의 AI까지 전 과정을 단순화한다. 오라클 AI 데이터 플랫폼은 데이터를 AI에 최적화하고, 오라클 클라우드 인프라스트럭처(OCI), 오라클 자율운영 AI 데이터베이스(Oracle Autonomous AI Database), OCI 생성형 AI(OCI Generative AI) 서비스를 결합해 에이전틱 애플리케이션의 생성과 배포를 가능하게 한다. 기업 고객은 신뢰할 수 있는 실시간 인사이트를 얻을 수 있으며, 반복 업무를 자동화하고, 성장 기회를 발굴하며, 일상적인 워크플로에 지능을 내재화하는 AI 에이전트를 활용할 수 있다. 개발자와 데이터 팀은 엔터프라이즈급 단일 플랫폼에서 이러한 기능을 신속하게 구축하고 확장할 수 있다. 이 플랫폼은 엔비디아 가속 컴퓨팅 인프라를 통합해 고성능 워크로드를 위한 최신 세대 GPU와 라이브러리를 선택할 수 있다. 그 결과 다양한 산업군에서 더욱 신속한 혁신, 높은 생산성, 측정 가능한 비즈니스 성과를 실현할 수 있다. 오라클 AI 데이터 플랫폼은 기업이 데이터와 AI를 효과적으로 활용할 수 있는 기반을 제공한다. 고객은 델타 레이크(Delta Lake) 및 아이스버그(Iceberg)와 같은 오픈 포맷을 활용해 데이터 레이크하우스를 구축하고, 데이터 중복을 줄일 수 있다. 또한 AI 데이터 플랫폼 카탈로그는 모든 데이터와 AI 자산에 대한 통합 뷰와 거버넌스를 제공해 기업의 컴플라이언스 및 신뢰 강화를 지원한다. 카탈로그는 에이전트투에이전트(Agent2Agent : A2A) 및 모델 컨텍스트 프로토콜(MCP) 등 개방형 표준을 폭넓게 지원해 정교한 멀티에이전트 시스템 구성을 가능하게 한다. 더불어 기업 고객을 위한 에이전트 허브(Agent Hub)는 다수의 에이전트를 탐색하는 복잡성을 제거하고, 요청을 해석해 적합한 에이전트를 호출하며, 추천 결과를 제시해 즉각적인 조치를 취할 수 있도록 지원한다. 오라클은 오라클 AI 데이터 플랫폼이 제공하는 기능 및 이점으로 ▲데이터를 인텔리전스로 전환 ▲팀 전반의 혁신 가속 ▲비즈니스 프로세스 자동화 및 확장 ▲엔터프라이즈급 준비 상태 보장 등을 꼽았다. 오라클 AI 데이터 플랫폼은 데이터 레이크하우스와 AI를 하나의 플랫폼에 통합해, 원시 데이터를 실행 가능한 인사이트와 더 스마트한 의사결정으로 전환할 수 있다. 그리고 데이터 엔지니어, 데이터 과학자, AI 개발자를 위한 단일 워크벤치를 제공해 협업과 AI 기반 애플리케이션 제공 속도를 높인다. 이를 통해 단순 분석을 넘어 워크플로를 조율하고, 알림을 자동 생성하며, 비즈니스 성과를 직접 개선하는 AI 에이전트를 통해 효율을 높일 수 있도록 한다. 오라클은 “OCI, 오픈소스 엔진, 업계 선도적 분석 기능, 오라클 자율운영 AI 레이크하우스(Oracle Autonomous AI Lakehouse)의 결합으로 미션 크리티컬 AI 도입에 필요한 규모, 성능, 신뢰성을 제공한다”고 전했다. 제로 ETL(Zero-ETL)과 제로 카피(Zero Copy) 기능을 통해 고객은 재무, HR, 공급망, 마케팅, 영업, 서비스 등 핵심 비즈니스 애플리케이션 데이터는 물론 산업별 애플리케이션 데이터와 기존 엔터프라이즈 데이터베이스에 원활하게 연결할 수 있다. 오라클 AI 데이터 플랫폼은 멀티클라우드 및 하이브리드 크로스-클라우드 오케스트레이션을 지원하여 퍼블릭 클라우드, 온프레미스, 에지 등 모든 소스의 데이터의 연결, 처리, 분석이 가능하다. 또한, 오라클 애플리케이션과 서드파티 환경 전반에서 AI 에이전트가 원활하게 작동할 수 있게 되어 고객이 기업 전반에 걸쳐 AI 기반 혁신을 확장할 수 있다. 오라클은 퓨전(Fusion), 넷스위트(NetSuite)를 포함한 주요 오라클 애플리케이션 제품군 전반과 의료, 소비재, 금융 서비스, 건설 등 산업 전반을 대상으로 사전 통합을 포함한 맞춤형 AI 데이터 플랫폼을 제공할 계획이다. 오라클 퓨전 데이터 인텔리전스(Oracle Fusion Data Intelligence)의 정제되고 풍부하며 AI를 위해 준비된 데이터는 AI 데이터 플랫폼에서 사용 가능하다. 오라클의 T.K. 아난드 총괄부사장은 “오라클 AI 데이터 플랫폼은 고객이 데이터를 AI에 최적화하고, AI를 활용하여 비즈니스 프로세스 전반을 혁신할 수 있도록 돕는다. 이 플랫폼은 데이터를 통합하고 전체적인 AI 라이프사이클을 간소화하여 기업이 신뢰성, 보안성 및 민첩성을 고려하며 AI의 역량을 활용하는 데 있어 가장 포괄적인 기반을 제공한다”고 말했다.
작성일 : 2025-10-15
유아이패스-엔비디아, 민감한 워크플로에 신뢰할 수 있는 에이전틱 자동화 제공
유아이패스가 엔비디아와의 협력을 발표하면서, 금융 사기 탐지나 의료 분야 환자 관리처럼 높은 신뢰가 요구되는 환경에서 기업 고객의 기존 자동화 워크플로를 AI 기능으로 강화할 수 있도록 지원한다고 밝혔다. 유아이패스의 에이전틱 자동화 역량과 엔비디아 네모트론(Nemotron) 공개 모델, 엔비디아 NIM을 결합해 기업은 자연어 처리, 이미지 해석, 예측 분석 등 엔터프라이즈급 AI 모델을 마이크로서비스 형태로 더욱 빠르고 손쉽게 배포할 수 있다. 이를 통해 민감한 워크플로에서 에이전틱 AI와 자동화를 효율적이고 정확하게 대규모로 도입할 수 있다.   이번 협력의 핵심은 유아이패스와 엔비디아 NIM, 네모트론을 연결하는 인티그레이션 서비스(Integration Service) 커넥터를 도입하는 것이다. 이를 통해 기업은 엔비디아 NIM을 활용해 생성형 AI 기능을 자사 애플리케이션과 서비스에 원활하고 신속하게 통합할 수 있어, 자동화 역량과 성능을 한층 강화할 수 있다. 이번 협력은 민감한 업무를 다루는 고객이 높은 신뢰가 요구되는 환경에서도 에이전트, 로봇, 인간 전문가를 활용해 엔드투엔드 비즈니스 프로세스를 자동화할 수 있도록 한다.   유아이패스는 서비스 커넥터 외에도 에이전틱 자동화 전반에서 새로운 기회를 모색하고 있다. 주요 영역에는 ▲AI 기반 에이전트를 효과적으로 조율하기 위한 에이전틱 오케스트레이션 고도화 ▲유아이패스의 자동화 전문성과 맞춤형 오픈소스 엔비디아 네모트론 모델 및 가속 컴퓨팅을 결합한 차별화된 에이전트 개발 ▲온프레미스와 에어갭(air-gapped) 환경까지 역량을 확장해 규제가 엄격한 산업에서도 AI를 안전하게, 대규모로 도입할 수 있도록 지원하는 것이 포함된다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “사기 탐지나 의료 워크플로처럼 민감한 프로세스에는 강력하면서도 신뢰할 수 있는 AI가 필요하다”면서, “엔비디아 NIM 모델을 유아이패스 플랫폼에 통합함으로써, 고객은 엔터프라이즈급 거버넌스를 기반으로 자체 호스팅 모델을 배포하고 체계적으로 관리할 수 있다. 이를 통해 기업은 가장 중요한 프로세스에도 관리 체계와 투명성, 신뢰를 바탕으로 AI를 적용해 실질적인 비즈니스 성과를 창출할 수 있다”고 말했다.   엔비디아의 조이 콘웨이(Joey Conway) 엔터프라이즈 생성형 AI 소프트웨어 시니어 디렉터는 “기업들은 복잡하고 독자적인 운영을 위해 안전하고 신뢰할 수 있는 AI를 원한다”며, “엔비디아 네모트론 공개 모델과 NIM 마이크로서비스를 기반으로, 유아이패스는 규제 환경에서도 복잡한 활용 사례에 대응할 수 있으며, AI 에이전트를 활용해 고도화된 자동화 시스템을 신속히 구축할 수 있다”고 말했다.
작성일 : 2025-10-14
ANSYS(앤시스) 공급 채널 리스트(2025)
앤시스 CAE 해석 소프트웨어 공급업체 리스트 입니다. 이미지 출처 : 앤시스 앤시스코리아(Ansys Korea) (04631) 20F State Tower Namsan 100, Toegye-ro, Jung-gu, Seoul Republic of Korea Phone: 6009-0500 Fax: 02-6020-5745~7 https://www.ansys.com/ko-kr 다우데이타(DAOU DATA CORP.) 5F&11F, 311, Dongmak-ro Mapo-gu, Seoul South Korea Phone: +82 2 6991 1221 Fax: +82 2 3411 1305 Website: members.daoudata.co.kr Email: team_ansys@daoudata.co.kr 케이씨이아이(KCEI) 15F KOLON Billant 1 Cha, 30 Digital-ro 32-gil Guro-gu, Seoul 08390 South Korea Phone: +82 2 2103 4000 Fax: +82 2 2103 4050 Website: kcei.com Email: sales@kcei.com 코스테크(KOSTECH) Namjung City Plaza 1th #804 760 Janghang-dong Ilsandong-gu Goyang-si Gyeonggi-do, 10410 Korea Phone: +82 31 903 2061 Fax: +82 31 903 2076 Website: kostech.co.kr Email: sales@kostech.co.kr Support: kostech.co.kr/support 로터스 (LOTUS Technologies, Inc.) 22, Bongeunsa-ro 37-gil Gangnam-gu, Seoul South Korea Phone: +82 2 543 3991 Website: lotustech.co.kr Email: lotustech@lotustech.co.kr MDS 인텔리전스(MDS Intelligence) 9 Fl, Pangyo Seven Venture Valley, 17 Pangyo-ro 228beon-gil, Bundang-gu Seongnam-si, Gyeonggi-do South Korea Phone: +82 31 601 4006 Fax: +82 31 601 4013 Website: mdsit.co.kr Email: medini@mdsit.co.kr 모아소프트(MOASOFT) 422 Ogeum-ro, Songpa-gu Seoul 05770 (Yeonam Building 4F-6F) South Korea Phone: +82 10 3603 8801 Fax: +82 2 407 3511 Website: www.moasoftware.co.kr Email: info@moasoftware.co.kr 래디언트 솔루션(Radiant Solution Co., Ltd.) B-802, 583 Yangcheon-ro Gangseo-gu, Seoul, 07547 South Korea Phone: +82 2 2065 0726 Fax: +82 2 2065 0728 Website: www.radiantsolution.co.kr Email: optical@radiantsolution.co.kr 태성에스엔이(TAE SUNG Software & Engineering Inc.) 10F, 27, Seongsui-ro 7-gil Seongdong-gu, Seoul, 04780 South Korea Phone: 82-2-3431-2442 Fax: 82-2-2117-0017 Website: www.tsne.co.kr Email: marketing@tsne.co.kr 지원: https://www.tsne.co.kr/contact 에이블맥스(ableMAX) 234, Teheran-ro Gangnam-gu, Seoul South Korea Phone: +82 2 539 5212 Fax: +82 2 539 5213 Website: ablemax.co.kr Email: info@ablemax.co.kr Support: blog.naver.com/able   앤시스 공급 제품 리스트 보러가기   출처 : 앤시스코리아 https://www.ansys.com/ko-kr/contact-us * abc순
작성일 : 2025-10-13
무엇을 볼 것인가?
시점 – 사물이나 현상을 바라보는 눈 (10)   지난 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일을 다양한 사례를 들어가며 조금 특별한 시각으로 바라보았다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등에 관해서 소개했다. 이번 호부터는 3회에 걸쳐서 ‘무엇을 볼 것인가?’, ‘무엇을 믿을 것인가?’, ‘가설, 모델, 이론의 설득력의 시대성’의 이야기를 다룰 예정이다. 이번 호에서는 그 첫 번째 이야기로 ‘무엇을 볼 것인가?’에 관해서 생각해 보고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 일제 강점기에 촬영된 청계천의 수위를 관찰하던 수표교의 모습   하천의 수위 측정 수표교는 하천의 수위를 측정할 수 있도록 눈금(수표)이 새겨져 있는 청계천에 있던 다리이다.(그림 1) 세종 2년(1420년)에 만들어질 당시는 그곳에 마전(馬廛)이 있어 마전교라 불렸다. 세종 23년(1441년) 다리 밑을 지나는 개천(청계천)에 흐르는 수위를 측정하기 위해서 수표를 세웠다. 이후부터 수표교로 부르게 되었으며, 주변에 있는 마을은 수표동이라고 부르게 되었다. 수표는 하천의 수위를 과학적, 계량적으로 측정할 수 있는 기구로, 측우기와 함께 세종 때 만들어진 대표적인 과학 기기의 하나로 꼽힌다. 수표교는 현재의 서울특별시 종로구 수표동에 있었으나, 1958년 청계천 복개 공사로 장충단공원에 옮겨졌다. 2005년 청계천 복원 당시 원래 자리에 다시 놓으려고 했으나, 복원된 청계천의 폭과 수표교의 길이가 맞지 않아 옮겨지지 못했다.(그림 2) 대신 그 자리에는 임시 다리가 설치되어 있다. 원래의 수표교는 동대문구 청량리동에 있는 세종대왕기념관으로 이전되었다. 수표교에서 오른쪽으로 다섯 번째 다리의 이름이 오늘날의 마전교로 되어 있다. 초기의 수표는 청계천의 마전교 서쪽과 한강변에 세워졌다. 물속에 기둥을 꽂을 수 있도록 구멍을 판 받침돌을 놓고 그 구멍에 나무 기둥을 세웠다. 나무 기둥에는 눈금을 새겨 수위를 알아볼 수 있도록 하였으나, 나무로 만든 수표는 쉽게 망가져 15세기 성종 때 돌기둥으로 교체하였다. 아마도 물이 차면 부력으로 떠내려가기도 쉽고 물에 젖었다가 마르기를 반복하는 부분은 쉽게 썩지 않았을까 싶다. 돌기둥으로 만들어진 수표 양면에는 1척에서 10척까지 눈금을 새겼으며, 3, 6, 9척의 위치에는 ○표를 새겨서 각각 갈수(渴水), 평수(平水), 대수(大水)를 판단하는 기준으로 삼았다. 6척 안팎의 물이 흐르면 보통의 수위이고, 9척 이상이 되면 위험 수위로 개천의 범람 징후를 미리 헤아릴 수 있도록 한 것이다. 영조 36년(1760년)에 다리를 수리하면서 돌기둥에 ‘庚(경)·辰(진)·地(지)·平(평)’이라는 글씨를 새겨 물 높이를 4단계로 측정하였다. 순조 때 개천을 다시 준설할 때 새로운 수표를 세웠으며, 지금 남아 있는 수표는 이때 만들어진 것이다.   그림 2. 복원된 청계천의 22개 다리 중에서 옛 모습을 찾지 못한 수표교(빨간 별표로 표시된 다리)   강우량을 측정하는 측우기 현존하는 세계 최고의 강우량 측정기구도 우리나라가 가지고 있다. 국보로 지정된 ‘공주 충청감영 측우기’이다.(그림 3) 헌종 3년(1837년)에 제작된 공주 충청감영(금영) 측우기는 농업을 위한 조상의 과학적 발명과 구체적 실행을 증명해주는 유물로 매우 가치가 크다. 금영 측우기는 조선 시대 충남지역 감독관청이었던 충청감영에 설치되었던 것으로, 1915년경 일본인 기상학자 와다 유지가 국외로 반출한 것을 1971년 일본으로부터 환수한 것이다. 현재 서울 기상청 박물관에 보관되어 있다. 조선 시대에는 중앙정부에서 규격이 같은 측우기를 제작해 전국의 감영에 보냈기 때문에, 여러 점이 만들어졌을 것으로 추정된다. 다만 지금까지 남아 있는 것은 금영 측우기가 유일하다. 빗물을 그릇에 받아 강우량을 재는 측우기는 조선 세종 때에 처음 만들어진 후 여러 차례 다시 만들어졌다는 기록은 남아 있으나, 현재 실물로 남아 있는 것은 헌종 3년(1837년)에 만들어진 이 측우기뿐이다. ‘조선왕조실록’ 세종 23년(1441년) 8월 18일의 기록에는 서운관(기상관측 기관)에 대(臺)를 설치해 빗물을 받아 강우량을 측정했으며, 이듬해인 1442년 5월 8일에는 측정방식이 미진해 다시 원칙을 세웠다고 한다. 이때 세운 원칙대로 만들어진 것이 금영 측우기이다. 강우량 측정의 표준이 필요함을 절감하고 표준을 정해서 시행한 셈이다. 오늘날의 표준화 작업과 품질관리가 실행된 구체적인 사례이다. 도량형 표준이 측우기에도 적용된 셈이다. 금영 측우기의 제작 시기와 크기 등은 바깥 면 가운데쯤에 새겨진 명문(銘文)을 통해 알 수 있다. 명문에 따르면 이 측우기는 헌종 3년(1837년)에 만들었으며 높이는 1자(尺) 5치(寸), 지름 7치, 무게 11근으로 제작되었다. 상·중·하단의 3개의 금속 부품으로 구성되었으며, 상부가 약간 넓고 하부가 약간 좁게 만들어져 서로 끼워서 조립하는 형태의 구조이다. 금속 부품을 끼우는 접합부는 대나무 마디처럼 두껍게 만들어 부품의 모양이 변형되지 않도록 고안된 형태이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
[무료 다운로드] 통합 3D CAD/CAM 설루션의 전략적 가치
제조업의 미래를 위한 ZW3D 2026   ZW3D 2026은 기계/제조 분야에 특화된 3D CAD/CAE/CAM 소프트웨어이다. 제조업의 미래를 위한 올인원 CAD/CAM 통합 설루션을 지향하는 ZW3D 2026은 2D와 3D 데이터 모두를 활용하여 가공 데이터를 생성하고, 프로세스 최적화를 통해 디지털 전환과 스마트한 혁신을 가속화할 수 있다.   ■ 자료 제공 : 지더블유캐드코리아, www.zwsoft.co.kr   올인원 CAD/CAM 프로세스 최적화의 필요성 제조 산업 분야에서는 설계, 엔지니어링, 제작 전 과정을 얼마나 효율적으로 연계하는지가 기업의 경쟁력을 좌우한다. 하지만 여전히 많은 현장은 2D 도면 기반 작업에 의존하고 있으며, 복잡한 형상과 보다 정밀한 방식의 수요가 증가하면서 2D 작업 방식의 한계가 뚜렷하게 나타나고 있다. 분리된 CAD/CAM 시스템은 데이터 변환 과정에서 발생할 수 있는 데이터 손실이나 이를 복원하지 못해 생산성 저하와 품질 리크스로 직결되고, 곡면이나 자유 형상이 많은 부품은 2D 도면만으로 해석하는 데에 많은 시간과 노력이 필요하다. 또한 작업자 숙련도에 따라 가공 결과가 매우 달라지기도 한다. 이러한 한계를 극복하기 위해서는 설계와 가공이 단절 없이 연결되는 통합 설루션이 필수이다. ZW3D 2026은 통합된 CAD/CAM 소프트웨어 환경을 제공함으로써, 앞에서 언급한 프로세스의 문제를 획기적으로 개선할 수 있다.   ZW3D 2026의 산업별 특화 기능 2.5D 부품 가공 설루션 ZW3D CAM의 서드파티 모듈인 캠포커스(CAM Focus)는 2.5D 밀링 가공에 특화된 옵션으로, 기본 프로세스만으로도 작업이 가능하지만 캠포커스를 활용하면 더욱 효율적이고 체계적인 가공이 가능하다. 소재 정의, 좌표계 설정, 공구통 관리 등을 지원하는 설정 패널과 툴패스를 생성하는 2X 가공 패널, 그리고 도면 수정이나 정보 조회에 활용할 수 있는 곡선 편집 및 유틸리티 기능까지 하나의 환경에서 제공되어 작업 흐름을 단순화한다. 특히 2D 도면과 3D 모델을 구분하지 않고 동일한 방식으로 작업할 수 있어, 사용자는 보다 직관적이고 일관된 환경에서 가공을 수행할 수 있다.     설정 프로세스의 단축 ZW3D는 2D 도면을 불러오면 3D CAD 환경에서 작업이 시작된다. 도면의 불필요한 요소를 정리한 후, 간단한 버튼 클릭만으로 CAM 모드로 전환해 가공 작업을 진행한다. 가공 소재(스톡)와 좌표계(G54, G55 등) 설정도 직관적으로 이루어진다. 스톡(소재) 설정은 3D 모델이 있는 경우 자동으로 박스를 생성해주며, 도면의 경우 Z값을 입력하면 손쉽게 생성할 수 있도록 구성되어 있다. 좌표계 설정 또한 모델이나 스톡 기준으로 간편하게 원하는 지점을 선택하여 생성할 수 있다.     공구 DB에서는 공구통을 생성하고 자주 사용하는 공구를 등록해두고 툴패스 생성 시 사용할 수 있다. 공구에는 기본 정보뿐만 아니라 절삭 조건 피드와 스핀들 값도 입력해두고 툴패스 생성시 해당 값을 불러오도록 설정할 수 있다.     최적화된 부품 가공 프로세스 ZW3D는 다양한 가공 환경에 최적화된 툴패스를 제공한다. 윤곽 가공이나 포켓 가공 시, 사용자는 도면 또는 모델의 곡선을 선택해 가공 영역을 지정하고, 공구 선택과 가공 조건 입력까지 하나의 창에서 모두 설정할 수 있다. 포켓 및 윤곽 가공은 유형 선택 후 체인으로 영역을 지정하며, 공구와 조건을 설정하는 동시에 사전 드릴점을 지정해 해당 지점으로 안전하게 진입하도록 할 수도 있다. 또한, 동일한 창에서 추가 가공 기능을 활용해 기존 공구가 닿지 못한 영역만 자동으로 작은 공구로 잔삭 처리할 수 있다. 정삭 역시 공구와 조건만 설정하면 손쉽게 툴패스를 생성할 수 있다. 이처럼 캠포커스 인터페이스를 통해 모든 설정을 직관적으로 제어할 수 있으며, 불필요한 반복 작업을 줄여 CAM 작업 시간을 최소화하고 생산성을 높일 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
크레오 시뮬레이션 라이브를 활용한 제품 설계 최적화
제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (3)   크레오 시뮬레이션 라이브(Creo Simulation Live)는 설계자 중심의 실시간 통합 해석 설루션으로, 빠르고 쉽게 구조·열·모달·유체 해석을 수행할 수 있는 설루션이다. 크레오 12.0 크레오 시뮬레이션 라이브에서는 더욱 향상된 기능으로 제품 개발 효율과 품질을 동시에 높일 수 있다. 이번 호에서는 크레오 12.0에서 추가된 패스너(fastener) 추가 및 예비 하중(preload) 조건 적용, 자동 접촉(contact) 감지 및 생성을 기반으로 하여 구조 해석을 진행해보자.   ■ 김주현 디지테크 기술지원팀의 차장으로 크레오 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   이번 호에서는 다음과 같은 어셈블리를 해석해보자. 해석하고자 하는 모든 부품에 필요한 재료를 지정한다.     해석을 하기 위해 메뉴에서 ‘라이브 시뮬레이션’을 선택한다.     ‘시뮬레이션 추가’에서 원하는 해석 유형을 선택한다. 이번 호에서는 구조해석을 하기 위해 ‘구조 시뮬레이션 검토’를 선택한다.     어셈블리를 모두 해석하지 않고 원하는 부품만 해석하기 위해 ‘범위’를 통해 부품을 지정한다. ‘B02482.prt’, ‘B02400.prt’ 이 두 부품을 제외하고 나머지 부품을 모두 선택한다.     다음으로 제약조건을 설정해 보자. ‘고정’ 아이콘을 선택한다.     고정하고자 하는 서피스 면을 선택한 후 확인한다. 예제에서는 그림과 같이 네 개의 구멍을 선택한다.     다음으로는 베어링 하중을 부여한다. 크레오 12.0 라이브 시뮬레이션에서는 베어링 하중을 부여할 수 있다. 베어링 하중을 부여하는 경우 힘이 핀/구멍 연결로 적용되며, 하중 분포는 지정된 방향으로 원통의 절반에 걸쳐 자동으로 적용된다. 베어링 하중은 완전 원통형에서만 지원되고, 강도 및 방향의 기준으로 정의되거나 방향 컴포넌트의 기준으로만 정의될 수 있다. 베어링 하중을 부여할 수 있게 되면서 핀/구멍 연결 하중을 좀 더 정확하게 시뮬레이션할 수 있게 되었다. 메뉴에서 ‘베어링 하중’을 선택한다.     그림과 같이 ‘B02521.prt’의 안쪽 면을 참조로 선택한 후 방향에 값을 입력한다. 이번 호에서는 X 방향으로 ‘-500N’, Z 방향으로 ‘-200N’을 입력한 후 확인한다.     다음으로 두 번째 베어링 하중을 입력한다. 베어링 하중 아이콘을 선택한 후 이번에는 ‘GB6LASTSN001228.prt’의 서피스 면을 참조면으로 선택한다. 하중의 값은 X 방향으로 ‘-200N’, Z 방향으로 ‘50N’의 힘을 입력한 후 확인한다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
프로세스 자동화 Ⅲ - 유로 형상 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (8)   이번 호에서는 파이프 유로 형상 설계 최적화를 위해 NX CAD와 심센터 스타-CCM+(Simcenter STAR-CCM+)를 사용하여 CAD 치수 변수를 수정하며 유동해석의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다. ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   이번에 사용할 심센터 스타-CCM+는 2006년에 첫 버전이 공개되었으며, 통합된 환경과 클라이언트-서버 접근 방식은 당시의 CFD 해석 방법에 새로운 패러다임을 제시했다. 첫 출시 이후 주요 기능이 빠르게 확장되었는데, 대표적으로 코드의 기반이 되는 ‘메시 파이프라인(mesh pipeline)’과, 산업용 CFD 최초로 다면체(polyhedral) 메시 기술을 도입한 점이 큰 변화였다. 2010년에는 컴퓨팅 하드웨어의 가격이 저렴해지는 반면, 라이선스 비용이 하드웨어 활용의 제약이 된다는 시장의 목소리를 반영해 ‘파워 세션(Power Session) 라이선스’를 도입하였고, 이를 통해 하나의 고정 비용으로 무제한 코어에서 대규모 병렬 해석을 수행할 수 있게 되어, 소프트웨어 사용 비용과 하드웨어 활용 간의 한계를 완전히 해소하는 사용 환경을 마련하였다. 2012년에는 업계 최초로 ‘오버셋 메시(overset meshes)’ 기능을 도입해 실제 현장에서 움직이는 격자 기반 해석을 더욱 직관적으로 구현할 수 있게 되었고, 2015년에는 산업용 CFD를 넘어 유체-구조 연성 등 진정한 다중물리 해석을 지원하기 위해 유한요소(finite elements) 해석 솔버를 통합했으며 전자기 해석까지 기능을 확장했다. 오늘날 스타-CCM+는 자동화 기능, 설계 탐색 도구, 포괄적인 다중물리 해석, 그리고 산업을 선도하는 데이터 분석 및 협업형 가상현실 환경까지 지원하며 그 성장을 지속하고 있다. 그 외에도 다양한 혁신적 진보를 이루었지만, 이 내용만으로도 지난 짧은 기간 내 스타-CCM+가 얼마나 빠르게 발전했는지 잘 보여준다고 할 수 있다.   그림 1   프로세스 자동화 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시 설계 및 분석에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 다이렉트 인터페이스 포털(Direct Interface Portal)이 필요하다. HEEDS(히즈)에서는 심센터 스타-CCM+를 위한 포털(Portal)을 제공하므로 빠른 설정이 가능하다. 그림 2는 HEEDS에서 제공하는 다양한 설루션의 다이렉트 인터페이스 포털 목록이다.   그림 2   <그림 3>은 파이프 유로 설계 최적화 자동화 워크플로의 주요 단계와 각 툴의 역할을 요약한다.   그림 3   첫째, NX_CAD 포털에서는 HEEDS가 NX CAD의 파트 파일(*.prt)을 NX Expressions를 활용하여 변수(치수 등)를 자동으로 수정한다. 수정된 파이프 형상이 파라솔리드(parasolid) 형식(*.x_t)으로 내보내지는데, 이 파일에는 해석에 필요한 Named Face(경계면) 정보를 포함한다. 둘째, STAR-CCM+ 포털에서는 스타-CCM+ 해석 파일(*. sim)이 전달받은 신규 형상(*.x_t)을 읽고, 메시 업데이트와 경계조건 수정이 자동으로 적용된다. 이후 유동 해석이 수행된 뒤, 결과값은 HEEDS가 자동 추출한다. <그림 3>은 NX CAD와 스타-CCM+ 간의 입력/출력 파일 흐름, 형상 전송, 변수-응답 데이터 매핑 관계를 시각적으로 정리한다. 이처럼 각 단계를 자동화로 설정하면 설계 변수 변경부터 해석 실행 및 결과 평가까지 전체 최적화 과정을 빠르고 효율적으로 반복할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
터보기기 해석을 위한 플루언트 터보 워크플로
앤시스 워크벤치를 활용한 해석 성공 사례   터보기기 해석에 많이 쓰이는 앤시스 설루션으로 앤시스 CFX(Ansys CFX)가 있다. 앤시스 플루언트(Ansys Fluent)를 이용하여 터보기기를 해석할 수 없는 것은 아니었지만, 굳이 애써서 할 필요성은 없었다. 하지만 플루언트의 GPU 솔버가 적극적으로 도입된 이 시점에서, GPU를 이용하여 터보기기를 해석할 수 있다면 해석 속도에 있어서 상당한 이점을 가져올 수 있다. 플루언트의 터보 워크플로(Turbo Workflow)는 사용자 편의성을 갖추어 손쉽게 터보기기 해석을 할 수 있도록 지원하고 있다. 플루언트의 터보 워크플로를 이용하여 터보기기를 해석하는 방법을 예제를 통하여 알아보자.   ■ 한성훈 태성에스엔이 FBU-F3팀에서 수석매니저로 근무하고 있으며, 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   해석 모델 이번 호에서 다루는 해석 모델은 TFD Hannover 축류압축기이며, <그림 1>과 같이 앞쪽에서부터 총 3 Rows(1.5 단)를 해석 대상으로 한다. 각 단은 IGV – Rotor – Stator로 구성되어 있다. 격자 파일은 플루언트 튜토리얼 turbo_workflow.zip을 다운로드하여 압축을 해제하면 얻을 수 있으며, 앤시스 터보그리드(Ansys TurboGrid)로 생성된 세 개의 파일(IGV.gtm, R1.gtm, S1.gtm)로 구성된다. IGV는 26개, Rotor는 23개, Stator는 30개로 이루어져 있으며, 해석에서는 주기 경계조건을 적용하여 각각 1개의 섹터만을 모델링한다.   그림 1. Schematic Rows   터보 워크플로 시작하기 터보 워크플로는 다음의 경로에서 터보 워크플로를 활성화하여야 시작할 수 있다. Domain → Turbomachinery → Turbo Workflow → Enable Workflow   그림 2. 터보 워크플로 활성화   활성화가 되면 <그림 3>과 같이 Workflow 작업 메뉴들이 생성된다.   그림 3. Turbo Workflow Task   Turbo와 관련된 환경설정 Cell과 Face zone 및 Turbo Topology에 적절한 영역을 할당하기 위해 연관성 설정을 수행한다. 이를 통해 플루언트가 특정 문자열 구성을 일정한 순서로 인식하도록 지시하여, 영역 매핑을 보다 쉽게 수행할 수 있다. File → Preference → Turbo Workflow에서 <그림 4>와 같이 세팅한다.   그림 4. Preference turbo workflow   Describe Component Component Type : Axial Compressor Component Name : hannover Number of Rows : 3 Row1 : name – igv, Type – stationary, #sectors – 26, End Wall Gap – no Row2 : name – r1, Type – rotating, #sectors – 23, End Wall Gap – yes Row3 : name – s1, Type – stationary, #sectors – 30, End Wall Gap – no   그림 5. Describe component     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02