• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "항공우주"에 대한 통합 검색 내용이 528개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
앤시스-한화에어로스페이스, 차세대 항공 엔진 개발 위한 디지털 협력 MOU 체결
앤시스코리아가 10월 23일 서울 국제항공우주 및 방위산업 전시회(ADEX 2025)에서 한화에어로스페이스와 함께 국내 항공엔진 개발 역량 강화와 디지털 엔지니어링 기반 혁신 생태계 조성을 위한 업무협약(MOU)을 체결했다고 밝혔다.   이번 협약은 한화에어로스페이스의 차세대 항공엔진 개발 프로젝트에 앤시스코리아의 첨단 시뮬레이션 기술과 디지털 엔지니어링 역량을 결합해, 설계부터 검증·운용까지 전 과정을 디지털 중심으로 혁신하기 위한 협력의 일환이다. 양사는 ▲앤시스의 첨단 시뮬레이션 기술 및 기술 지원을 기반으로 한 공동 기술 협력 ▲한화에어로스페이스의 투자 및 협력 인프라 구축 ▲디지털 미션 엔지니어링(DME) 분야의 상호 협력을 추진할 예정이다.   특히 DME는 실제 운용 환경을 가상으로 재현하여 시스템 수준의 성능을 통합적으로 분석할 수 있는 차세대 엔지니어링 접근법으로, 기존의 부품 단위 해석을 넘어 비행 궤적, 대기 조건, 임무 환경 등 실제 상황을 반영한 ‘디지털 트윈’ 시뮬레이션을 구현할 수 있다. 이를 통해 한화에어로스페이스는 개발 과정에서 발생할 수 있는 리스크를 최소화하고, 시험 주기 단축·개발비 절감·품질 향상 등 실질적인 성과를 기대할 수 있다. 앤시스코리아는 이번 MOU를 통해 엔진 설계부터 임무 수행까지 전 과정을 아우르는 시뮬레이션 기술을 지원할 계획이다. DME 기반의 통합 해석을 통해 개발 효율과 신뢰성을 높이는 한편, 국내 디지털 엔지니어링 생태계를 한층 고도화할 방침이다. 또한 앞으로 국내 항공·방산 기업들과의 협력을 확대해 항공우주 기술의 글로벌 경쟁력 강화에도 기여할 예정이다.   앤시스코리아 박주일 대표는 “이번 협력은 한국 항공우주산업의 디지털 혁신을 가속화하기 위한 중요한 이정표”라며, “앤시스의 시뮬레이션과 디지털 미션 엔지니어링 역량을 통해 한화에어로스페이스의 엔진 개발 전 과정이 한 단계 진화할 것으로 기대한다”고 말했다.  
작성일 : 2025-10-24
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
DN솔루션즈, ADEX 2025에서 우주·항공·방산 제조혁신 솔루션 선보여
DN솔루션즈(DN Solutions는 ‘서울 국제 항공우주 및 방위산업 전시회 2025(Seoul ADEX 2025)’에 참가해 우주항공 및 방위산업 관계자들에게 독보적인 정밀가공 기술 역량과 미래 제조 솔루션을 선보일 예정이라고 밝혔다. 오는 10월 20일부터 24일까지 킨텍스(KINTEX) 제2전시장 9홀에서 열리는 이번 ADEX 2025 전시에서 DN솔루션즈는 DVF 5000 2nd Gen와 DLX 325D 등 핵심 5축 가공 장비와 혁신적인 적층 가공기를 중심으로, 극한의 환경에서도 완벽한 성능을 요구하는 우주항공 및 방산 부품 제작에 최적화된 토털 솔루션을 공개한다.    특히, 난삭재/복합재 가공, 부품 대형화, 생산성 향상, 제조 자동화, 적층 가공, 그리고 제조 지능화 등 항공우주 제조 혁신을 위한 6대 핵심 기술 트렌드를 반영한 구체적인 적용 사례를 제시하며, K-방산과 K-우주항공 산업의 제조 경쟁력 강화에 기여하겠다는 의지를 강조할 계획이다. DN솔루션즈는 서울 ADEX를 단순한 장비 전시 기회를 넘어, 한국 우주항공 업계의 경쟁력 제고를 지원할 중요 기회로 보고 있다. 앞서 김원종 DN솔루션즈 대표는 지난 6월 한국우주항공산업협회 주최로 열린 제13회 우주항공 리더 조찬 포럼 특강 연사로 나서 "우주항공 제조혁신을 견인하는 기술의 발전은 곧 국가 경쟁력 강화로 이어진다"고 강조하며, 이 분야에서의 정밀가공 기술의 핵심적 역할을 역설했다. 우주항공 및 방위산업 부품은 요구되는 정밀도와 기술 안정성 기준이 타 산업 대비 월등히 높아, 부품 생산 과정에서 초정밀 가공 기술과 고도의 품질관리 역량이 필수적이기 때문이다. 극한의 환경을 견뎌야 하는 엔진 블레이드, 구조물, 미사일 부품 등은 미세한 오차도 허용되지 않는다. DN솔루션즈는 이번 ADEX 2025를 통해 국내외 우주항공 및 방위산업 리더들과의 전략적 기술 협력 기회를 모색하며, K-방산 수출 증대와 미래 우주항공 시대 개척에 기여하는 기업으로서의 입지를 더욱 확고히 다질 계획이다. 김원종 대표는 “DN솔루션즈는 글로벌 네트워크를 보유한 세계적 공작기계 기업으로서, 한국 경제의 새로운 도약을 이끌 우주항공 분야에서 우리의 정밀 가공 기술이 제조 경쟁력 강화에 핵심 역할을 할 수 있도록 계속 매진하겠다”고 다짐했다.
작성일 : 2025-10-17
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
고충실도 제트 유동 시뮬레이션으로 항공우주 산업 혁신
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (26)   이번 호에서는 고속 제트 유동 시뮬레이션에서 마주하게 되는 주요 도전 과제를 설명한다. 또한 피델리티 LES 솔버(Fidelity LES Solver)의 기능을 소개하고, 이를 활용한 사례 연구를 통해 그 잠재력을 강조하고자 한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   초고속 제트 유동을 시뮬레이션하는 것은 기술적으로 매우 도전적인 과제이자 유체역학 분야의 흥미로운 최전선이다. 특히 초음속 및 극초음속 비행 기술이 발전함에 따라, 이러한 극한 속도에서의 복잡한 유동 거동을 이해하는 것은 점점 더 중요해지고 있다. 마하 1 이상의 속도에서는 공기역학적 힘의 성질이 크게 변하며, 충격파가 발생한다. 이 충격파는 특정한 유동 패턴을 만들어내며, 이는 항공기의 성능, 안정성 및 기동성에 큰 영향을 미칠 수 있다. 비행 속도가 마하 3을 넘어 특히 스크램제트 엔진이 작동하는 구간에 이르면, 마찰 및 압축으로 인해 발생하는 온도 변화가 섭씨 1500도 이상에 달할 수 있다. 이러한 극한의 열 환경은 설계 시 제대로 고려되지 않으면 재료 피로와 파손을 초래할 수 있다. 하지만 피델리티 LES 솔버(구 Cascade CharLES)와 같은 전산 유체역학(CFD) 도구의 발전으로, 연구자는 이제 고속 비행의 물리 현상을 과거에는 불가능했던 수준의 정밀도로 탐구할 수 있게 되었다. 그러나 이러한 극한 조건을 정확히 시뮬레이션하려면 무엇이 필요할까? 수많은 시뮬레이션 과제를 어떻게 해결할 수 있을까?     고속 제트 유동 시뮬레이션의 도전 과제 고속 제트 유동을 시뮬레이션하는 것은 온도, 압력, 난류 간의 복잡한 상호작용으로 인해 상당한 어려움을 동반한다. 높은 레이놀즈 수에서는 난류가 매우 불규칙하게 변하기 때문에, 정확한 결과를 얻기 위해서는 강력한 알고리즘과 고성능 컴퓨팅 자원이 필수이다. 가장 큰 과제 중 하나는 압축성 효과를 포착하는 것이다. 고속 유동에서는 밀도 변화 및 충격파와의 상호작용이 유동의 거동을 극적으로 변화시키므로, 이를 정확히 모델링하는 것이 매우 중요하다. 또한 고속 제트 내부의 복잡한 유동 구조를 고려할 때 효과적인 난류 모델링이 필수이며, 정확성과 계산 효율 간의 균형을 찾는 것은 여전히 큰 도전 과제이다. 또 다른 핵심 요소는 열 전달과 수치적 안정성이다. 급격한 온도 구배(gradient)는 경계 조건의 정교한 정의를 요구하며, 그렇지 않으면 시뮬레이션 내에서 반사 오류(artifact)가 발생할 수 있다. 고해상도 수치 기법은 이러한 구배를 포착하는 데 필수이지만, 그만큼 계산 비용도 증가한다. 소음 예측 역시 중요한 과제이다. 제트 소음을 정확하게 예측하려면 유동 시뮬레이션과 함께 공력음향 모델을 통합하여, 다양한 환경에서의 음파 전파를 효과적으로 재현해야 한다. 여기에 연료 분사를 포함하면 혼합(mixing) 모델링이 추가로 필요하며, 이는 전체 제트 성능에 영향을 주는 핵심 요소로 작용한다. 또한, 실험 데이터와의 검증 문제도 간과할 수 없다. 실험적 기준이 제한적인 경우가 많기 때문에 시뮬레이션은 불완전한 데이터와 상이한 가정을 기반으로 진행되어야 하며, 이는 결과 검증을 어렵게 만든다. 이러한 모든 문제는 정교한 전산 도구와 안정적인 고성능 컴퓨팅 인프라가 필수임을 보여준다. 이를 통해 고속 제트 유동 시뮬레이션의 정확도와 효율을 동시에 향상시킬 수 있다.   해결책 : 피델리티 LES 솔버 피델리티 LES 솔버는 극초음속 및 초음속 유동 시뮬레이션을 위해 개발된 고충실도 전산 유체 역학(CFD) 분석 도구이다. 이 도구는 Large Eddy Simulation(LES)을 고속 항공우주 분야에 확장하여, 극한 유동 환경에서의 고유한 과제를 해결하도록 설계되었다. 고급 수치 기법, 고품질 격자 생성, 뛰어난 병렬 확장성을 결합하여 복잡한 유동을 정밀하게 예측할 수 있다. 다면체 격자 생성(polyhedral mesh generation) : 고급 클리핑 보로노이 다이어그램(clipped Voronoi diagrams)을 활용하여 복잡한 형상에서도 강력하고 효율적인 격자 생성을 지원한다. 이를 통해 정밀하고 확장 가능한 시뮬레이션이 가능하다. 확장성(scalability) : CPU 및 GPU 기반 고성능 컴퓨팅 환경 모두에서 원활하게 작동하도록 설계되어, 고해상도 결과를 빠르고 효율적으로 제공한다. 예측 중심 고충실도 시뮬레이션 : 최신 알고리즘을 통해 충격파 상호작용부터 음향파 전파에 이르기까지 고속 제트 유동의 복잡한 물리 현상을 정밀하게 재현할 수 있다.   사례 연구 : 비선형 음향파형 분석 피델리티 LES 솔버의 성능을 입증하기 위해, 고속 제트 유동을 시뮬레이션하고 그 음향 특성을 분석하는 사례 연구가 수행되었다. 이 연구의 주요 목적은 출구 마하수 3(Mach 3)의 제트 노즐에서 방출된 비선형 음향파형의 전파 현상을 분석하고, 그 결과를 실험 데이터와 비교·검증하는 데 있었다.   ▲ 고속 제트 유동에서의 누적 비선형 음향파형 왜곡 분석     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
[피플&컴퍼니] 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표
시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다   제품이 복잡해지면서 반도체 설계와 전체 시스템의 구현을 통합하는 엔지니어링이 필수가 됐다. 앤시스는 EDA(전자 설계 자동화) 기업 시높시스와 통합을 통해 제품 개발의 전체 과정을 단일 플랫폼으로 지원한다는 비전을 마련했다. 이와 함께 AI(인공지능) 기술을 자사 포트폴리오 전반에 적용해, 전문가의 전유물이었던 시뮬레이션의 장벽을 허문다는 전략도 제시했다. ■ 정수진 편집장   ▲ 앤시스 패드메쉬 맨들로이 부사장   ‘실리콘부터 시스템까지’ 아우르는 엔지니어링 시대 연다 제품이 점차 스마트해지고 복잡해지면서 물리 세계와 전자 세계의 만남이 그 어느 때보다 중요해지고 있다. 앤시스와 시높시스는 지난 7월 통합 완료를 발표했는데, 두 회사는 각자의 전문성을 결합해 반도체 칩 설계(실리콘)부터 최종 시스템에 이르는 전체 과정을 지원하는 통합 설루션을 제공할 계획이다. 앤시스의 패드메쉬 맨들로이(Padmesh Mandloi) 고객지원 부문 아시아 부사장은 “오늘날의 제품은 단순히 기능을 수행하는 것을 넘어 스스로 사고하고, 협업하며, 환경에 적응하는 지능형 시스템으로 발전하고 있다. 이런 변화는 엔지니어링의 복잡성을 가중시키고 있으며, 반도체 설계와 물리적 시스템의 구현을 별개로 볼 수 없게 되었다”면서, “시뮬레이션 분야의 선도 기업 앤시스와 EDA 1위 기업 시높시스가 손을 잡은 것은 이런 시대적 요구에 부응하기 위한 것”이라고 설명했다. 맨들로이 부사장은 “시스템은 실리콘의 요구사항을, 실리콘은 시스템의 요구사항을 정확히 이해해야 한다”고 짚었다. 예를 들면, 자동차 기업이 자율주행 기능을 구현하기 위해서는 AI 반도체 설계를 고려해야 하고, 반도체 기업은 칩이 자동차에 쓰일지 데이터센터에 쓰일지에 따라 다른 접근법을 선택해야 한다는 것이다. 제품 개발을 위해 엔지니어링 시뮬레이션과 EDA의 긴밀한 상호작용이 필수가 되면서, 앤시스는 시높시스와의 통합이 큰 시너지를 낼 수 있을 것으로 기대하고 있다.   물리 기반 시뮬레이션을 EDA 흐름에 통합 양사 통합의 핵심 전략은 앤시스의 강점인 물리 기반 시뮬레이션을 시높시스의 EDA 설계 흐름에 통합하는 것이다. 이를 통해 차세대 인공지능(AI) 칩, 3D IC 등 고도의 반도체를 설계할 때 필수로 고려해야 하는 열, 구조 변형, 뒤틀림 같은 물리적 문제를 설계 초기 단계부터 해결할 수 있게 된다는 것이다. 앤시스코리아의 박주일 대표는 “특히 고대역폭 메모리(HBM)와 같이 여러 칩을 쌓는 ‘스택 구조’에서 이러한 통합 설루션의 가치가 크다. 앤시스는 이미 HBM의 전력 무결성, 열, 구조적 스트레스 분석 분야에서 삼성전자, SK하이닉스 등과 협력해왔다. 앞으로 시높시스와 함께 칩 설계 단계부터 최종 분석까지 아우르는 단일 플랫폼을 제공할 수 있을 것”이라고 전했다. 앤시스와 시높시스는 조직을 통합하기보다는 각자의 비즈니스 운영 방식을 유지하며 시너지를 낼 수 있는 분야를 탐색하는 데 집중하고 있다. 시높시스가 소수의 반도체 기업을 깊이 있게 지원하는 반면, 앤시스는 수천 개의 다양한 산업군 고객을 보유하고 있어 사업 운영 방식에 차이가 있기 때문이라는 것이 박주일 대표의 설명이다. 그는 “다만, HBM 설루션처럼 시장의 요구가 높은 분야의 기술 통합은 더 빠르게 진행될 수 있다”고 덧붙였다. 앤시스는 시높시스와의 통합 설루션이 특히 복잡한 요구조건을 가진 첨단 산업에서 강점을 발휘할 것으로 보고 있다. 앤시스의 월트 헌(Walt Hearn) 글로벌 세일즈 및 고객 담당 부사장은 “이번 합병이 고객들에게 새로운 기술과 기회를 제공할 것으로 기대한다"면서, “물리 시뮬레이션과 EDA의 결합은 제품 개발의 어려운 과제를 해결하는 최고의 포트폴리오가 될 것”이라고 말했다.   ▲ 앤시스 월트 헌 부사장   AI로 엔지니어링의 문턱 낮춘다 앤시스는 인공지능(AI) 기술을 자사 포트폴리오 전반에 통합해 시뮬레이션의 효율과 속도를 높이고, 전문가 수준의 지식이 필요했던 기술의 문턱을 낮추는 데 주력하고 있다. 복잡한 제품 개발 환경에서 더 많은 엔지니어가 시뮬레이션 기술을 쉽게 활용하도록 돕는 것이 앤시스 AI 전략의 핵심이다. 맨들로이 부사장은 “시뮬레이션은 고도의 전문 지식을 갖춘 전문가의 영역으로 여겨져 왔다. 하지만 디지털 전환이 가속화되면서 기업의 비용 절감과 시장 출시 기간 단축을 위해 시뮬레이션의 활용을 확대하려는 요구가 커졌다”면서, “앤시스는 전문 지식에 대한 의존도를 낮추고 더 많은 사용자가 쉽게 접근할 수 있도록 AI 기술이 탑재된 플랫폼을 제공하는 것을 최우선 과제로 삼고 있다”고 설명했다. AI 기술은 초기 머신러닝(ML) 기반의 최적화 도구를 넘어, 대규모 언어 모델(LLM)과 AI 비서를 거쳐 완전히 자율화된 에이전틱 AI(agentic AI)로 나아가고 있다. 헌 부사장은 크게 네 가지 방향에서 AI를 앤시스 설루션에 적용하고 있다고 소개했다. 스마트 UI(사용자 인터페이스) : UI에 AI를 내장해 반복적인 작업을 자동화함으로써 엔지니어의 작업 효율을 높인다. 앤시스GPT(AnsysGPT) : 오픈AI의 기술을 기반으로 하는 앤시스GPT는 자연어 질의응답을 통해 사용자가 엔지니어링 문제에 대한 답을 더 빠르게 찾도록 돕는다. AI 내장 솔버 : 엔지니어링 해석의 핵심 엔진인 솔버 자체에 AI 기술을 통합해 문제 해결 속도를 이전보다 크게 높였다. 심AI(Ansys SimAI) : 과거의 방대한 시뮬레이션 데이터셋을 학습한 AI 솔버이다. 예를 들어, 기존에 일주일이 걸리던 자동차 외부 공기역학 해석 작업에 심AI를 활용하면 단 하루 만에 완료할 수 있다. 헌 부사장은 “앤시스GPT는 이미 2만여 고객사에서 활발히 사용되고 있으며, ‘앤시스 엔지니어링 코파일럿’도 개발하고 있다. 이 코파일럿은 지난 50년간 축적된 앤시스의 제품 개발 지식을 LLM에 탑재한 형태이다. 유동, 구조, 전자기학 등 모든 분야의 엔지니어링 콘텐츠를 단일 플랫폼 안에서 쉽게 검색하고 활용할 수 있게 될 것”이라고 소개하면서, “이런 혁신을 바탕으로 앤시스와 시높시스는 고객이 미션 크리티컬한 과제를 해결하고 AI 기반 제품과 서비스를 성공적으로 개발할 수 있도록 지원을 아끼지 않겠다”고 밝혔다.   솔버 최적화와 클라우드로 컴퓨팅 인프라 부담 해결 시뮬레이션과 AI 기술은 모두 대량의 컴퓨팅 자원을 필요로 한다. 기업에서는 컴퓨팅 인프라의 구축과 운용에 대한 부담이 클 수밖에 없다. 헌 부사장은 “소프트웨어 최적화와 유연한 클라우드 지원을 통해 고객들이 인프라 제약 없이 혁신에 집중할 수 있도록 돕겠다”고 밝혔다. 우선 R&D 차원에서 앤시스는 자사 솔버의 코드를 전면 재작성하고 있다. CFD(전산 유체 역학)와 전자기를 비롯해 모든 분야의 솔버를 GPU(그래픽 처리 장치) 환경에서 구동되도록 최적화하는 것이 핵심이다. 또한, 앤시스는 AWS(아마존 웹 서비스) 및 마이크로소프트 애저(Azure)와 협력해 클라우드 서비스를 제공하고 있다. 고객사가 대규모 해석과 같이 추가적인 컴퓨팅 성능이 필요할 경우 언제든지 클라우드 자원을 활용해 작업을 확장할 수 있도록 하겠다는 것이다. 헌 부사장은 “시높시스 역시 자체 클라우드를 통해 컴퓨팅 리소스를 제공하고 있는데, 향후 이를 통합하면 더욱 시너지를 낼 수 있을 것”이라고 전했다.   ▲ 앤시스코리아 박주일 대표   한국은 가장 복잡한 제품 개발하는 전략적 요충지 앤시스코리아는 최근 몇 년간 두 자릿수의 성장세를 유지하고 있으며, 올해는 예년보다 더 큰 폭의 성장을 예상하고 있다. 박주일 대표는 “이런 성장의 배경에는 국내 시장의 확고한 디지털 전환(DX) 트렌드와 갈수록 복잡해지는 제품 설계 환경이 있다”고 짚었다. 그는 “한국 기업들은 반도체, 자동차, 조선, 항공우주 등 모든 산업 영역에서 최고 수준의 복잡한 제품을 설계하며 글로벌 기업과 경쟁하고 있으며, 그만큼 국내 고객의 기술적 요구 수준 또한 높다”면서, “앤시스 코리아는 높은 수준의 국내 고객 요구를 시뮬레이션 기술로 충족시키는 것을 최우선 과제로 삼고 있으며, 이를 위해 국내 리소스뿐만 아니라 글로벌 조직과의 긴밀한 협업을 통해 한국 시장과 고객을 적극 지원하고 있다”고 설명했다. 앤시스는 HBM, 3D IC와 같은 스택 구조 반도체의 전력 무결성, 열, 구조 변형 문제 해결을 위해 국내 반도체 기업들과 협력하고 있다. 그리고 고밀도 AI 칩을 개발하는 국내 스타트업들과도 협력을 진행 중이다. 우주 산업에서는 국내 스타트업과 협력해 인공위성의 수명과 성능을 위협하는 우주 잔해물 문제 해결을 돕고 있다. 또한, 삼성전자, LG전자, 현대자동차 등 국내 대기업을 중심으로 AI 기술이 탑재된 시뮬레이션 설루션 도입을 빠르게 진행 중이다. 맨들로이 부사장은 “한국 앤시스 고객의 만족도는 96.8%로 역대 최고치를 기록했으며, 이는 지난 몇 년간 꾸준히 상승해 온 결과이다. 앤시스는 이러한 높은 만족도에 큰 자부심을 가지고 있으며, 앞으로도 최고의 기술을 통해 한국 고객들을 지원하는 데 집중할 것”이라고 전했다.    ▲ 앤시스코리아는 9월 17일 연례 콘퍼런스 ‘시뮬레이션 월드 코리아 2025’를 열고, 최신 기술 트렌드와 함께 자사의 비전, 신기술, 고객 사례를 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[온에어] 개발 기간 단축을 위한 설계자 해석 방안
캐드앤그래픽스 지식방송 CNG TV 지상 중계   지멘스 디지털 인더스트리 소프트웨어는 8월 28일 CNG TV 웨비나를 통해 ‘개발 기간 단축을 위한 설계자향 해석 방안(CAD to CAE)’을 주제로, Simcenter FLOEFD(심센터 플로EFD) 기반의 최신 CFD(전산 유체 역학) 접근법을 소개했다. 이날 권중혁 대표, 김택민 대표, 안정근 프로가 발표자로 참여해 설계·해석 통합 프로세스를 중심으로 사례와 시연을 공유했다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 지멘스 디지털 인더스트리 소프트웨어 권중혁 영업대표, 김택민 영업대표, 안정근 프로   설계자가 직접 활용 가능한 CAD 내장 CFD 이번 웨비나에서는 설계 초기 단계에서 CFD를 활용하는 ‘프런트로딩 CFD(Frontloading CFD)’의 필요성이 강조됐다. 심센터 FLOEFD는 NX, 솔리드 엣지, 카티아, 크레오 등 주요 CAD에 완전 내장되어 별도의 형상 단순화 과정 없이 곧바로 해석을 수행할 수 있다. 스마트셀(SmartCell) 기술과 안정적인 솔버를 기반으로 설계자도 손쉽게 CFD를 활용할 수 있다는 점이 차별화 요소다. 권중혁 영업대표는 “제품 개발에서 설계자향 해석은 이제 선택이 아닌 필수”라며, “CAD에 내장된 FLOEFD를 통해 설계 단계부터 성능을 검증하고 품질과 개발 속도를 동시에 높일 수 있다”고 강조했다. FLOEFD는 방산·항공우주, 자동차, 전자, 냉동공조 등 다양한 산업에 적용되고 있으며, SSD·스마트폰·ADAS 컨트롤러 등 실제 사례도 소개됐다.   파라메트릭 설계와 해석의 연계 김택민 영업대표는 NX 익스프레션(NX Expression)을 활용한 파라메트릭 설계 방안을 발표했다. NX 익스프레션은 변수와 수식을 통해 모델을 지능적으로 제어하며, 팀센터(Teamcenter) PLM과 연계해 제품 옵션과 규칙을 CAD 모델 변수에 직접 연결할 수 있다. FLOEFD와 결합 시 모델 변경이 자동으로 해석 조건에 반영돼 설계와 해석 간 불일치를 최소화한다. 김택민 영업대표는 “설계와 해석을 하나의 연속된 프로세스로 연결함으로써 생산성과 최적화 속도를 크게 높일 수 있다”고 강조했다.   IGBT 냉각 해석 시연 안정근 프로는 IGBT 냉각 해석 데모를 통해 FLOEFD의 실제 활용법을 소개했다. NX CAD 환경에서 곧바로 CFD를 수행할 수 있으며, 자동 체적 검출·위자드 기반 초기 설정·자동 메싱 등 편의 기능이 제공된다. 또한 DOE(실험계획법)와 HEEDS(히즈) 모듈을 통한 최적화 기능으로 다양한 설계안을 빠르게 비교할 수 있다. 안정근 프로는 “FLOEFD는 설계자가 직접 사용할 수 있는 쉽고 빠른 해석 솔루션으로, 초기 설계 단계에서 성능을 검증하는 프런트로딩 CFD의 장점을 극대화한다”고 말했다. 한편, 이번 웨비나는 설계와 해석의 간극을 줄이고, 제품 개발 속도를 높일 수 있는 CAD 내장 CFD의 실제 활용 전략을 제시해 관심을 모았다. 지멘스 디지털 인더스트리 소프트웨어는 FLOEFD를 통해 설계자가 초기 단계부터 성능 검증과 최적화를 수행할 수 있도록 지원하며, 기업의 제품 경쟁력 강화를 돕고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
DN솔루션즈, EMO 2025서 '비전 2032' 성과 공개... 공작기계 글로벌 톱 리더 가속화
DN솔루션즈(DN Solutions)가 유럽 최대 규모의 공작기계 전시회인 EMO 2025에 참가해, 기술 기반 제조 솔루션 글로벌 톱 리더로서의 위상을 공고히 했다고 9월 25일 밝혔다. 이번 전시를 통해 '전 세계 30만 대 공작기계 공급'라는 주요 성과를 공개하며, 유럽 산업의 믿을 수 있는 파트너임을 강조했다.  유럽 최대 공작기계전 'EMO 2025' 참가와 첨단 솔루션 공개 EMO 2025는 9월 22일부터 26일까지 독일 하노버에서 개최됐으며, 1975년부터 격년으로 열리는 세계 최대 공작기계 박람회 중 하나다. DN솔루션즈는 올해로 23회째 이 전시회에 참가했다. DN솔루션즈는 이번 전시에서 'Explore the DN SOLUTIONS UNIVERSE'라는 콘셉트 아래, 멀티태스킹머신과 5축기 등 첨단 장비 10종과 자동화 솔루션 4종을 출품했다. 특히 올해 런칭한 PBF 적층 제조 솔루션 'DLX450D'를 선보여 많은 관람객의 이목을 집중시켰다.   DN솔루션즈의 EMO 2025 전시 부스 전경 '비전 2032' 가속화... 2년간 주요 성과 발표 DN솔루션즈는 이번 EMO 2025를 통해 2년 전 'EMO 2023'에서 발표했던 '비전 2032 - 기술 기반 제조 솔루션 글로벌 톱 리더'를 목표로 한 경영 활동의 주요 성과를 설명하고, 비전 달성을 위한 추진에 더욱 속도를 내겠다는 포부를 밝혔다. 지난 2년간의 주요 성과는 다음과 같다. 설치 기반 확장: 전 세계 30만 대 이상 공작기계 공급을 달성했으며, 주요국 시장 점유율을 확대했다. 수요 산업 다각화: 자동차 및 반도체 분야를 넘어 항공우주, 방위 산업 등으로 사업을 확장했다. 첨단 기술 리더십: PBF 적층용 DLX 시리즈를 출시하고, 제조 AI 개발 선도를 위해 카본블랙에 지분 투자를 단행했다. 글로벌 입지 강화: 독일 R&D 센터 안정화, 인도 신공장 및 R&D 센터 착공, 미국 시카고 신규 테크센터 개소 등 글로벌 인프라를 확대했다. 김원종 DN솔루션즈 대표이사는 "1976년 창립 이래 우리는 전 세계에 30만 대 이상의 공작기계를 공급하며, 유럽을 포함한 전 세계 다양한 산업의 신뢰할 수 있는 파트너로 자리 잡았다"며 "전략적 파트너십과 현지 투자를 통해 기술 리더십과 글로벌 입지를 계속 확장하고, 전 세계 고객에게 가장 진보된 제품과 서비스를 제공할 것"이라고 강조했다. 독일 헬러(HELLER) 인수... 유럽과의 새로운 파트너십 구축 DN솔루션즈는 지난 8월 인수 계약을 체결한 독일 공작기계 명가 헬러(HELLER) 그룹의 경영진과 핵심 인재 등에 대한 존중을 표명했다. DN솔루션즈는 8월 26일 독일 뉘르팅엔에서 헬러 그룹 지주사의 지분 100%를 인수하는 계약을 체결했으며, 현재 관련 당국의 승인을 기다리고 있다. 김원종 대표는 기존 및 신규 계약을 성실히 이행하고 고객 지원을 지속할 것을 재확인했다. 또한 헬러가 130년 역사에 걸쳐 구축한 기술 전문성과 고객 신뢰를 보존하기 위해 헬러의 경영진과 핵심 인재를 유지할 것을 약속했다. 김 대표는 "헬러가 쌓아온 유산, 경영 철학, 기술력은 앞으로도 헬러 운영의 핵심으로 남을 것"이라며 "DN솔루션즈와 헬러는 '하나의 팀'으로서 독일 및 글로벌 산업 전반에 걸쳐 더욱 강력한 파트너십을 구축할 것"이라고 말했다. DN솔루션즈의 EMO 2025 전시 부스 현장을 참관객들이 둘러보고 있다.
작성일 : 2025-09-27
CAD&Graphics 2025년 10월호 목차
  INFOWORLD    Editorial 17 AI 기반 스마트홈, 엔지니어링의 새로운 도전과 기회   Focus 18 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 24 헥사곤, 스마트 제조의 미래 비전 제시… “DX를 넘어 AX로” 26 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개   Case Study 29 포지FX가 VR 훈련 설루션을 만드는 방법 확장현실로 건설 장비의 사용 교육과 운영 효율 강화 32 자동차 HMI 기술 브랜드 실리 아우토 언리얼 엔진으로 향상된 HMI 경험 구현   People&Company 34 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표 시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다 37 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원 BIM 기반의 철도 인프라 통합 운영 설루션 연구·개발   On Air 49 캐드앤그래픽스 CNG TV 지식방송 지상중계 소버린 AI를 주도하는 6가지 코드 50 캐드앤그래픽스 CNG TV 지식방송 지상중계 미래를 여는 비즈니스 혁신 : AI 맞춤형 안경과 3D 프린팅 52 캐드앤그래픽스 CNG TV 지식방송 지상중계 설계 효율 극대화한 PTC 크레오 12.4 업데이트 54 캐드앤그래픽스 CNG TV 지식방송 지상중계 개발 기간 단축을 위한 설계자 해석 방안   New Product 40 BIM 기반 공사비 자동 산출 설루션    NaviQ v2.0 42 HP Z2 미니 G1a 리뷰 초소형 워크스테이션의 AI·3D 실전 성능 46 이달의 신제품   Column 55 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 기술 : 도입에서 혁신으로 58 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기   62 News   Directory 139 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 64 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 요구사항 기반 바이브 코딩의 사용 방법 74 새로워진 캐디안 2025 살펴보기 (11) / 최영석 유틸리티 기능 소개 Ⅸ 78 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (7) / 천벼리 AI로 더욱 똑똑해진 CAD 어시스턴트, A3   Reverse Engineering 84    시점 – 사물이나 현상을 바라보는 눈 (10) / 유우식 무엇을 볼 것인가?   Mechanical 69 제조업의 미래를 위한 ZW3D 2026 / 지더블유캐드코리아 통합 3D CAD/CAM 설루션의 전략적 가치 90 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (3) / 김주현 크레오 시뮬레이션 라이브를 활용한 제품 설계 최적화   Analysis 97 앤시스 워크벤치를 활용한 해석 성공 사례 / 한성훈 터보기기 해석을 위한 플루언트 터보 워크플로 102 최적화 문제를 통찰하기 위한 심센터 히즈 (8) / 이종학 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 111 산업 디지털 전환을 가속화하는 버추얼 트윈 (7) / 신효주 스티뮬러스의 모델 기반 요구사항 검증 방법 116 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (26) / 나인플러스IT 고충실도 제트 유동 시뮬레이션으로 항공우주 산업 혁신 120 설계, 데이터로 다시 쓰다 (1) / 최병열 DX 시대, 샌드위치로 살아남기 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (3) / 윤경렬, 김도희 데이터 분석 로코드 설루션을 배워보자 Ⅱ   Manufacturing 134 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (1) / 차석근 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화     2025-10-aifrom 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-09-26
다쏘시스템, 영국 NCC의 클라우드 기반 전환 및 첨단 연구·기술의 산업적 성과 창출 지원
다쏘시스템은 영국의 혁신 기관인 국립복합센터(NCC)가 다쏘시스템의 클라우드 기반 3D익스피리언스 플랫폼(3DEXPERIENCE Platform)을 도입하고, 이를 영국 제조연구센터(HVMC) 네트워크 내 다른 혁신 센터로까지 확대 적용한다고 밝혔다. NCC는 이미 10여 년간 다쏘시스템 설루션을 활용해왔으며, 이번 클라우드 기반 전환을 통해 항공 등 다양한 산업의 지속가능성 과제에 대응하고, 연구와 혁신의 핵심 기반으로 다쏘시스템 3D익스피리언스 플랫폼을 채택했다. 오늘날 산업계는 더 나은 제품을 더 적은 폐기물로, 더 오래 지속할 수 있도록 만들기 위해 복합재와 같은 첨단 소재를 적극 활용하고 있다. 특히 항공우주 분야에서는 차세대 여객기 및 첨단 항공 모빌리티를 변화시키고 있는 경량·고강도·내구성·친환경성을 갖춘 차세대 동체, 엔진 및 추진 시스템 설계를 위한 최첨단 연구가 활발히 진행되고 있다. 현재 신규 항공기의 약 50%가 복합재로 제작되는 것으로 추정된다.     NCC는 제조·산업 고객의 요구에 보다 신속하고 민첩하게 대응하며, 네트워크 내 다른 혁신 센터와 협업해 신기술의 개발·확산·실현을 촉진하고자 했다. 다쏘시스템의 3D익스피리언스 플랫폼은 협업 환경과 AI 기반 버추얼 트윈 경험을 제공해 설계부터 제조까지 밸류체인의 모든 영역을 가속화한다. 또한 NCC는 전 과정 추적이 가능한 모델 기반 시스템 엔지니어링(MBSE) 역량을 통해 차세대 날개 성능, 소재 재활용 공정, 국방 항공기, 첨단 항공 모빌리티뿐만 아니라 기타 산업 분야 연구에 이르기까지, 대규모 실증 프로젝트, 공동 연구 프로그램 및 고객 프로젝트를 위한 복합재 설루션을 탐색하고 최적화할 수 있다. NCC의 마크 서머스(Mark Summers) 최고기술책임자(CTO)는 “NCC의 클라우드 기반 3D익스피리언스 플랫폼으로의 전환은 협업·혁신·실행 방식을 한 단계 높이는 전략적 조치다”며, “이를 통해 산업계의 요구에 더욱 신속히 대응하고 개발 기간을 단축하며, 신기술을 보다 효과적으로 확산시킬 수 있을 것”이라고 말했다. 그는 이어 “이는 영국 내 생산성 향상, 고부가가치 일자리 창출, 장기적 경제 성장에 지원하는 산업적 성과 창출에서 NCC의 역할을 한층 강화하는 계기가 될 것”이라고 강조했다. 다쏘시스템의 데이비드 지글러(David Ziegler) 항공우주 및 국방 산업 부문 부사장은 “항공우주와 국방 산업은 혁신과 새로운 창조 방식을 요구하는 패러다임 전환을 맞이하고 있다”며, “NCC는 3D익스피리언스 플랫폼을 클라우드에서 도입함으로써 팀·데이터·애플리케이션을 하나의 버추얼 경험으로 연결해 협업과 복합소재 혁신을 강화할 수 있게 됐다”고 말했다.
작성일 : 2025-09-22