• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "항공"에 대한 통합 검색 내용이 2,995개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
한국산업지능화협회, ‘SMATOF 2025’ 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회가 공동 주관하는 경남 대표 스마트팩토리 & 자동화산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일 개막했다. 협회는 올해 처음으로 ‘산업 AI 특별관’을 구성해, 산업 AI 기술과 플랫폼을 선도하는 기업들의 혁신 사례와 설루션을 선보였다. 이번 특별관에는 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 주요 기업들이 참여해 산업 AI 기반의 제조 혁신 사례를 공유했다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 주요 제조 관련 기관을 통해 약 70여 개사의 바이어가 방한했다. 행사 기간 동안 ▲1:1 수출상담회 ▲스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램 등을 통해 우리 기업들과의 글로벌 네트워킹과 협력 기회를 마련했다.     한편, 10월 30일 개최된 ‘2025 제조 AX 혁신 콘퍼런스’는 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래 모빌리티 분야를 중심으로, DX·AX 선도기업의 실제 기술 적용 사례와 성공 전략이 공유된다. 기조 세션에서는 ▲AWS가 ‘제조AX 추진 전략, 데이터에서 더 많은 가치를!’이라는 주제로, 최적의 제조 AX 성과를 달성할 수 있는 방안과 실제 사례를 소개했다. ▲유비씨는 ‘From DX to AX : 앞서가는 기업들이 선택한 무인화·자율화 디지털 트윈 전략’을 주제로, DX 단계를 넘어 자율화(AX) 시대를 여는 핵심 전략과 2차전지, 조선, 물류 등 실제 산업 사례를 소개했다. ▲B&R 인더스트리얼 오토메이션은 ‘AI와 자동화의 융합 : 제조 혁신을 가속하는 트랜스포메이션 전략’을 주제로, AI와 클라우드 협업을 통해 엔지니어링 환경을 혁신하는 방법을 제시했다. 이 밖에도 일반 세션에서는 온로봇 코리아, 넘프, 온스트림, 서버키트가 참여해 스마트 공장 설루션, 로컬 LLM 적용 사례, 공정 최적화 및 예지보전 등 제조 AI 적용 전략과 실무적 인사이트를 공유했다. 한국산업지능화협회 김태희 혁신기획센터장은 ‘이번 행사를 계기로 지역과 기업 간의 협력 네트워크를 강화하고, 산업 현장의 디지털 전환(DX) 및 인공지능 전환(AX)을 지속적으로 지원해 나가겠다’고 밝혔다.  한편, SMATOF는 내년부터 격년제가 아닌 매년 개최되며, 2026년에는 10월 14일~16일 창원컨벤션센터(CECO)에서 열릴 예정이다.
작성일 : 2025-10-30
DN솔루션즈 우진근 팀장, 고난도 공작기계 국산화 공로 '철탑산업훈장' 수훈
DN솔루션즈(DN Solutions)의 우진근 팀장(책임매니저)이 고정밀 선반 복합가공기 등 고난도 공작기계 국산화에 기여한 공로를 인정받아 철탑산업훈장을 받았다고 DN솔루션즈가 밝혔다. 우 팀장은 2006년부터 고정밀 선반 복합가공기(multitasking turning center) 개발 업무를 맡아왔다. 이는 일반 공작기계 여러 대의 능력을 하나의 장비에 집약해 작업 시간과 인력을 최소화하는 첨단 장비로, 자동차, 항공, 에너지 등 다양한 산업 분야에서 수요가 높지만 높은 기술 장벽으로 국내 시장은 수입품 의존도가 높았다. 우 팀장은 제품 국산화와 기술 자립을 성공적으로 이끌어 대한민국 제조업 경쟁력 강화에 크게 기여했다는 평가다. 이 과정에서 그는 해외 특허 5건을 포함해 총 10건의 공작기계 특허를 등록하는 성과를 올렸다. DN솔루션즈는 우 팀장의 주도 아래 복합가공기 개발과 양산에 성공하여 수입 의존도를 낮추고 대규모 수출까지 달성했다. 우 팀장이 개발한 복합가공기인 SMX 리즈, DNX 시리즈는 최근 5년간 총 매출액 2,348억 원 중 2,280억 원이 해외 수출일 정도로 세계 시장에서 경쟁력을 인정받고 있다. 또한, 그는 전량 수입되던 수평형 5축 가공기의 국산화 및 양산 성능 평가에도 기여한 공로도 인정받았다. 우진근 팀장은 이번 수훈에 대해 "세계 최고의 복합기를 설계하겠다는 스무살의 간절한 꿈에 한 발 더 가까이 다가서게 되어 이루 말할 수 없이 기쁘다"고 소감을 밝혔다. 이어 "대한민국 제조업이 세계 시장을 선도하는 새로운 역사를 이룰 수 있도록, **세계 최고 수준의 장비를 개발**하는 데 제 모든 역량을 다 하겠다"고 포부를 다졌다.
작성일 : 2025-10-30
한국BIM학회, 지능형 건설을 주제로 국제 심포지엄 개최
한국BIM학회(KIBIM)가 오는 11월 14일 한국과학기술회관에서 ‘KIBIM 2025 국제 심포지엄’을 개최한다. ‘스마트를 넘어 : 지능형 건설의 부상(Beyond Smart : The Rise of Intelligent Construction)’을 주제로 열리는 이번 심포지엄은 AI, 빅데이터, 디지털 트윈, 로보틱스 등 첨단 기술이 건축·건설 산업에 접목되는 현시점에서 지능형 건설의 현재와 미래 방향을 탐구하기 위해 마련됐다. 한국BIM학회의 추승연 회장은 “지속가능성, 안전, 생산성 문제를 해결하기 위한 통찰과 전략을 공유하는 뜻깊은 자리가 될 것”이라고 전했다. 심포지엄에서는 글로벌 전문가의 기조연설이 진행된다. ▲타이거 그룹(Tiger Group)의 수하일 알 라이에스(Suhail Al Rayes) 전무이사가 ‘두바이 메가 프로젝트를 위한 지능형 시스템’을 소개하고 ▲구글의 버나드 크레스(Bernard Kress) XR 엔지니어링 디렉터는 ‘스마트 건설을 위한 스마트 안경 및 증강 현실 헤드셋’ 활용 방안을 공유한다. ▲오토데스크코리아의 오찬주 대표는 ‘AECO(설계·엔지니어링·건설·운영) 산업을 위한 연결된 미래’라는 제목으로 AI와 클라우드 기반의 ‘성과 기반 BIM’을 소개한다. 오후 행사는 ▲국토교통부, 한국공항공사, 국가철도공단 등이 공공 발주기관의 BIM 적용 전략과 성과를 발표하는 ‘공공 부문의 BIM 리더십’ 특별 세션 ▲한양대학교, 인하대학교, 연세대학교, 성균관대학교에서 AI 기반 시뮬레이션과 생성형 AI를 활용한 구조계산 자동화 기술 등을 소개하는 ‘스마트 건설의 기반’ 세션 ▲네이버랩스, BLUA, 대우건설, COWI에서 데이터와 파이썬, AI를 활용한 BIM 데이터 검증 프레임워크 등을 소개하는 ‘건축 환경을 위한 AI 및 자동화’ 세션 ▲옵티콘, 현대건설, 수성엔지니어링 등에서 효율적인 BIM 파이프라인 구축 사례 및 디지털 전환 시대 건설 산업의 역할에 대해 공유하는 ‘건설 분야 디지털 전환’ 세션 등 네 개의 세션으로 나뉘어 진행된다.  
작성일 : 2025-10-27
앤시스-한화에어로스페이스, 차세대 항공 엔진 개발 위한 디지털 협력 MOU 체결
앤시스코리아가 10월 23일 서울 국제항공우주 및 방위산업 전시회(ADEX 2025)에서 한화에어로스페이스와 함께 국내 항공엔진 개발 역량 강화와 디지털 엔지니어링 기반 혁신 생태계 조성을 위한 업무협약(MOU)을 체결했다고 밝혔다.   이번 협약은 한화에어로스페이스의 차세대 항공엔진 개발 프로젝트에 앤시스코리아의 첨단 시뮬레이션 기술과 디지털 엔지니어링 역량을 결합해, 설계부터 검증·운용까지 전 과정을 디지털 중심으로 혁신하기 위한 협력의 일환이다. 양사는 ▲앤시스의 첨단 시뮬레이션 기술 및 기술 지원을 기반으로 한 공동 기술 협력 ▲한화에어로스페이스의 투자 및 협력 인프라 구축 ▲디지털 미션 엔지니어링(DME) 분야의 상호 협력을 추진할 예정이다.   특히 DME는 실제 운용 환경을 가상으로 재현하여 시스템 수준의 성능을 통합적으로 분석할 수 있는 차세대 엔지니어링 접근법으로, 기존의 부품 단위 해석을 넘어 비행 궤적, 대기 조건, 임무 환경 등 실제 상황을 반영한 ‘디지털 트윈’ 시뮬레이션을 구현할 수 있다. 이를 통해 한화에어로스페이스는 개발 과정에서 발생할 수 있는 리스크를 최소화하고, 시험 주기 단축·개발비 절감·품질 향상 등 실질적인 성과를 기대할 수 있다. 앤시스코리아는 이번 MOU를 통해 엔진 설계부터 임무 수행까지 전 과정을 아우르는 시뮬레이션 기술을 지원할 계획이다. DME 기반의 통합 해석을 통해 개발 효율과 신뢰성을 높이는 한편, 국내 디지털 엔지니어링 생태계를 한층 고도화할 방침이다. 또한 앞으로 국내 항공·방산 기업들과의 협력을 확대해 항공우주 기술의 글로벌 경쟁력 강화에도 기여할 예정이다.   앤시스코리아 박주일 대표는 “이번 협력은 한국 항공우주산업의 디지털 혁신을 가속화하기 위한 중요한 이정표”라며, “앤시스의 시뮬레이션과 디지털 미션 엔지니어링 역량을 통해 한화에어로스페이스의 엔진 개발 전 과정이 한 단계 진화할 것으로 기대한다”고 말했다.  
작성일 : 2025-10-24
한국산업지능화협회, SMATOF 2025 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회는 스마트 공장 및 자동화 산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일~31일 3일간 창원컨벤션센터(CECO)에서 개최된다고 전했다. 이번 행사는 경상남도와 창원특례시가 주최하고 한국산업지능화협회, 경남관광재단, 경남로봇산업협회, FA저널, 인더스트리 뉴스가 공동 주관한다. 창원시는 창원국가산단에 혁신 가치를 더해 미래 산업의 새로운 성장동력을 창출하기 위해 다양한 중장기 비전을 추진하고 있다. 이를 위해 ▲‘창원산업혁신파크’ 조성을 통한 산업 구조의 대전환 ▲제조업에 첨단 기술을 접목하는 디지털·인공지능 전환(DX·AX) 준비 ▲산업 공간에 문화적 요소를 융합한 ‘창원문화선도산단’ 조성 등을 단계적으로 구체화하며 산업 생태계 혁신에 속도를 내고 있다. 이에 발맞추어 올해로 9회차를 맞이한 SMATOF 2025는 ‘창원산단의 재도약, 제조업의 디지털 혁신을 DRIVE하다’를 주제로 개최되며, 디지털 전환(digitalization), 산업혁명(revolution), 혁신(innovation), 비전(vision), 전시회(exhibition) 다섯 가지 키워드로 구성하여 스마트 제조업의 미래상을 제시할 예정이다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 제조 분야 주요 협회를 통해 약 70여 개사의 바이어가 방한한다. 주최 측은 바이어와 참가기업 간 1:1 수출상담회를 운영하고, 스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램을 진행해 우리 기업들의 해외 시장 진출과 글로벌 네트워킹을 지원할 예정이다.     한편, 한국산업지능화협회는 제조업 전반에 걸친 AX 확산을 위해 올해 처음 ‘산업AI 특별관’을 선보인다고 전했다. 이 특별관에는 산업 AI 기술과 플랫폼을 공급하는 대표 기업들이 참여하며, 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 기업들이 산업 AI 혁신 사례와 설루션을 선보인다. 10월 30일에 개최되는 ‘2025 제조 AX 혁신 콘퍼런스’는 창원컨벤션센터 1층에 새로 오픈한 ‘더그레이드’에서 열릴 예정이다. 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래모빌리티 분야에 산업 AI 도입과 디지털·인공지능 전환을 지원할 수 있는 기업들이 참여해, 핵심 전략과 실증 사례를 공유한다. 기조 세션에서는 아마존웹서비스(AWS)가 참여해 ‘제조 AX 추진 전략, 데이터에서 더 많은 가치를’이라는 주제로 산업 AI 우수 비즈니스 모델 사례를 발표할 예정이다. 한국산업지능화협회의 이길선 전무이사는 “창원은 국내 제조산업의 중심지로, 디지털·인공지능 대전환을 통해 글로벌 산업 수도로 도약을 준비하고 있다”면서, “이번 행사를 통해 경남 지역 제조 기반의 수요기업과 산업 AI 설루션 공급기업 간 협력 네트워크를 강화하고, 선도 기업의 비즈니스 모델과 혁신 사례를 공유함으로써 지역 산업 전반의 디지털·AI 전환 확산을 적극 지원하겠다”고 밝혔다.
작성일 : 2025-10-23
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
DN솔루션즈, ADEX 2025에서 우주·항공·방산 제조혁신 솔루션 선보여
DN솔루션즈(DN Solutions는 ‘서울 국제 항공우주 및 방위산업 전시회 2025(Seoul ADEX 2025)’에 참가해 우주항공 및 방위산업 관계자들에게 독보적인 정밀가공 기술 역량과 미래 제조 솔루션을 선보일 예정이라고 밝혔다. 오는 10월 20일부터 24일까지 킨텍스(KINTEX) 제2전시장 9홀에서 열리는 이번 ADEX 2025 전시에서 DN솔루션즈는 DVF 5000 2nd Gen와 DLX 325D 등 핵심 5축 가공 장비와 혁신적인 적층 가공기를 중심으로, 극한의 환경에서도 완벽한 성능을 요구하는 우주항공 및 방산 부품 제작에 최적화된 토털 솔루션을 공개한다.    특히, 난삭재/복합재 가공, 부품 대형화, 생산성 향상, 제조 자동화, 적층 가공, 그리고 제조 지능화 등 항공우주 제조 혁신을 위한 6대 핵심 기술 트렌드를 반영한 구체적인 적용 사례를 제시하며, K-방산과 K-우주항공 산업의 제조 경쟁력 강화에 기여하겠다는 의지를 강조할 계획이다. DN솔루션즈는 서울 ADEX를 단순한 장비 전시 기회를 넘어, 한국 우주항공 업계의 경쟁력 제고를 지원할 중요 기회로 보고 있다. 앞서 김원종 DN솔루션즈 대표는 지난 6월 한국우주항공산업협회 주최로 열린 제13회 우주항공 리더 조찬 포럼 특강 연사로 나서 "우주항공 제조혁신을 견인하는 기술의 발전은 곧 국가 경쟁력 강화로 이어진다"고 강조하며, 이 분야에서의 정밀가공 기술의 핵심적 역할을 역설했다. 우주항공 및 방위산업 부품은 요구되는 정밀도와 기술 안정성 기준이 타 산업 대비 월등히 높아, 부품 생산 과정에서 초정밀 가공 기술과 고도의 품질관리 역량이 필수적이기 때문이다. 극한의 환경을 견뎌야 하는 엔진 블레이드, 구조물, 미사일 부품 등은 미세한 오차도 허용되지 않는다. DN솔루션즈는 이번 ADEX 2025를 통해 국내외 우주항공 및 방위산업 리더들과의 전략적 기술 협력 기회를 모색하며, K-방산 수출 증대와 미래 우주항공 시대 개척에 기여하는 기업으로서의 입지를 더욱 확고히 다질 계획이다. 김원종 대표는 “DN솔루션즈는 글로벌 네트워크를 보유한 세계적 공작기계 기업으로서, 한국 경제의 새로운 도약을 이끌 우주항공 분야에서 우리의 정밀 가공 기술이 제조 경쟁력 강화에 핵심 역할을 할 수 있도록 계속 매진하겠다”고 다짐했다.
작성일 : 2025-10-17
빌딩스마트협회 ‘빌드스마트 콘퍼런스 2025’ 개최
빌딩스마트협회는 10월 28일 건설회관에서 BIM 및 스마트건설 콘퍼런스인 ‘빌드스마트 콘퍼런스 2025(buildSMART CONFERENCE 2025)’를 개최한다고 밝혔다. 이번 콘퍼런스는 ‘AI를 품은 미래건축과 건설 : 로봇과 모빌리티’를 주제로 빌딩스마트협회와 한국스마트건설융합학회, 희림건축이 공동 주최한다. 기조강연에서는 싱가포르 기술디자인대학교의 모한 라제쉬 엘라라(Mohan Rajesh Elara) 교수가 ‘도시와 로봇의 만남 : 도시 로봇공학의 기반 구축’을, 그림쇼(Grimshaw)의 정윤희 수석이 ‘적응형 도시 구축 : 재생 인프라를 위한 프레임워크’를, 경희대학교 황경은 교수가 ‘로봇 친화형 건축물 설계 시공 및 운영 관리 핵심기술 개발’을 주제로 발표한다.  주제발표에는 AI(인공지능), 디지털 트윈, 로봇, UAM(도심 항공 모빌리티) 등 다양한 분야에서의 업계, 학계 전문가가 발표를 진행한다. 엑스와이지 황성재 대표, 희림건축 최현철 수석, 와이앤스페이드 이종걸 대표, 무브먼츠 윤대훈 대표, 연우에이치티 최준혁 대표, 인천대학교 이슬비 교수, 한국건설기술연구원 이상윤 연구위원, 조우아건축사사무소 김원준 소장이 다양한 주제로 발표할 예정이다. 또한, 이번 콘퍼런스에서는 지난 10월 2일 발표한 ‘BIM 어워즈 2025(BIM AWARDS 2025)’ 수상작에 대한 시상식을 진행하며, 수상 작품에 대한 전시도 함께 진행한다. 자세한 내용은 빌드스마트 콘퍼런스 2025 행사 페이지에서 확인할 수 있다.  
작성일 : 2025-10-16
AI 팩토리 M.AX 얼라이언스, 2030 제조 AI 최강국 향한 혁신 가속화
산업통상부는 10월 1일 AI 팩토리 M.AX 얼라이언스 전략 회의를 개최하고, 대한민국 제조업의 인공지능 전환(M.AX)을 통한 2030 제조 AI 최강국 도약을 위한 성과와 전략을 점검했다. 삼성전자, 현대자동차, LG엔솔, 삼성중공업 등 국내 대표 제조 기업들이 한자리에 모여 제조 혁신의 의지를 다졌다. 김정관 장관은 "AI 시대는 속도와의 전쟁이다. AI 팩토리는 빠르게 세계 1위를 도전할 수 있는 분야"라며, "정책과 자원을 집중해 순풍을 만들겠다"고 밝혔다.   AI 팩토리 선도사업, 2030년까지 500개로 대폭 확대 AI 팩토리 선도사업은 제조 공정에 AI를 접목해 생산성을 획기적으로 높이고 제조 비용과 탄소 배출 등을 감축하는 핵심 프로젝트이다. 이날 회의를 계기로 삼성전자, 현대자동차, LG전자, LG엔솔, SK에너지, HD현대중공업, 농심 등 업종 대표 기업들이 신규 참여를 확정했다. 이에 따라 현재 102개인 AI 팩토리 선도 사업은 2030년까지 500개 이상으로 확대될 계획이다. 주요 기업들은 AI 팩토리를 통해 혁신적인 성과를 목표로 했다. 삼성전자는 AI를 통해 HBM(고대역폭메모리반도체)의 품질을 개선한다. HBM은 ’28년까지 연평균 100% 이상 급성장이 기대될 정도로 각광받는 AI 반도체이다. 삼성전자는 현재 전반적으로 사람이 수행중인 HBM 불량 식별 공정에 AI를 도입할 계획이다. AI가 발열검사 영상, CT 이미지 등을 분석해 품질검사의 정확도를 99% 이상 높이고, 영상·이미지 등의 비파괴 검사를 통해 검사시간도 25% 이상 단축할 것으로 기대된다. HD현대중공업은 함정 MRO용(Maintain 유지보수, Repair 수리, Overhaul 정비) 로봇 개발을 추진한다. 보통 선체의 10% 면적에 따개비·해조류 등의 오염물질이 부착되면 연료소비가 최대 40%까지 증가한다. HD현대중공업은 숙련공에 의존하던 해양생물 제거, 재도장 등의 작업을 AI 로봇에 맡겨, MRO효율을 80% 이상 향상시키고 작업자 안전사고 등을 방지할 계획이다. 현대자동차는 셀방식 생산방식에 핵심이 되는 AI 다기능 로봇팔을 개발한다. 자동차산업은 소품종 대량생산의 컨베이어벨트 방식에서, 제품별로 공정을 다르게 적용해 유연생산이 가능한 셀기반 방식으로 전환되고 있다. 현대차는 힌지·도어 조립, 용접품질 검사 등 다양한 공정을 자율적으로 수행가능한 AI 로봇팔을 공정에 도입하여, 시장수요 변화에 신속히 대응하고 생산성을 30% 이상 높일 계획이다. 농심은 라면 제조설비에 AI 기반 자율정비 시스템을 도입한다. 원료공급, 제면, 포장 등의 라면 제조공정은 연속작동 설비가 많아 한 부분의 예기치 못한 고장으로 생산라인 전체가 중단될 수 있다. 이에 각 공정별로 다양한 이상 징후를 조기에 탐지하는 자율정비 시스템을 도입해 설비 효율성을 10% 이상 제고하고, 유지보수 비용은 10% 이상 절감할 계획이다. 현재까지 AI 팩토리 선도사업에 참여중인 업종별 주요기업 자동차 반도체 전자(가전 등) 철강 조선 현대차, LG이노텍, 한국타이어, 기아 삼성전자, 케이씨텍, 이수페타시스 LG전자, 쿠첸, LS전선 포스코, KG스틸, 대한제강 삼성중공업, HD현대삼호 항공·방산 식품·바이오 이차전지 석유화학·섬유 기계·건설 대한항공, KAI. 한화시스템 농심, 삼양식품, 한국콜마 LG에너지솔루션, 삼성SDI SK에너지, GS칼텍스, 코오롱 HD현대건설기계, 코넥 휴머노이드 로봇, 금년부터 제조 현장 실증 본격 투입 AI 팩토리 전략의 한 축으로, 제조 현장 휴머노이드 로봇 투입을 위한 실증 계획도 공개되었다. 금년에는 디스플레이, 조선, 물류 등 6개 현장에 휴머노이드가 투입된다. 분야 수요기업 공급기업 휴머노이드 주요 과업 디플 삼성디스플레이 레인보우로보틱스 레이저 장비내 렌즈교체, 검사 JIG 교체 작업 등 조선 HD현대미포 에이로봇 각종 상황과 이음 형태에 맞는 용접 작업 수행   삼성중공업 에이로봇 다양한 장애물, 협소 공간, 비평탄면 등 극복을 통해 자율 이동하며 용접·청소 등 가전 LG전자 로브로스 인간 수준 핸들링 작업 및 보행을 바탕으로 가전제품 공장 내 조립·운송 화학 SK에너지 홀리데이로보틱스 석유화학 제품 검사, 유압/가스 밸브 등 조작, 시료 제조, 검사 시료 운송 등 수행 유통 CJ대한통운 레인보우로보틱스 피킹·분류·검수·포장 등 복잡한 물류 작업 동작을 다양한 상품에 맞게 자율적으로 수행 산업부는 올해부터 2027년까지 100개 이상 휴머노이드 실증 사업을 통해 핵심 데이터와 기술을 확보하고, 2028년부터는 본격적인 양산 체계에 돌입할 계획이다. 선도사업 성과 가시화, 세계 최고 업종별 제조 AI 모델 개발 착수 현재까지 진행된 AI 팩토리 선도 사업에서는 이미 가시적인 성과가 도출되고 있다. GS칼텍스는 AI를 통해 정유 공정 데이터를 분석해 연료 비용을 20%가량 감축했으며, 온실가스 배출 저감 효과도 달성했다. HD현대미포는 AI 로봇을 투입해 용접 검사·조립 작업시간을 12.5% 단축했다. 반도체 기업인 대덕전자와 신한다이아몬드는 AI 도입으로 기존 육안 품질 검사 시간을 각각 90%, 30% 단축하는 성과를 보였다. 이러한 성과를 바탕으로 AI 팩토리 M.AX 얼라이언스는 세계 최고 수준을 목표로 하는 업종별 특화 제조 AI 모델 개발에 착수했다. 제조 AI에 특화된 전문가를 비롯해 뉴욕대 조경현 교수, 멜버른대 한소연 교수 등 초거대 AI 모델 전문가 23명이 공동으로 참여한다. 개발된 모델은 2028년 완료를 목표로 하며, 제조 현장 배포 시 기업들은 개발 비용 50%, 개발 시간 40%를 줄일 수 있을 것으로 기대했다. '다크 팩토리' 구현 위한 AI 팩토리 사업 확대 전략 산업부는 AI 팩토리 사업을 확대·개편해 내년부터 완전 자율형 AI 공장인 AI 팩토리(다크 팩토리) 건설에 필요한 기술 개발과 실증 사업을 추진한다. 제조 공정뿐 아니라 공장 설계, 시생산, 공급망 관리, 물류, A/S 등 제조 전 단계를 아우르는 AI 모델을 개발·확산할 계획이다. 특히 엔비디아 CEO 젠슨 황이 강조한 디지털 트윈을 활용한 '가상공장(Virtual Factory)' 구현을 전략의 한 축으로 삼았다. 가상공장을 통해 기업은 시스템 변경, 설비 고장, 공급망 변동 등 다양한 상황에서 공정 가동을 미리 테스트하고, 실제 공장과 연동해 모니터링, 예지 보전, 원격 제어 등에 활용할 수 있게 된다. 이러한 기술을 바탕으로 2030년까지 우리나라가 세계 최고의 AI 팩토리 수출국으로 발돋움하는 것을 목표로 관련 전략을 수립했다.
작성일 : 2025-10-11
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02