• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "학습"에 대한 통합 검색 내용이 2,483개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
에이수스, 엔비디아 GB10 기반 AI 슈퍼컴퓨터 ‘어센트 GX10’ 국내 출시
에이수스 코리아는 엔비디아 GB10 그레이스 블랙웰(Grace Blackwell) 기반의 개인용 AI 슈퍼컴퓨터 ‘Ascent GX10(어센트 GX10)’을 국내 공식 출시한다고 밝혔다. 에이수스 어센트 GX10은 높은 AI 성능과 공간 효율을 제공한다. 손바닥 정도의 사이즈임에도 최대 1000TOPs의 AI 성능을 구현하여 AI 연구원, 데이터 과학자뿐만 아니라 AI 기반 개발 및 연구를 필요로 하는 개인 및 기업 프로젝트에도 최적의 성능을 제공한다.     어센트 GX10은 내장된 GB10 그레이스 블랙웰 슈퍼칩을 통해 FP4 정밀도 기준 최대 1페타플롭의 AI 성능을 지원한다. 이를 위해 최신 세대 CUDA(쿠다) 코어와 5세대 텐서(Tensor) 코어를 탑재하였으며, NVLink C2C 인터커넥트를 통해 연결된 20개의 Arm 아키텍처 기반 고효율 코어를 포함하고 있다. 또한 128GB의 통합 시스템 메모리를 통해 최대 2000억개의 매개변수를 처리할 수 있으며, 엔비디아 커넥트X(NVIDIA ConnectX) 네트워크 인터페이스 카드를 활용해 GX10 시스템 두 대를 연결하여 라마 3.1(Llama 3.1)과 같이 더 많은 매개변수를 가진 대형 AI 모델도 효율적으로 학습하고 처리할 수 있다. 에이수스는 어센트 GX10이 가진 성능을 최대한 발휘할 수 있는 간편한 AI 모델 개발을 위한 쉬운 개발 환경을 제공한다. 개발자는 엔비디아 AI 소프트웨어 라이브러리를 사용할 수 있으며, 엔비디아 NGC 카탈로그와 엔비디아 개발자 포털에서 제공되는 소프트웨어 개발 키트(SDK), 오케스트레이션 도구, 프레임워크, 모델 등 다양한 리소스를 지원받을 수 있다. 여기에 더해 에이전트 AI 애플리케이션 구축을 위한 엔비디아 블루프린트(NVIDIA Blueprints)와 NIM 마이크로 서비스도 지원하여 다양한 연구 및 개발, 테스트가 가능하다. 에이수스는 국내 공식 대리점인 코잇, 크로스젠, 유니퀘스트, 대원CTS를 통해 어센트 GX10의 구매 및 상담이 가능하다고 전했다.
작성일 : 2025-10-31
캔바, 크리에이티브 전 과정에 AI 결합한 ‘크리에이티브 운영체제’ 출시
올인원 비주얼 커뮤니케이션 플랫폼 캔바(Canva)가 ‘크리에이티브 운영체제(Creative Operating System)’를 출시했다고 발표했다. 이번 출시를 통해 캔바는 지난 10여년 간 축적해온 혁신을 집약해 창의력을 한층 강화하도록 설계된 새로운 기능을 선보인다. 새로운 운영체제는 캔바의 ‘디자인 모델(Design Model)’을 기반으로 설계되어, 디자인부터 협업, 퍼블리싱, 성과 관리까지 창작의 전 과정을 하나의 흐름으로 통합한다. 그 결과, 인간의 창의력이 주도하고 AI가 그 가능성을 확장하는 더 빠르고, 더 스마트하며 더 유기적으로 연결된 디자인 방식을 구현했다.     새로운 ‘크리에이티브 운영체제’의 중심에는 새롭게 재구성된 비주얼 스위트(Visual Suite)가 있다. 이 업그레이드를 통해 동영상, 이메일, 코드, 폼 모든 형식에서 가능성 영역을 한층 확장해, 아이디어를 구현하고 목표를 달성하는 과정을 쉽게 만들어준다. 이번 크리에이티브 운영체제는 다양한 기능을 새롭게 선보인다. 동영상 편집기 2.0(Video 2.0)은 복잡함과 불편함을 제거하기 위해 처음부터 다시 설계되었다. 전문가 수준의 편집 도구와 캔바 특유의 간편성이 결합되어 어떤 기기에서도 몰입도 높은 영상을 손쉽고 빠르게 제작할 수 있다. 매직 비디오(Magic Video)와 새로운 트렌드 템플릿 라이브러리를 통해 단 하나의 프롬프트만으로도 완성도 높은 콘텐츠를 생성할 수 있다. 새롭게 디자인된 타임라인은 영상 자르기, 동기화, 영상 레이어링을 빠르고 직관적으로 작업할 수 있으며, AI 도구들은 편집과 효과 적용을 자동화하는 데 도움을 준다.  캔바에서 가장 많이 요청된 기능 중 하나인 이메일 디자인(Email Design)은 완전히 새로운 형식을 선보이며, 마케팅 팀이 이미 콘텐츠를 디자인하는 플랫폼 안에서 이메일을 제작할 수 있게 해준다. 이제 팀은 별도의 코딩이나 툴 전환 없이 완전히 브랜딩된 마케팅 이메일을 제작하고 맞춤화하여 내보낼 수 있다. 완성된 디자인은 HTML 파일로 내보내 원하는 이메일 플랫폼에서 바로 배포할 수 있다. 캔바 폼(Forms)은 캔바 안에서 직접 피드백, RSVP, 데이터 등을 수집할 수 있는 새로운 방식이다. 완전히 브랜딩된 폼을 웹사이트를 포함한 다른 캔바 디자인에도 추가할 수 있으며, 시각적 스타일에 맞게 자유롭게 커스터마이징할 수 있다. 응답 내용은 자동으로 캔바 시트(Canva Sheets)로 연동되어 모든 정보를 한 곳에서 관리할 수 있다. 또한, 이제 캔바 시트를 캔바 코드(Canva Code)로 만든 결과물과 연결할 수 있어 데이터 기반의 인터랙티브 위젯을 손쉽게 제작할 수 있다. 라이브 대시보드, 계산기, 학습 도구 등 어떤 형태든 데이터가 변경될 때마다 자동으로 업데이트되며, 모든 요소가 유기적으로 연결된 상태를 유지한다.  아울러, 캔바는 창의성에 특화된 새로운 세대의 AI를 공개했다. 여기에는 디자인 자체를 이해하도록 학습된 모델이 포함된다. 이번 혁신은 창의력이 이끌고 기술이 가능성을 확장하는 방향, AI가 사용자의 목표 달성을 지원하는 방식을 발전시킨 것이다.  디자인 중심 캔바 AI 모델(Canva Design Model)은 디자인의 복잡성을 이해하도록 학습된 모델로, 수 년간의 연구와 디자인 지식을 바탕으로 구축됐다. 이 모델은 디자인의 논리를 해석하고, 레이아웃을 조율하며, 단 몇 초 만에 완전히 편집 가능한 콘텐츠를 생성한다. 캔바 AI는 대대적인 업그레이드를 거치며 이제 디자인의 모든 단계에 깊이 통합되었다. 사진, 영상, 질감, 3D 그래픽 등 원하는 모든 요소를 상상하기만 하면 캔버스 위에서 바로 구현해준다. 또한 새롭게 추가된 스타일 매치를 통해 모든 요소가 조화를 이루며 브랜드 일관성을 유지한 디자인을 손쉽게 완성할 수 있다.  @Canva에게 질문하기(Ask @Canva)는 디자인 과정 어디서든 도움을 받을 수 있는 디자인 어시스턴트다. 사용 중 ‘@Canva’를 태그하기만 하면 즉시 피드백, 디자인 제안, 스마트 편집 지원을 받을 수 있다. 카피 문구 제안부터 디자인 수정까지 편집기에 내장된 창작 파트너 역할을 수행한다. 이외에도 캔바는 브랜드 성장을 위한 마케팅 도구
도 소개했다. 캔바는 엔드 투 엔드 플랫폼으로 발전하며 브랜드 관리, 마케팅 캠페인, 성과 추적을 위한 신규 툴을 선보인다. 캔바 그로우(Canva Grow)는 광고 소재 기획부터 제작, 게시, 성과 분석까지 한 번에 처리할 수 있는 통합 마케팅 플랫폼이다. 마케팅 팀은 이제 캔바에서 광고를 디자인하고 메타(Meta) 등 다양한 플랫폼에서 실행하며, 실시간으로 인사이트를 추적하고 성과 지표에 따라 즉시 콘텐츠를 최적화할 수 있다. 브랜드 인식 AI를 기반으로 하는 캔바 그로우는 성과 데이터를 학습하여 시간이 지날수록 모든 캠페인을 더 스마트하고 효과적으로 발전시킨다. 브랜드 시스템(Brand System)은  브랜드 가이드라인과 브랜드 자산을 편집기로 직접 가져와 팀이 필요한 모든 것을 제작 환경 내에서 즉시 접근할 수 있도록 지원한다. 글꼴, 색상, 로고 템플릿이 자동으로 적용되어, 모든 디자인과 채널에서 브랜드 일관성을 손쉽게 유지할 수 있다. 성장 중인 팀이나 글로벌 기업 모두에게, 수동으로 하는 브랜드 검수 과정이 필요 없도록 하여 편리하고 일관성 있게 브랜드를 확장할 수 있다.  캔바는 개인, 마케터, 소규모 팀을 위한 ‘캔바 비즈니스(Canva Business)’ 요금제를 새롭게 도입했다. 이 요금제는 고급 AI, 분석, 브랜드 관리 도구를 활용해 브랜드를 성장시키고자 할 때 최적화된 구독 플랜으로, 캔바 프로(Canva Pro)와 캔바 엔터프라이즈(Canva Enterprise)의 중간 단계에 해당한다. 확장된 저장공간, 더 높은 AI 사용 한도, 인쇄 할인, 팀 성장을 돕는 다양한 전문 기능을 함께 제공한다. 캔바의 멜라니 퍼킨스(Melanie Perkins) 공동 창업자 및 CEO는 “지식의 접근성이 높아질수록 우리는 ‘정보의 시대’에서 ‘상상력의 시대’로 이동하고 있다고 믿는다. 이 시대에는 창의력이 그 어느 때보다 중요한 시기다”라며, “이 새로운 시대에 캔바 사용자들이 성공할 수 있도록 어떻게 지원할 수 있을지 고민해왔다. 그래서 이번에 올인원 ‘크리에이티브 운영체제’라는 캔바 최대의 혁신을 선보이게 되어 더더욱 기쁘다"고 밝혔다. 또한 “동영상, 이메일, 폼 등 주요 기능이 대폭 업그레이드된 비주얼 스위트, 브랜드와 비즈니스 성장을 위한 강력한 AI 레이어와 다양한 툴 등 새 기능들을 통해 사용자들이 자신의 아이디어를 어떻게 실현할지 무척 기대된다”고 전했다. 한편, 캔바는 전문 디자인과 일상 창작의 경계를 허문 새로운 ‘올 뉴 어피니티(All-New Affinity)’를 공개했다. 벡터 편집, 이미지 보정, 고급 레이아웃 디자인 등 많은 사랑을 받아온 전문 디자인 도구들을 하나의 강력한 제품과 통합된 파일 형식으로 결합해, 이제 여러 프로그램을 오갈 필요 없이 전문가 수준의 작업이 가능하다. 이제 어피니티는 전문 크리에이터가 어피니티에서 애셋을 제작한 뒤 바로 캔바로 이동해 협업, 게시, 브랜드 확장을 이어갈 수 있도록 지원하며, 전체 디자인 프로세스를 완성한다. 또한 어피니티는 이번에 최초로 영구 무료로 제공되어, 전문 크리에이터들의 마지막 진입 장벽을 제거하고 누구나 세계적 수준의 도구에 접근할 수 있도록 지원한다.
작성일 : 2025-10-31
인텔, 최신 AI PC 기능/애플리케이션 체험 공간 ‘인텔 서울 팝업 스토어’ 오픈
인텔은 연말 시즌에 맞춰 AI 경험을 소개하는 ‘인텔 팝업 스토어’를 강남역 오퍼스 407에 론칭하고, 11월 1일부터 한 달간 오픈한다고 밝혔다. 인텔 팝업 스토어는 서울을 비롯해 뉴욕, 런던, 뮌헨, 파리 등 전 세계 5개 도시에서 한 달간 운영하는 쇼케이스의 일환으로, 아시아에서는 유일하게 서울 강남에서 오픈한다. PC 제조사에서 주요 유통 채널까지 인텔의 글로벌 파트너인 삼성, LG, 에이서, 에이수스, 델, HP, MSI, 마이크로소프트는 물론 국내 주요 유통 채널인 쿠팡, G마켓, 네이버쇼핑과 함께 진행하며, 국내 데스크톱 브랜드인 포유컴과 퍼플랩도 참여한다. 이 곳에서는 인텔 AI PC 기반의 새로운 기능과 애플리케이션 등 스마트한 AI 경험들을 한자리에서 체험할 수 있으며, 팝업 기간동안 쿠팡, G마켓, 네이버쇼핑 등에서 프로모션하는 제품을 직접 구입할 수 있다.      10월 29일 기자간담회에서 인텔의 최고 매출책임자 및 글로벌 세일즈 마케팅 총괄인 그렉 언스트(Greg Ernst) 부사장은 인텔 글로벌 팝업스토어 프로그램 소개와 함께 최신 인텔 코어 울트라 시리즈를 포함한 클라이언트 제품 전략을 공유했다. 인텔은 2023년 첫 번째 AI PC를 선보이고 제품 라인업을 계속 확장해 나가는 한편, 350개 이상의 ISV와 협력해 약 500개의 고유한 AI 기능을 개발하면서 AI PC 분야를 이끌고 있다. 이어진 인텔 파트너 세션에서는 지지큐, 한컴, 업스테이지에서 AI PC용 애플리케이션 소개 및 활용 사례를 공유했다. 업스테이지의 최홍준 부사장은 Solar LLM 모델로 클라우드 연결 없이도 생산성을 강화할 수 있는 온디바이스 AI 구현 사례를, 지지큐의 이용수 대표는 게임용 AI 코칭 서비스를, 한컴 김연수 대표는 공공 부문 시장을 공략할 지능형 문서 작성 도구인 한컴어시스턴트를 소개했다. 또한 인텔과의 협업에 대해 공유하면서, 다양한 분야에서 AI를 활용해 생산성과 성능을 높일 수 있는 PC 경험을 소개했다. 인텔의 그렉 언스트(Greg Ernst) 세일즈 마케팅 그룹 총괄은 “연말 시즌을 맞아 한국의 주요 유통 채널 및 기술 파트너들과 함께 한국 소비자들에게 AI 기반 경험을 선보이게 되어 기쁘다. AI는 우리 모두에게 놀라운 일상의 경험을 선사할 잠재력을 가지고 있으며, 이번 쇼케이스를 통해 소비자들은 인텔과 파트너사가 창작, 게임, 업무, 학습, 소통을 위한 새로운 방식을 어떻게 구현하고 있는지 직접 체험해 볼 기회가 될 것“이라며, “한국은 인텔에게 빠르게 기술을 받아들이는 소비자와 핵심 기술 파트너를 연결해 주는 중요한 거점이다. 인텔이 제공하는 AI PC의 혁신적인 잠재력을 한국 소비자들이 직접 체험할 수 있는 팝업 스토어를 선보이게 되어 기쁘다”고 밝혔다.
작성일 : 2025-10-29
어도비, ‘파이어플라이’로 AI 창작 혁신 가속화
어도비(Adobe)가 AI 기반 창작 환경의 새로운 지평을 여는 올인원 크리에이티브 AI 스튜디오 ‘어도비 파이어플라이(Adobe Firefly)’의 대규모 업데이트를 발표했다. 이번 업데이트는 영상, 오디오, 이미지, 디자인 등 전 영역에서 아이디어 구상부터 최종 제작까지 전 과정을 지원하는 통합형 AI 창작 생태계를 구축하는 데 초점을 맞췄다. 파이어플라이는 최고의 AI 모델과 크리에이티브 툴을 단일 플랫폼·단일 가격으로 제공하는 ‘올인원 AI 크리에이티브 스튜디오’로, 복잡한 제작 과정을 단순화하고 창작 효율을 극대화하는 것이 특징이다.  이번 업데이트의 핵심 중 하나는 영상과 오디오 제작 도구의 강화다. 사운드트랙 생성(Generate Soundtrack) 기능은 상업적으로 안전한 라이선스 기반의 오리지널 AI 음악을 자동으로 영상에 동기화해 제작할 수 있도록 지원한다. 음성 생성(Generate Speech) 기능은 텍스트를 자연스러운 음성으로 변환하며, 일레븐랩스(ElevenLabs)와 협력해 다양한 언어와 감정 조절을 구현했다. 파이어플라이 비디오 에디터(Firefly Video Editor)는 웹 기반 멀티트랙 타임라인 편집기로, 영상 클립 생성, 편집, 사운드 및 자막 추가를 직관적으로 수행할 수 있다. 이미지 제작과 편집 분야에서는 더욱 정교하고 사실적인 결과물을 제공한다. 파이어플라이 이미지 모델 5(Image Model 5)는 4MP 해상도의 초고해상도 이미지 생성이 가능하며, 세밀한 질감과 디테일을 구현한다. 프롬프트로 편집(Prompt to Edit) 기능은 사용자가 일상 언어로 편집 내용을 설명하면 AI가 자동으로 수정하는 대화형 편집 기능을 지원한다. 어도비는 파이어플라이의 AI 생태계를 확장하며 크리에이터 맞춤형 모델(Custom Models)을 비공개 베타로 선보였다. 사용자는 자신이 보유한 이미지를 학습시켜 고유한 스타일의 에셋을 생성할 수 있다. 또한 구글, 루마 AI, 오픈AI, 일레븐랩스 등 주요 AI 기업의 모델과 협업해 파이어플라이 내에서 다양한 AI 엔진을 직접 활용할 수 있도록 했다. 이번 업데이트에서는 ‘프로젝트 문라이트(Project Moonlight)’도 함께 공개됐다. 이는 어도비의 앱과 크리에이터 소셜 채널 전반에서 작동하는 에이전틱 AI 기반 대화형 크리에이티브 어시스턴트로, 아이디어 발상부터 콘텐츠 인사이트 제공, 제작 가속화까지 전 과정을 지원한다. 어도비의 CTO 일라이 그린필드(Ely Greenfield)는 “파이어플라이는 아이디어 구상부터 최종 작품 완성까지 크리에이티브의 모든 여정을 지원하는 단일 공간”이라며 “최고의 AI 모델과 크리에이티브 툴을 결합해 창작자들이 더욱 빠르고 유연하게 작업할 수 있는 환경을 구축했다”고 밝혔다. 이번 업데이트를 통해 어도비는 AI 중심의 크리에이티브 워크플로우 혁신을 가속화하며, 글로벌 크리에이터 생태계 전반에 새로운 생산성과 영감을 제공할 것으로 기대된다.
작성일 : 2025-10-29
알테어, GPU·AI·양자컴퓨팅 지원하는 ‘HPC웍스 2026’ 출시
  알테어가 고성능 컴퓨팅(HPC) 및 클라우드 플랫폼 ‘알테어 HPC웍스(Altair HPCWorks) 2026’을 발표했다. 이번 업데이트는 그래픽처리장치(GPU) 통합 및 활용도 강화, 인공지능(AI)·머신러닝 지원 확대, 고도화된 리포팅 기능을 통해 HPC 환경의 가시성과 효율성을 향상시켰다. 최신 버전은 AI 워크로드를 중심으로 설계돼 GPU와의 통합성을 강화했다. 업데이트된 쿠버네티스 커넥터 및 주피터 노트북 연동 기능을 통해 AI 및 머신러닝 모델 학습 환경을 효율적으로 지원하며, 엔비디아, AMD, 인텔 GPU 가속기를 폭넓게 지원한다. IT 관리자는 향상된 GPU 탐색 및 리포팅 기능을 통해 GPU 리소스를 손쉽게 통합하고 최적화할 수 있다. AI 기반 자동화 기능도 대폭 강화됐다. HPC웍스 2026은 AI 기반 메모리 자원 예측 기능을 통해 작업 제출 및 자원 활용을 최적화하고, 지능형 스케줄링 및 메모리 선택 기능으로 HPC 워크로드의 효율성을 극대화한다. 사용자는 복잡한 정보기술(IT) 지식 없이도 빠르게 결과를 얻을 수 있다. 양자 컴퓨팅 지원도 강화됐다. 새로 출시된 버전은 전통적인 방식의 HPC와 양자 컴퓨팅을 결합한 하이브리드 워크플로를 효율적으로 실행할 수 있도록 지원한다. 이를 통해 신용카드 사기 거래 탐지와 같이 복잡하고 동적인 패턴을 분석하는 작업에 활용할 수 있다. 알테어 HPC웍스 2026은 자사 AI 플랫폼인 알테어 래피드마이너와의 연계를 통해 맞춤형 AI 모델 학습과 워크로드 자동화를 지원한다. 또한 리포트·대시보드 확장, 윈도우 전용 데스크톱 클라이언트 제공, 스트리밍 API 등으로 IT 운영 효율을 강화했다. 알테어의 샘 마할링엄 최고기술책임자(CTO)는 “기술 환경이 빠르게 진화함에 따라 알테어는 AI, 머신러닝, 데이터 분석, EDA(전자설계자동화), 양자 컴퓨팅 등 최신 워크로드를 완벽히 지원하도록 설루션을 발전시키고 있다”면서, “지멘스의 일원으로서 향후 이러한 기술력을 더욱 가속화할 예정”이라고 말했다.
작성일 : 2025-10-23
PTC, ‘온쉐이프 AI 어드바이저’ 출시하면서 CAD AI 제품군 강화
PTC는 자사의 클라우드 네이티브 CAD/PDM 플랫폼인 온쉐이프(Onshape)를 위한 최신 AI 기술인 ‘온쉐이프 AI 어드바이저(Onshape AI Advisor)’를 발표했다. 온쉐이프 AI 어드바이저는 설계 환경에 직접 내장되어 사용자가 설계를 진행하는 동안 실시간 가이드를 제공한다. 이번 업데이트로 모든 사용자는 최신 AI 기능에 즉시 접근할 수 있게 됐다. 온쉐이프 AI 어드바이저는 메인 작업 공간 내에서 쉽게 접근할 수 있도록 새롭게 디자인된 인터페이스를 갖추고 있다. 사용자에게 단계별 권장 사항, 문제 해결 기능, 모범 사례를 모두 설계 환경 내에서 제공한다. PTC는 “아마존 베드록(Amazon Bedrock)을 기반으로 하는 온쉐이프 AI 어드바이저의 최신 릴리스는 제품 개발에 AI를 도입하려는 PTC의 비전을 실현하는 다음 단계”라고 소개했다. PTC는 온쉐이프를 사용하는 엔지니어의 생산성을 높이는 동시에 엔터프라이즈급 보안 및 데이터 보호를 유지하기 위해 에이전트 워크플로를 발전시키고 있다. 팀은 워크플로에 직접 내장된 지능형 설계 에이전트와 협력하여 모델 메타데이터와의 상호 작용을 지원받을 수 있다. 또한 모델 문제 해결 및 작업 지원, 피처스크립트(FeatureScript) 코드 생성, 반복 작업 간소화 등을 수행할 수 있다. 이에 더해, AI 지원 렌더링은 시각화 및 설계 검토 워크플로를 가속화할 수 있는 잠재력을 보여줄 수 있다.     PTC는 온쉐이프의 클라우드 네이티브 아키텍처와 광범위한 공용 모델 라이브러리를 통해 파일 기반 CAD 도구와 차별화되는 고급 AI 기능을 위한 기반을 제공한다는 전략을 소개했다. PTC는 자동화된 지오메트리 생성, 지능형 설계 최적화, 자체 AI 이니셔티브를 가진 고객을 위한 툴킷 등 AI 기능을 모색하고 있다. 온쉐이프는 3주의 릴리스 주기를 통해 모든 사용자에게 새로운 기능과 플랫폼 향상 기능을 제공할 뿐만 아니라, 고객이 자체 AI 프로젝트를 추진할 수 있는 도구도 제공한다. 개방형 API, 확장 가능한 클라우드 컴퓨팅 리소스, 광범위한 공용 데이터 라이브러리, 맞춤형 구성 도구를 앞세워 AI 모델을 쉽게 학습시키고 합성 데이터를 생성할 수 있게 돕는다. PTC는 이러한 강점을 바탕으로 빠르게 성장하는 기업들이 기존의 파일 기반 시스템보다 더 빨리 AI를 실험하고 채택하도록 돕는다는 계획이다. PTC의 데이비드 캐츠먼(David Katzman) 온쉐이프 및 아레나(Arena) 총괄 부사장은 “AI 어드바이저를 온쉐이프에 직접 내장한 것은 설계 인텔리전스의 새로운 시대를 여는 것”이라면서, “우리는 단순히 AI 기능을 출시하는 것이 아니라, AI가 설계 과정에서 신뢰할 수 있는 파트너가 되는 엔지니어링 문화를 형성하고 있다. 업계 유일의 클라우드 네이티브 CAD 및 PDM 플랫폼인 온쉐이프는 제품 개발에 AI를 통합하는 데 있어 업계를 선도할 수 있는 위치에 있다”고 전했다.
작성일 : 2025-10-21
HP Z AI 워크스테이션 웨비나, 실무 사용기와 함께 공개
AI와 3D 그래픽 작업의 경계가 빠르게 허물어지고 있는 가운데, HP코리아가 차세대 크리에이터를 위한 새로운 솔루션을 선보인다. 10월 22일 오후 2시, 캐드앤그래픽스가 주최하는 웨비나 ‘고가의 GPU 없이도 최대 VRAM 96GB 작업 가능, HP Z AI 워크스테이션 및 사용기 소개’에서는 최신 HP Z AI 워크스테이션의 성능과 실제 현업 디자이너의 사용기를 생생하게 들을 수 있다. 이번 세션은 HP코리아의 차성호 이사(Value Products Category Manager)와 마루인터내셔널 배현수 부장(맥슨 한국총판 기술지원팀)이 발표자로 참여한다. 참가비는 무료이며, 사전등록을 통해 누구나 참여할 수 있다. 이번에 소개되는 HP Z AI 워크스테이션은 GPU 리소스에 대한 한계를 크게 낮춘 것이 특징이다. 고가의 GPU 없이도 최대 96GB VRAM을 활용할 수 있으며, 3D 디자인·렌더링 동시 작업, 대규모 LLM(대형언어모델) 실행 등 기존 워크스테이션에서 경험하기 어려웠던 고부하 작업을 로컬 환경에서도 안정적으로 수행할 수 있다. HP는 이번 모델을 통해 AI 시대의 ‘로컬 퍼포먼스 컴퓨팅’이라는 새로운 비전을 제시하고 있다. 특히 클라우드 의존도를 낮추면서도 고해상도 그래픽, 복잡한 시뮬레이션, 생성형 AI 모델 학습까지 가능하다는 점에서 크리에이터와 엔지니어 모두에게 주목받고 있다. 한편 이번 웨비나의 또 다른 핵심은 실제 현업 디자이너의 사용 경험이다. 맥슨(Maxon)의 한국총판 마루인터내셔널의 배현수 부장은 모션그래픽 디자이너이자 AI 크리에이터로, HP Z2 Mini G1a 데스크탑 워크스테이션을 활용한 협업 사례와 실무 노하우를 직접 공유할 예정이다. 이번 웨비나는 하이엔드 그래픽스, 3D 콘텐츠 제작, 생성형 AI 프로젝트를 수행하는 전문가들에게 실질적인 도움을 줄 것으로 기대된다.
작성일 : 2025-10-21
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
AWS, 포괄적 AI 에이전트 플랫폼 ‘아마존 베드록 에이전트코어’ 출시
아마존웹서비스(AWS)가 포괄적인 에이전틱 플랫폼인 ‘아마존 베드록 에이전트코어(Amazon Bedrock AgentCore)’를 출시한다고 발표했다. AWS는 “미션 크리티컬 시스템 구축 경험을 바탕으로 개발된 아마존 베드록 에이전트코어는 안전하고 신뢰할 수 있으며 확장 가능한 종합 에이전트 플랫폼으로, 에이전트의 비결정적 특성에 최적화된 프로덕션 환경을 제공한다”고 소개했다. 에이전트코어는 기업이 AI 에이전트를 파일럿에서 프로덕션까지 신속하게 전환하고 개발자가 에이전트를 구축, 배포, 운영하는 데 필요한 완전한 기반을 제공한다. 개발자는 복잡한 워크플로를 처리할 수 있도록 에이전트에 도구, 메모리, 데이터를 손쉽게 연결할 수 있으며, 몇 줄의 코드로 안전하고 확장 가능한 런타임 환경에 배포할 수 있다. 또한 엔터프라이즈급 접근 제어 및 관리 기능을 통해 안정적으로 운영할 수 있다. 이 모든 기능은 인프라를 관리 없이 원하는 모델이나 프레임워크를 자유롭게 선택해 쉽게 시작할 수 있다. 에이전트코어는 구축부터 배포, 운영까지 에이전트 개발 수명주기 전반에 걸쳐 완전 관리형 서비스를 제공하는 에이전틱 플랫폼이다. 기업은 원하는 모델이나 프레임워크를 자유롭게 조합해 사용할 수 있으며 엔터프라이즈급 인프라 및 도구에 대한 액세스와 함께 높은 유연성을 제공한다. 에이전트코어는 통합 또는 개별 사용이 가능한 컴포저블(composable) 서비스를 제공한다. 기업은 크루AI, 구글 ADK, 랭그래프, 라마인덱스, 오픈AI 에이전트 SDK, 스트랜드 에이전트 등 선호하는 프레임워크와 아마존 베드록에서 제공되는 모델 또는 오픈AI, 제미나이 등 아마존 베드록 외부 모델을 사용하여 필요한 에이전트코어 서비스를 선택할 수 있다.     에이전트코어 코드 인터프리터(AgentCore Code Interpreter)는 격리된 환경에서 에이전트가 코드를 안전하게 생성하고 실행할 수 있게 하며, 에이전트코어 브라우저(AgentCore Browser)는 대규모 웹 애플리케이션 상호작용을 지원한다. 에이전트코어 게이트웨이(AgentCore Gateway)는 기존 API와 AWS 람다(AWS Lambda) 함수를 에이전트 호환 도구로 전환하고 기존 모델 컨텍스트 프로토콜(Model Context Protocol : MCP) 서버에 연결하며, 지라, 아사나, 젠데스크 등 서드파티 비즈니스 도구 및 서비스와의 원활한 통합을 제공한다. 에이전트코어 아이덴티티(AgentCore Identity)를 통해 에이전트는 오스(OAuth) 표준을 사용한 적절한 인증 및 권한 부여로 이러한 도구에 안전하게 액세스하고 운영할 수 있다. AI 에이전트는 컨텍스트를 유지하고 상호작용을 통해 학습할 수 있어야 한다. 에이전트코어 메모리(AgentCore Memory)는 개발자가 복잡한 메모리 인프라를 관리하지 않고도 정교하고 컨텍스트를 인식하는 경험을 만들 수 있도록 지원하며, 에이전트가 사용자 선호도, 과거 상호작용, 관련 컨텍스트에 대한 상세한 이해를 구축하고 유지할 수 있게 한다. 아마존 클라우드워치(Amazon CloudWatch) 기반의 에이전트코어 옵저버빌리티(AgentCore Observability)는 실시간 대시보드와 상세한 감사 추적을 통해 포괄적인 모니터링을 제공한다. 기업은 모든 에이전트 작업을 추적하고 문제를 신속하게 디버깅하며 성능을 지속적으로 최적화할 수 있다. 오픈텔레메트리(OpenTelemetry : OTEL) 호환성을 통해 다이나트레이스, 데이터독, 아리제 피닉스, 랭스미스, 랭퓨즈 등 기존 모니터링 도구와 통합된다. 에이전트 워크로드는 기존 애플리케이션과 달리 실행 시간이 불규칙하다. 에이전트코어 런타임(AgentCore Runtime)은 이러한 변동성(variability)에 대응해 필요에 따라 제로에서 수천 개의 세션으로 자동 확장되며 장시간 실행 작업을 위한 업계 최고 수준의 8시간 런타임을 제공한다. 에이전트코어는 에이전트가 안전하게 작동할 수 있도록 모든 서비스에 보안을 내장했다. 가상 프라이빗 클라우드(VPC) 환경과 AWS 프라이빗링크(AWS PrivateLink)를 지원하여 네트워크 트래픽을 비공개로 안전하게 유지한다. 에이전트코어 런타임은 마이크로VM 기술을 통해 매우 높은 수준의 보안을 제공하여 각 에이전트 세션에 고유한 격리된 컴퓨팅 환경을 제공함으로써 데이터 유출을 방지하고 모든 상호작용의 무결성을 유지한다. 에이전트코어는 키로(Kiro), 커서AI(Cursor A)I와 같은 통합 개발 환경(IDE)과 호환되는 MCP 서버를 통해 프로덕션급 에이전트 구축을 지원한다. AWS는 “시작까지 단 몇 분밖에 걸리지 않지만 이는 단순한 도구가 아니라 강력한 보안을 유지하면서 제로에서 수천 개의 세션으로 즉시 확장할 수 있는 완전한 기능의 프로덕션급 설루션”이라고 소개했다. 아마존 디바이스 운영 및 공급망(Amazon Devices Operations & Supply Chain) 팀은 에이전트코어를 사용하여 에이전틱 제조 접근 방식을 개발하고 있다. AI 에이전트들은 제품 사양을 사용하여 함께 작업하며 수동 프로세스를 자동화하며 협업한다. 한 에이전트는 제품 요구사항을 읽고 품질 관리를 위한 상세한 테스트 절차를 만들고, 다른 에이전트는 제조 라인의 로봇에 필요한 비전 시스템을 훈련시킨다. 그 결과 기존에 며칠이 걸리던 객체 감지 모델 미세 조정이 1시간 이내에 높은 정밀도로 단축됐다. 에이전트코어는 뭄바이, 싱가포르, 시드니, 도쿄, 더블린, 프랑크푸르트, 미국 동부(버지니아 북부), 미국 동부(오하이오), 미국 서부(오리건) 등 9개 AWS 리전에서 정식 출시됐다. 기업은 에이전트코어에서 작동하도록 설계된 AWS 마켓플레이스(AWS Marketplace)의 사전 구축된 에이전트 및 도구를 통해 가치 실현 시간을 가속화할 수 있다.
작성일 : 2025-10-17
Arm, 향상된 AI 경험 제공 위해 메타와 전략적 파트너십 강화
Arm은 메타(Meta)와 AI 소프트웨어부터 데이터센터 인프라에 이르는 컴퓨팅의 전 영역에서 AI 효율성을 확장하기 위해 전략적 파트너십을 강화했다고 밝혔다. 양사는 이번 협력을 통해 전 세계 수십억 명의 사용자에게 한층 향상된 AI 경험을 제공할 계획이다. 온디바이스 인텔리전스를 지원하는 밀리와트급 저전력 디바이스부터 최첨단 AI 모델 학습을 담당하는 메가와트급 대규모 시스템까지, 메타의 글로벌 플랫폼을 구동하는 전 영역의 컴퓨팅 환경에서 AI 성능을 최적화하겠다는 것이다. 이번 전략적 파트너십 강화는 양사가 다년간 지속해온 하드웨어 및 소프트웨어 공동 설계 협력을 기반으로 한다. Arm의 전력 효율적 AI 컴퓨팅 기술력과 메타의 AI 제품, 인프라, 오픈소스 기술 혁신을 결합해 성능과 효율성을 대폭 향상시키는 것을 목표로 한다. 페이스북과 인스타그램 등 메타 앱 제품군 전반의 검색 및 개인화를 지원하는 메타의 AI 기반 순위 및 추천 시스템은 x86 시스템 대비 고성능, 저전력 소비를 제공하기 위해 Arm 네오버스(Neoverse) 기반 데이터센터 플랫폼을 활용할 예정이다. 네오버스는 메타가 인프라 전반에 걸쳐 전력 대비 성능 효율을 달성할 수 있도록 지원하며, 하이퍼스케일 환경에서 Arm 컴퓨팅의 효율과 확장성을 강화한다. 양사는 컴파일러와 라이브러리부터 주요 AI 프레임워크에 이르기까지 메타의 AI 인프라 소프트웨어 스택을 Arm 아키텍처에 최적화하기 위해 긴밀히 협력했다. 여기에는 Facebook GENeral Matrix Multiplication(FBGEMM) 및 파이토치(PyTorch)와 같은 오픈소스 구성 요소의 공통 튜닝을 포함되며, Arm의 벡터 확장 기능과 성능 라이브러리를 활용해 추론 효율과 처리량에서 측정 가능한 향상을 이뤘다. 이러한 최적화는 오픈 소스 커뮤니티에 제공되어 글로벌 AI 에코시스템 전반에 영향력을 확대하고 있다. 이번 파트너십은 파이토치 머신러닝 프레임워크, ExecuTorch 엣지 추론 런타임 엔진, vLLM 데이터센터 추론 엔진 전반에 걸쳐 AI 소프트웨어 최적화를 한층 강화한다. 특히 Arm KlediAi로 최적화된 ExecuTorch 기반을 고도화해 수십억 대의 기기에서 효율성을 높이고, 모델 배포를 더욱 간소화함으로써 에지에서 클라우드까지 AI 애플리케이션 성능을 가속화할 예정이다. 이러한 오픈소스 기술 프로젝트는 메타 AI 전략의 핵심으로, 추천 시스템부터 대화형 인텔리전스에 이르기까지 다양한 AI 개발과 배포를 가능하게 한다. 양사는 앞으로도 오픈소스 프로젝트에 대한 최적화를 지속 확장해 전 세계 수백만명의 개발자가 Arm 기반 환경에서 더욱 효율적인 AI를 구축하고 배포할 수 있도록 지원할 계획이다. 메타의 산토시 야나르단(Santosh Janardhan) 인프라 부문 대표는 “플랫폼 경험부터 우리가 만드는 디바이스에 이르기까지, AI는 사람들이 연결하고 창조하는 방식을 변화시키고 있다”면서, “Arm과의 파트너십을 통해 메타 애플리케이션 및 기술을 사용하는 30억 명이 넘는 사용자에게 혁신을 효율적으로 제공할 수 있게 됐다”고 밝혔다. Arm의 르네 하스(Rene Haas) CEO는 “차세대 AI 시대는 대규모 효율성을 실현하는 것이 핵심이 될 것”이라며, “메타와의 협력을 통해 Arm의 전력대비 성능 우위와 메타의 AI 혁신 역량을 결합해 밀리와트급부터 메가와트급까지 모든 영역에서 더욱 스마트하고 효율적인 인텔리전스를 구현할 것”이라고 말했다.
작성일 : 2025-10-17